toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hunter, E.C.; Battle, P.D.; Sena, R.P.; Hadermann, J. doi  openurl
  Title (up) Ferrimagnetism as a consequence of cation ordering in the perovskite LaSr2Cr2SbO9 Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 248 Issue Pages 96-103  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of LaSr2Cr2SbO9 has been synthesised using a standard ceramic method and characterized by x-ray and neutron diffraction, magnetometry and electron microscopy. The perovskite-related compound crystallises in the triclinic space group I1 with unit cell parameters of a=5.5344(6) angstrom, b=5.5562(5) angstrom, c=7.8292(7) angstrom, a=89.986(12)degrees, beta=90.350(5)degrees and gamma=89.926(9)degrees at room temperature. The two crystallographically-distinct, six-coordinate cation sites are occupied by Cr3+ and Sb5+ in ratios of 0.868(2):0.132(2) and 0.462(2):0.538(2). Ac and de magnetometry revealed that LaSr2Cr2SbO9 is ferrimagnetic below 150 K with a magnetisation of similar to 1.25 mu(B) per formula unit in 50 kOe at 5 K. Neutron diffraction showed that the cations on the two sites order in a G-type arrangement with a mean Cr3+ moment of 2.17(1) mu(B) at 5 K, consistent with a magnetisation of 1.32 mu(B) per formula unit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000396386300012 Publication Date 2017-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 14 Open Access Not_Open_Access  
  Notes ; Experiments at the ISIS Pulsed Neutron and Muon Source were supported by the STFC. We are grateful to I. da Silva for the assistance provided at ISIS and to the EPSRC for financial support under Grant EP/M018954/1. We also thank Diamond Light Source Ltd (EE13284) for the award of beamtime. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:142413 Serial 4657  
Permanent link to this record
 

 
Author Tang, Y.; Hunter, E.C.; Battle, P.D.; Hendrickx, M.; Hadermann, J.; Cadogan, J.M. pdf  doi
openurl 
  Title (up) Ferrimagnetism as a consequence of unusual cation ordering in the Perovskite SrLa2FeCoSbO9 Type A1 Journal article
  Year 2018 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 12 Pages 7438-7445  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of SrLa2FeCoSbO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, magnetometry, Mossbauer spectroscopy, X-ray diffraction, and neutron diffraction. The compound adopts a monoclinic (space group P2(1)/n; a = 5.6218(6), b = 5.6221(6), c = 7.9440(8) angstrom, beta = 90.050(7)degrees at 300 K) perovskite-like crystal structure with two crystallographically distinct six-coordinate sites. One of these sites is occupied by 2/3 Co-2(+),1/3 Fe3+ and the other by 2/3 Sb5+, 1/3 Fe3+. This pattern of cation ordering results in a transition to a ferrimagnetic phase at 215 K. The magnetic moments on nearest-neighbor, six-coordinate cations align in an antiparallel manner, and the presence of diamagnetic Sb5+ on only one of the two sites results in a nonzero remanent magnetization of similar to 1 mu(B) per formula unit at 5 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000436023800073 Publication Date 2018-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access Not_Open_Access  
  Notes ; PDB, ECH, and JH acknowledge support from EPSRC under grant EP/M0189954/1. We would like to thank the STFC for the award of beamtime at the ISIS Neutron and Muon Source (RB 1610100), and we thank Dr. I. da Silva for the assistance provided. We also thank Dr. R Paria Sena for help with the HAADF-STEM and STEM-EDX experiments. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:152485 Serial 5103  
Permanent link to this record
 

 
Author Lazoryak, B.I.; Baryshnikova, O.V.; Stefanovich, S.Y.; Malakho, A.P.; Morozov, V.A.; Belik, A.A.; Leonidov, I.A.; Leonidova, O.N.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Ferroelectric and ionic-conductive properties of nonlinear-optical vanadate, Ca9Bi(VO4)7 Type A1 Journal article
  Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 15 Issue 15 Pages 3003-3010  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Structural, chemical, and physical properties of whitlockite-type Ca9Bi(VO4)(7) were studied by X-ray powder diffraction (XRD), electron diffraction (ED), second-harmonic generation (SHG), thermogravimetry, differential scanning calorimetry, dielectric, and electrical-conductivity measurements. A new phase-transition of the ferroelectric type was found in Ca9Bi(VO4)(7) with a transition temperature, T-c of 1053 +/- 3 K. The polar phase, beta-Ca9Bi(VO4)(7), is stable below T-c down to at least 160 K. The centrosymmetric beta'-phase is stable above T-c up to 1273 +/- 5 K. Above 1273 K, it decomposes to give BiVO4 and whitlockite-type solid solutions of Ca9+1.5xBi1-x(VO4)(7). The beta<---->beta' phase transition is reversible and of second order. Electrical conductivity of beta'-Ca9Bi(VO4)(7) is rather high (sigma = 0.6 x 10(-3) S/cm at 1200 K) and obeys the Arrhenius law with an activation energy of 1.0 eV. Structure parameters of Ca9Bi(VO4)(7) are refined by the Rietveld method from XRD data measured at room temperature (space group R3c; Z = 6; a = 10.8992(1) Angstrom, c = 38.1192(4) Angstrom, and V = 3921.6(1) Angstrom(3); R-wp = 3.06% and R-p = 2.36%). Bi3+ ions together with Ca2+ ions are statistically distributed among the M1, M2, M3, and M5 sites. Ca9Bi(VO4)(7) has a SHG efficiency of about 140 times that of quartz. Through the powder SHG measurements, we estimated the nonlinear optical susceptibility, Digital, at about 6.1-7.2 pm/V. This value for Ca9Bi(VO4)(7) is comparable with that for known nonlinear optical materials such as LiNbO3 and LiTaO3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000184379900024 Publication Date 2003-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 51 Open Access  
  Notes Iup V-1; Dwtc Approved Most recent IF: 9.466; 2003 IF: 4.374  
  Call Number UA @ lucian @ c:irua:103284 Serial 1179  
Permanent link to this record
 

 
Author Maignan, A.; Martin, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title (up) Ferromagnetism and magnetoresistance in monolayered manganites Ca2-xLnxMnO4 Type A1 Journal article
  Year 1998 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 8 Issue 11 Pages 2411-2416  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000076974900019 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 30 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:25684 Serial 1182  
Permanent link to this record
 

 
Author Lebedev, O.I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G. pdf  doi
openurl 
  Title (up) First direct imaging of giant pores of the metal-organic framework MIL-101 Type A1 Journal article
  Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 17 Issue 26 Pages 6525-6527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000234187300007 Publication Date 2005-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 191 Open Access  
  Notes Approved Most recent IF: 9.466; 2005 IF: 4.818  
  Call Number UA @ lucian @ c:irua:56404 Serial 1197  
Permanent link to this record
 

 
Author Demirkol, Ö.; Sevik, C.; Demiroğlu, I. url  doi
openurl 
  Title (up) First principles assessment of the phase stability and transition mechanisms of designated crystal structures of pristine and Janus transition metal dichalcogenides Type A1 Journal article
  Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 24 Issue 12 Pages 7430-7441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T '' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T ' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T ' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T ', T '' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766791000001 Publication Date 2022-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:187184 Serial 7164  
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R. openurl 
  Title (up) First principles computation of thermo-chemical properties beyond the harmonic approximation: 1: method and application to the water molecule and its isotopomers Type A1 Journal article
  Year 1992 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 96 Issue 10 Pages 7633-7645  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1992HU55700047 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.952 Times cited 59 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:4195 Serial 1206  
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R. openurl 
  Title (up) First principles computation of thermo-chemical properties beyond the harmonic approximation: 2: application to the amino radical and its isotopomers Type A1 Journal article
  Year 1992 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 97 Issue 5 Pages 3530-3536  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1992JL37200072 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.952 Times cited 22 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:4197 Serial 1207  
Permanent link to this record
 

 
Author Bercx, M.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title (up) First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 20542-20549  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.  
  Address EMAT & CMT groups, Department of Physics, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium. marnik.bercx@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000381428600058 Publication Date 2016-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 34 Open Access  
  Notes We acknowledge financial support of FWO-Vlaanderen through projects G.0150.13N and G.0216.14N and ERA-NET RUS Plus/FWO, Grant G0D6515N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO FWOVlaanderen. Approved Most recent IF: 4.123  
  Call Number c:irua:135091 Serial 4112  
Permanent link to this record
 

 
Author Sivek, J.; Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title (up) First-principles investigation of bilayer fluorographene Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 36 Pages 19240-19245  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Ab initio calculations within the density functional theory formalism are performed to investigate the stability and electronic properties of fluorinated bilayer graphene (bilayer fluorographene). A comparison is made to previously investigated graphane, bilayer graphane, and fluorographene. Bilayer fluorographene is found to be a much more stable material than bilayer graphane. Its electronic band structure is similar to that of monolayer fluorographene, but its electronic band gap is significantly larger (about 1 eV). We also calculate the effective masses around the Gamma-point for fluorographene and bilayer fluorographene and find that they are isotropic, in contrast to earlier reports. Furthermore, it is found that bilayer fluorographene is almost as strong as graphene, as its 2D Young's modulus is approximately 300 N m(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000308631300022 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 39 Open Access  
  Notes ; This work is supported by the ESF-Eurocores program EuroGRAPHENE (project CONERAN) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:101842 Serial 1211  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Mortazavi, B. url  doi
openurl 
  Title (up) First-principles investigation of electronic, mechanical and thermoelectric properties of graphene-like XBi (X = Si, Ge, Sn) monolayers Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 21 Pages 12471-12478  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Research progress on single layer group III monochalcogenides has been increasing rapidly owing to their interesting physics. Herein, we investigate the dynamically stable single layer forms of XBi (X = Ge, Si or Sn) using density functional theory calculations. Phonon band dispersion calculations and ab initio molecular dynamics simulations reveal the dynamical and thermal stability of the considered monolayers. Raman spectra calculations indicate the existence of 5 Raman active phonon modes, 3 of which are prominent and can be observed in possible Raman measurements. The electronic band structures of the XBi single layers were investigated with and without the effects of spin-orbit coupling (SOC). Our results show that XBi single layers show semiconducting properties with narrow band gap values without SOC. However, only single layer SiBi is an indirect band gap semiconductor, while GeBi and SnBi exhibit metallic behaviors when adding spin-orbit coupling effects. In addition, the calculated linear elastic parameters indicate the soft nature of the predicted monolayers. Moreover, our predictions for the thermoelectric properties of single layer XBi reveal that SiBi is a good thermoelectric material with increasing temperature. Overall, it is proposed that single layer XBi structures can be alternative, stable 2D single layers with varying electronic and thermoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000653851100001 Publication Date 2021-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179007 Serial 6992  
Permanent link to this record
 

 
Author Obeid, M.M.; Stampfl, C.; Bafekry, A.; Guan, Z.; Jappor, H.R.; Nguyen, C., V; Naseri, M.; Hoat, D.M.; Hieu, N.N.; Krauklis, A.E.; Tuan V Vu; Gogova, D. url  doi
openurl 
  Title (up) First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate Type A1 Journal article
  Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 22 Issue 27 Pages 15354-15364  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nonmetal doping is an effective approach to modify the electronic band structure and enhance the photocatalytic performance of bismuth oxyhalides. Using density functional theory, we systematically examine the fundamental properties of single-layer BiOBr doped with boron (B) and phosphorus (P) atoms. The stability of the doped models is investigated based on the formation energies, where the substitutional doping is found to be energetically more stable under O-rich conditions than under Bi-rich ones. The results showed that substitutional doping of P atoms reduced the bandgap of pristine BiOBr to a greater extent than that of boron substitution. The calculation of the effective masses reveals that B doping can render the electrons and holes of pristine BiOBr lighter and heavier, respectively, resulting in a slower recombination rate of photoexcited electron-hole pairs. Based on the results of HOMO-LUMO calculations, the introduction of B atoms tends to increase the number of photocatalytically active sites. The top of the valence band and the conduction band bottom of the B doped BiOBr monolayer match well with the water redox potentials in an acidic environment. The absorption spectra propose that B(P) doping causes a red-shift. Overall, the results predict that nonmetal-doped BiOBr monolayers have a reduced bandgap, a slow recombination rate, more catalytically active sites, enhanced optical absorption edges, and reduced work functions, which will contribute to superior photocatalytic performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549894000018 Publication Date 2020-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 18 Open Access  
  Notes ; This work was partially supported by the financial support from the Natural Science Foundation of China (Grant No. 11904203) and the Fundamental Research Funds of Shandong University (Grant No. 2019GN065). ; Approved Most recent IF: 3.3; 2020 IF: 4.123  
  Call Number UA @ admin @ c:irua:171235 Serial 6522  
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A. doi  openurl
  Title (up) First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000332395700048 Publication Date 2014-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 8 Open Access  
  Notes Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:128893 Serial 4520  
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D. pdf  url
doi  openurl
  Title (up) First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 132 Issue Pages 172-181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472124700023 Publication Date 2019-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021  
  Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170  
Permanent link to this record
 

 
Author Aghaei, M.; Bogaerts, A. pdf  url
doi  openurl
  Title (up) Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 17 Pages 6620-6628  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We describe the plasma chemistry in a helium flowing atmospheric pressure afterglow (FAPA) used for analytical spectrometry, by means of a quasione-dimensional (1D) plasma chemical kinetics model. We study the effect of typical impurities present in the feed gas, as well as the afterglow in ambient humid air. The model provides the species density profiles in the discharge and afterglow regions and the chemical pathways. We demonstrate that H, N, and O atoms are formed in the discharge region, while the dominant reactive neutral species in the afterglow are O3 and NO. He* and He2* are responsible for Penning ionization of O2, N2, H2O, H2, and N, and especially O and H atoms. Besides, He2+ also contributes to ionization of N2, O2, H2O, and O through charge transfer reactions. From the pool of ions created in the discharge, NO+ and (H2O)3H+ are the dominant ions in the afterglow. Moreover, negatively charged clusters, such as NO3H2O− and NO2H2O−, are formed and their pathway is discussed as well. Our model predictions are in line with earlier observations in the literature about the important reagent ions and provide a comprehensive overview of the underlying pathways. The model explains in detail why helium provides a high analytical sensitivity because of high reagent ion formation by both Penning ionization and charge transfer. Such insights are very valuable for improving the analytical performance of this (and other) ambient desorption/ionization source(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648505900008 Publication Date 2021-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 6713 ; The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO) grant number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the UA. The authors also thank J. T. Shelley for providing experimental data for the gas velocity behind the anode disk and before the mass spectrometer interface, to validate our model. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:178126 Serial 6762  
Permanent link to this record
 

 
Author Rehor, I.; Mackova, H.; Filippov, S.K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.; Cigler, P.; pdf  doi
openurl 
  Title (up) Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings Type A1 Journal article
  Year 2014 Publication ChemPlusChem Abbreviated Journal Chempluschem  
  Volume 79 Issue 1 Pages 21-24  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The novel synthesis of a polymeric interface grown from the surface of bright fluorescent nanodiamonds is reported. The polymer enables bioorthogonal attachment of various molecules by click chemistry; the particles are resistant to nonspecific protein adsorption and show outstanding colloidal stability in buffers and biological media. The coating fully preserves the unique optical properties of the nitrogen-vacancy centers that are crucial for bioimaging and sensoric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000337974900002 Publication Date 2013-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2192-6506; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.797 Times cited 34 Open Access  
  Notes EU 7FP Program (no.262348); European Soft Matter Infrastructure; ESMI; ERC (grant no.246791)-COUNTATOMS; FWO Approved Most recent IF: 2.797; 2014 IF: 2.997  
  Call Number UA @ lucian @ c:irua:113088 Serial 1235  
Permanent link to this record
 

 
Author Navulla, A.; Tsirlin, A.A.; Abakumov, A.M.; Shpanchenko, R.V.; Zhang, H.; Dikarev, E.V. doi  openurl
  Title (up) Fluorinated heterometallic \beta-diketonates as volatile single-source precursors for the synthesis of low-valent mixed-metal fluorides Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 4 Pages 692-694  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hexafluoroacetylacetonates that contain lead and divalent first-row transition metals, PbM(hfac)4 (M = Ni (1), Co (2), Mn (3), Fe (4), and Zn (5)), have been synthesized. Their heterometallic structures are held together by strong Lewis acid−base interactions between metal atoms and diketonate ligands acting in chelating−bridging fashion. Compounds 1−5 are highly volatile and decompose below 350 °C. Fluorinated heterometallic β-diketonates have been used for the first time as volatile single-source precursors for the preparation of mixed-metal fluorides. Complex fluorides of composition Pb2MF6 have been obtained by decomposition of 1−5 in a two-zone furnace under low-pressure nitrogen flow. Lead−transition metal fluorides conform to orthorhombically distorted Aurivillius-type structure with layers of corner-sharing [MF6] octahedra separated by α-PbO-type (Pb2F2) blocks. Pb2NiF6 and Pb2CoF6 were found to exhibit magnetic ordering below 80 and 43 K, respectively. The ordering is antiferromagnetic, with a weak, uncompensated moment due to the canting of spins. The Pb2MF6 fluorides represent a new class of prospective magnetoelectric materials combining transition metals and lone-pair main-group cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000287295300015 Publication Date 2010-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:88820 Serial 1236  
Permanent link to this record
 

 
Author Tinck, S.; Neyts, E.C.; Bogaerts, A. url  doi
openurl 
  Title (up) Fluorinesilicon surface reactions during cryogenic and near room temperature etching Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 51 Pages 30315-30324  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cyrogenic etching of silicon is envisaged to enable better control over plasma processing in the microelectronics industry, albeit little is known about the fundamental differences compared to the room temperature process. We here present molecular dynamics simulations carried out to obtain sticking probabilities, thermal desorption rates, surface diffusion speeds, and sputter yields of F, F2, Si, SiF, SiF2, SiF3, SiF4, and the corresponding ions on Si(100) and on SiF13 surfaces, both at cryogenic and near room temperature. The different surface behavior during conventional etching and cryoetching is discussed. F2 is found to be relatively reactive compared to other species like SiF03. Thermal desorption occurs at a significantly lower rate under cryogenic conditions, which results in an accumulation of physisorbed species. Moreover, ion incorporation is often observed for ions with energies of 30400 eV, which results in a relatively low net sputter yield. The obtained results suggest that the actual etching of Si, under both cryogenic and near room temperature conditions, is based on the complete conversion of the Si surface to physisorbed SiF4, followed by subsequent sputtering of these molecules, instead of direct sputtering of the SiF03 surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000347360200101 Publication Date 2014-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 11 Open Access  
  Notes Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:122957 Serial 1239  
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M. pdf  url
doi  openurl
  Title (up) Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 27636-27641  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000363193800043 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number UA @ lucian @ c:irua:129477 Serial 4182  
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G. pdf  url
doi  openurl
  Title (up) Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 15 Pages 3970-3974  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333634800036 Publication Date 2014-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess  
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:117186 Serial 1251  
Permanent link to this record
 

 
Author Recham, N.; Casas-Cabanas, M.; Cabana, J.; Grey, C.P.; Jumas, J.-C.; Dupont, L.; Armand, M.; Tarascon, J.-M. pdf  doi
openurl 
  Title (up) Formation of a complete solid solution between the triphylite and fayalite olivine structures Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 21 Pages 6798-6809  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent infatuation for LiFePO4 as positive electrode material in Li-ion batteries has prompted a renewed interest in olivine-type structures, with a view to enhance their conduction proper-ties. We show that the dual substitution of Li for Fe and of P for Si in the olivine LiFePO4 phase leads to a complete solid solution Li1-xFe1+xP1-xSixO4 as deduced from combined X-ray diffraction, Mossbauer, and NMR experiments. Our findings challenge the common belief that the anionic network cannot be substituted. Moreover. it is found that such a substitution promotes Li intersite mixing between the olivine M1 and M2 sites. Such mixing, together with the worsening of the conducting properties of the dually substituted samples, is believed to be responsible for the poor electrochemical performances of the member's series. Beyond x = 0.20, the samples were electrochemically inactive. While the current materials are disappointing application-wise, such a study provides clues to the rich chemistry remaining to be unveiled with olivine-type structures in particular and polyanionic compounds in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000260658100036 Publication Date 2008-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 35 Open Access  
  Notes Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:103082 Serial 1255  
Permanent link to this record
 

 
Author Thomé, T.; Colaux, J.L.; Colomer, J.-F.; Bertoni, G.; Terwagne, G. doi  openurl
  Title (up) Formation of carbon nitride nanospheres by ion implantation Type A1 Journal article
  Year 2007 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 103 Issue 2-3 Pages 290-294  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon nitride nanospheres have been synthesized into copper by simultaneous high fluence (10(18) at. cm(-2)) implantations of C-12 and N-15 ions. The composition of the implanted region has been measured using C-12(d,p(0))C-13 and N-15(d,alpha(0))C-13 nuclear reactions induced by a 1.05 MeV deuteron beam. The C-12 and N-15 depth profiles are very close and the retained doses into copper are relatively high, which indicates that carbon and nitrogen diffusion processes are likely limited during implantation. High resolution transmission electron microscopy (HRTEM) observations and electron diffraction (ED) analyses have been carried out to determine the structure of the nanospheres formed during implantation. Some consist in small hollow amorphous nanocapsules with sizes ranging from 30 to 100 nm. Large gas bubbles with diameters up to 300 mn have also been observed in the copper matrix. Electron energy-loss spectroscopy (EELS) measurements performed on the small nanocapsules indicate that their shells are composed of carbon and nitrogen. (c) 2007 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000247715300016 Publication Date 2007-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.084; 2007 IF: 1.871  
  Call Number UA @ lucian @ c:irua:102670 Serial 1258  
Permanent link to this record
 

 
Author González-Rubio, G.; Milagres de Oliveira, T.; Albrecht, W.; Díaz-Núñez, P.; Castro-Palacio, J.C.; Prada, A.; González, R.I.; Scarabelli, L.; Bañares, L.; Rivera, A.; Liz-Marzán, L.M.; Peña-Rodríguez, O.; Bals, S.; Guerrero-Martínez, A. pdf  url
doi  openurl
  Title (up) Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 11 Pages 670-677  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irradiation of spherical gold nanoparticles (AuNPs) with nanosecond laser pulses induces shape transformations yielding nanocrystals with an inner cavity. The concentration of the stabilizing surfactant, the use of moderate pulse fluences, and the size of the irradiated AuNPs determine the efficiency of the process and the nature of the void. Hollow nanocrystals are obtained when molecules from the surrounding medium (e.g., water and organic matter derived from the surfactant) are trapped during laser pulse irradiation. These experimental observations suggest the existence of a subtle balance between the heating and cooling processes experienced by the nanocrystals, which induce their expansion and subsequent recrystallization keeping exogenous matter inside. The described approach provides valuable insight into the mechanism of interaction of pulsed nanosecond laser with AuNPs, along with interesting prospects for the development of hollow plasmonic nanoparticles with potential applications related to gas and liquid storage at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512223400012 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 15 Open Access OpenAccess  
  Notes This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00, PGC2018-096444-B-I00, ENE2015-70300-C3-3, and MAT2017-86659-R), the EUROfusion Consortium (Grant ENR-IFE19.CCFE-01) and the Madrid Regional Government (Grants P2018/NMT-4389 and P2018/EMT-4437). This project has received funding from the European Commission (grant 731019, EUSMI & grant 823717, ESTEEM3). The publication is based also upon work from COST Action TUMIEE (CA17126). The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by the Centro de Supercomputacion y Visualizacion de Madrid (CeSViMa). L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant MDM-2017-0720). This project has also received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant 797153, SOPMEN). A.P. and R.I.G. acknowledge the support of FONDECYT under Grants 3190123 and 11180557 and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:166504 Serial 6334  
Permanent link to this record
 

 
Author Anaf, W.; Janssens, K.; De Wael, K. pdf  doi
openurl 
  Title (up) Formation of metallic mercury during photodegradation/photodarkening of \alpha-HgS : electrochemical evidence Type A1 Journal article
  Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 52 Issue 48 Pages 12568-12571  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Das rote Pigment α-HgS neigt in Gegenwart von Licht und Chloridionen zur Schwärzung. Als Grund für die Zersetzung und Entfärbung werden die Bildung von (schwarzem) β-HgS oder Quecksilbermetall vermutet, doch diese Substanzen wurden noch nicht auf natürlich oder künstlich zersetzter HgS-Farbe nachgewiesen. Elektrochemische Experimente belegen nun die Bildung von Quecksilbermetall in Gegenwart von Licht und Chloridionen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327582900015 Publication Date 2013-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 19 Open Access  
  Notes ; The authors acknowledge L. Klaassen for valuable discussions and providing samples. We acknowledge financial support from the SDD programme (S2-ART project) of the Belgian Federal Goverment. ; Approved Most recent IF: 11.994; 2013 IF: 11.336  
  Call Number UA @ admin @ c:irua:111265 Serial 5626  
Permanent link to this record
 

 
Author Hayasaka, K.; Liang, D.; Huybrechts, W.; De Waele, B.R.; Houthoofd, K.J.; Eloy, P.; Gaigneaux, E.M.; Van Tendeloo, G.; Thybaut, J.W.; Marin, G.B.; Denayer, J.F.M.; Baron, G.V.; Jacobs, P.A.; Kirschhock, C.E.A.; Martens, J.A.; doi  openurl
  Title (up) Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods Type A1 Journal article
  Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 13 Issue 36 Pages 10070-10077  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000251855200006 Publication Date 2007-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 52 Open Access  
  Notes Approved Most recent IF: 5.317; 2007 IF: 5.330  
  Call Number UA @ lucian @ c:irua:67320 Serial 1268  
Permanent link to this record
 

 
Author Herkelrath, S.J.C.; Saratovsky, I.; Hadermann, J.; Clarke, S.J. doi  openurl
  Title (up) Fragmentation of an infinite ZnO2 square plane into discrete [ZnO2]2- linear units in the oxyselenide Ba2ZnO2Ag2Se2 Type A1 Journal article
  Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 130 Issue 44 Pages 14426-14427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Analysis of single crystal X-ray diffraction, neutron powder diffraction, electron diffraction and Zn−K-edge EXAFS data show that Ba2ZnO2Ag2Se2 contains unusual isolated [ZnO2]2− moieties resulting from fragmentation of a ZnO2 infinite plane placed under tension.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000260533400037 Publication Date 2008-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858; 2008 IF: 8.091  
  Call Number UA @ lucian @ c:irua:72947 Serial 1273  
Permanent link to this record
 

 
Author Bal, K.M.; Fukuhara, S.; Shibuta, Y.; Neyts, E.C. pdf  url
doi  openurl
  Title (up) Free energy barriers from biased molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 153 Issue 11 Pages 114118  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atomistic simulation methods for the quantification of free energies are in wide use. These methods operate by sampling the probability density of a system along a small set of suitable collective variables (CVs), which is, in turn, expressed in the form of a free energy surface (FES). This definition of the FES can capture the relative stability of metastable states but not that of the transition state because the barrier height is not invariant to the choice of CVs. Free energy barriers therefore cannot be consistently computed from the FES. Here, we present a simple approach to calculate the gauge correction necessary to eliminate this inconsistency. Using our procedure, the standard FES as well as its gauge-corrected counterpart can be obtained by reweighing the same simulated trajectory at little additional cost. We apply the method to a number of systems—a particle solvated in a Lennard-Jones fluid, a Diels–Alder reaction, and crystallization of liquid sodium—to demonstrate its ability to produce consistent free energy barriers that correctly capture the kinetics of chemical or physical transformations, and discuss the additional demands it puts on the chosen CVs. Because the FES can be converged at relatively short (sub-ns) time scales, a free energy-based description of reaction kinetics is a particularly attractive option to study chemical processes at more expensive quantum mechanical levels of theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000574665600004 Publication Date 2020-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access  
  Notes Japan Society for the Promotion of Science, 19H02415 18J22727 ; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; This work was supported, in part, by a Grant-in-Aid for Scientific Research (B) (Grant No. 19H02415) and Grant-in-Aid for a JSPS Research Fellow (Grant No. 18J22727) from the Japan Society for the Promotion of Science (JSPS), Japan. K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation – Flanders), Grant No. 12ZI420N. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. The authors are grateful to Pablo Piaggi for making the pair entropy CV code publicly available. Approved Most recent IF: 4.4; 2020 IF: 2.965  
  Call Number PLASMANT @ plasmant @c:irua:172456 Serial 6420  
Permanent link to this record
 

 
Author Hao, Y.; Velpula, G.; Kaltenegger, M.; Bodlos, W.R.; Vibert, F.; Mali, K.S.; De Feyter, S.; Resel, R.; Geerts, Y.H.; Van Aert, S.; Beljonne, D.; Lazzaroni, R. pdf  doi
openurl 
  Title (up) From 2D to 3D : bridging self-assembled monolayers to a substrate-induced polymorph in a molecular semiconductor Type A1 Journal article
  Year 2022 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 34 Issue 5 Pages 2238-2248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, a new bottom-up approach is proposed to predict the crystal structure of the substrate-induced polymorph (SIP) of an archetypal molecular semiconductor. In spite of intense efforts, the formation mechanism of SIPs is still not fully understood, and predicting their crystal structure is a very delicate task. Here, we selected lead phthalocyanine (PbPc) as a prototypical molecular material because it is a highly symmetrical yet nonplanar molecule and we demonstrate that the growth and crystal structure of the PbPc SIPs can be templated by the corresponding physisorbed self-assembled molecular networks (SAMNs). Starting from SAMNs of PbPc formed at the solution/graphite interface, the structural and energetic aspects of the assembly were studied by a combination of in situ scanning tunneling microscopy and multiscale computational chemistry approach. Then, the growth of a PbPc SIP on top of the physisorbed monolayer was modeled without prior experimental knowledge, from which the crystal structure of the SIP was predicted. The theoretical prediction of the SIP was verified by determining the crystal structure of PbPc thin films using X-ray diffraction techniques, revealing the formation of a new polymorph of PbPc on the graphite substrate. This study clearly illustrates the correlation between the SAMNs and SIPs, which are traditionally considered as two separate but conceptually connected research areas. This approach is applicable to molecular materials in general to predict the crystal structure of their SIPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000812125800001 Publication Date 2022-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.6  
  Call Number UA @ admin @ c:irua:189086 Serial 7084  
Permanent link to this record
 

 
Author Vande Velde, C.; Bultinck, E.; Tersago, K.; van Alsenoy, C.; Blockhuys, F. doi  openurl
  Title (up) From anisole to 1,2,4,5-tetramethoxybenzene: theoretical study of the factors that determine the conformation of methoxy groups on a benzene ring Type A1 Journal article
  Year 2007 Publication International journal of quantum chemistry Abbreviated Journal Int J Quantum Chem  
  Volume 107 Issue 3 Pages 670-679  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000242706900016 Publication Date 2006-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7608;1097-461X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.92 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.92; 2007 IF: 1.368  
  Call Number UA @ lucian @ c:irua:60633 Serial 1279  
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Vliem, J.F.; Maaskant, D.N.; Post, L.C.; Li, C.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title (up) From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 17 Pages 6853-6859  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The variation in the shape of colloidal semiconductor nanocrystals (NCs) remains intriguing. This interest goes beyond crystallography as the shape of the NC determines its energy levels and optoelectronic properties. While thermodynamic arguments point to a few or just a single shape(s), terminated by the most stable crystal facets, a remarkable variation in NC shape has been reported for many different compounds. For instance, for the well-studied case of CdSe, close-to-spherical quantum dots, rods, two-dimensional nanoplatelets, and quantum rings have been reported. Here, we report how two-dimensional CdSe nanoplatelets reshape into quantum rings. We monitor the reshaping in real time by combining atomically resolved structural characterization with optical absorption and photoluminescence spectroscopy. We observe that CdSe units leave the vertical sides of the edges and recrystallize on the top and bottom edges of the nanoplatelets, resulting in a thickening of the rims. The formation of a central hole, rendering the shape into a ring, only occurs at a more elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696553600024 Publication Date 2021-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access OpenAccess  
  Notes Hans Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant no. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced grant 692691 “First Step”. D.V. and L.C.P. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant nr. 718.015.002. S.B acknowledges financial support from the European ERC Council, ERC Consolidator grant 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 731019 (EUSMI). Realnano; sygmaSB Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:181550 Serial 6839  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: