toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shabalovskaya, S.A.; Tian, H.; Anderegg, J.W.; Schryvers, D.U.; Carroll, W.U.; van Humbeeck, J. pdf  doi
openurl 
  Title The influence of surface oxides on the distribution and release of nickel from Nitinol wires Type A1 Journal article
  Year 2009 Publication Biomaterials Abbreviated Journal Biomaterials  
  Volume 30 Issue 4 Pages 468-477  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The patterns of Ni release from Nitinol vary depending on the type of material (NiTi alloys with low or no processing versus commercial wires or sheets). A thick TiO2 layer generated on the wire surface during processing is often considered as a reliable barrier against Ni release. The present study of Nitinol wires with surface oxides resulting from production was conducted to identify the sources of Ni release and its distribution in the surface sublayers. The chemistry and topography of the surfaces of Nitinol wires drawn using different techniques were studied with XPS and SEM. The distribution of Ni into surface depth and the surface oxide thickness were evaluated using Auger spectroscopy, TEM with FIB and ELNES. Ni release was estimated using either ICPA or AAS. Potentiodynamic potential polarization of selected wires was performed in as-received state with no strain and in treated strained samples. Wire samples in the as-received state showed low breakdown potentials (200 mV); the improved corrosion resistance of these wires after treatment was not affected by strain. It is shown how processing techniques affect surface topography, chemistry and also Ni release. Nitinol wires with the thickest surface oxide TiO2 (up to 720 nm) showed the highest Ni release, attributed to the presence of particles of essentially pure Ni whose number and size increased while approaching the interface between the surface and the bulk. The biological implications of high and lasting Ni release are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Guildford Editor  
  Language Wos 000262065500006 Publication Date 2008-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.402 Times cited (up) 102 Open Access  
  Notes Fwo; G.0465.05 Approved Most recent IF: 8.402; 2009 IF: 7.365  
  Call Number UA @ lucian @ c:irua:72320 Serial 1641  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M. url  doi
openurl 
  Title Rearrangement of the vortex lattice due to instabilities of vortex flow Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue Pages 014521,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000248487900119 Publication Date 2007-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 103 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69653 Serial 2838  
Permanent link to this record
 

 
Author Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H. pdf  doi
openurl 
  Title New insights into the early stages of nanoparticle electrodeposition Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 3 Pages 2322-2329  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000299584400037 Publication Date 2011-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 104 Open Access  
  Notes Fwo Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:96225 Serial 2316  
Permanent link to this record
 

 
Author Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Surface chemistry and properties of ozone-purified detonation nanodiamonds Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 20 Pages 9827-9837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanodiamond from ozone purification (NDO) demonstrates very distinctive properties within the class of detonation nanodiamonds, namely very high acidity and high colloidal stability in a broad pH range. To understand the origin of these unusual properties of NDO, the nature of the surface functional groups formed during detonation soot oxidation by ozone needs to be revealed. In this work, thermal desorption mass spectrometry (TDMS) and IR spectroscopy were used for the identification of surface groups and it was concluded that carboxylic anhydride groups prevail on the NDO surface. On the basis of the temperature profiles of the desorbed volatile products and their mass balance, it is hypothesized that decomposition of carboxylic anhydride groups from NDO during heating proceeds by two different mechanisms. Other distinctive features of NDO in comparison with air-treated nanodiamond are also reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000290652200001 Publication Date 2011-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 105 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:89556 Serial 3394  
Permanent link to this record
 

 
Author Van Aert, S.; de Backer, A.; Martinez, G.T.; Goris, B.; Bals, S.; Van Tendeloo, G.; Rosenauer, A. url  doi
openurl 
  Title Procedure to count atoms with trustworthy single-atom sensitivity Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 6 Pages 064107-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a method to reliably count the number of atoms from high-angle annular dark field scanning transmission electron microscopy images. A model-based analysis of the experimental images is used to measure scattering cross sections at the atomic level. The high sensitivity of these measurements in combination with a thorough statistical analysis enables us to count atoms with single-atom sensitivity. The validity of the results is confirmed by means of detailed image simulations. We will show that the method can be applied to nanocrystals of arbitrary shape, size, and atom type without the need for a priori knowledge about the atomic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315144700006 Publication Date 2013-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 106 Open Access  
  Notes FWO; 262348 ESMI; 312483 ESTEEM2;246791 COUNTATOMS; Hercules 3; esteem2_jra2 Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:105674 Serial 2718  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited (up) 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Nanoindentation of a circular sheet of bilayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 23 Pages 235421,1-235421,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nanoindentation of bilayer graphene is studied using molecular-dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear Föppl-Hencky equations with rigid boundary condition. The force-deflection values of bilayer graphene are compared to those of monolayer graphene. Youngs modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Youngs modulus as compared to the one at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278710800003 Publication Date 2010-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 108 Open Access  
  Notes ; We gratefully acknowledge comments from R. Asgari. M.N.-A. would like to thank the Universiteit of Antwerpen for its hospitality where part of this work was performed. This work was supported by the Flemish science foundation (FWO-V1) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83093 Serial 2259  
Permanent link to this record
 

 
Author Stevens, W.J.J.; Lebeau, K.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. doi  openurl
  Title Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 18 Pages 9183-9187  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000237451300042 Publication Date 2006-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited (up) 109 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:58264 Serial 1738  
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M. doi  openurl
  Title Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene Type A1 Journal article
  Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 34 Pages 14503-14509  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphane, hydrogenated graphene, was very recently synthesized and predicted to have great potential applications. In this work, we propose a new promising approach for hydrogenation of graphene based on density functional theory (DFT) calculations through the application of a perpendicular electric field after substitutionally doping by nitrogen atoms. These DFT calculations show that the doping by nitrogen atoms into the graphene layer and applying an electrical field normal to the graphene surface induce dissociative adsorption of hydrogen. The dissociative adsorption energy barrier of an H2 molecule on a pristine graphene layer changes from 2.7 to 2.5 eV on N-doped graphene, and to 0.88 eV on N-doped graphene under an electric field of 0.005 au. When increasing the electric field above 0.01 au, the reaction barrier disappears. Therefore, N doping and applying an electric field have catalytic effects on the hydrogenation of graphene, which can be used for hydrogen storage purposes and nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000281129100027 Publication Date 2010-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 110 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:84588 Serial 882  
Permanent link to this record
 

 
Author Figuerola, A.; Franchini, I.R.; Fiore, A.; Mastria, R.; Falqui, A.; Bertoni, G.; Bals, S.; Van Tendeloo, G.; Kudera, S.; Cingolani, R.; Manna, L. pdf  doi
openurl 
  Title End-to-end assembly of shape-controlled nanocrystals via a nanowelding approach mediated by gold domains Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 5 Pages 550-554  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Welding nanocrystals for assembly: The welding of Au domains grown on the tips of shape-controlled cadmium chalcogenide colloidal nanocrystals is used as a strategy for their assembly. Iodine-induced coagulation of selectively grown Au domains leads to assemblies such as flowerlike structures based on bullet-shaped nanocrystals, linear and cross-linked chains of nanorods, and globular networks with tetrapods as building blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000263371800005 Publication Date 2008-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited (up) 110 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 19.791; 2009 IF: 8.379  
  Call Number UA @ lucian @ c:irua:75960 Serial 1037  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Schroeder, F.; Fischer, R.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct imaging of loaded metal-organic framework materials (metal@MOF-5) Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 17 Pages 5622-5627  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We illustrate the potential of advanced transmission electron microscopy for the characterization of a new class of soft porous materials: metal@Zn4O(bdc)3 (metal@MOF-5; bdc = 1,4-benzenedicarboxylate). By combining several electron microscopy techniques (transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and electron tomography) and by carefully reducing the electron dose to avoid beam damage, it is possible to simultaneously characterize the MOF-5 framework material and the loaded metal nanoparticles. We also demonstrate that electron tomography can be used to accurately determine the position and distribution of the particles within the MOF-5 framework. To demonstrate the implementation of these microscopy techniques and what kind of results can be expected, measurements on gas-phase-loaded metal−organic framework materials Ru@MOF-5 and Pd@MOF-5 are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000258941400021 Publication Date 2008-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 112 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:76595 Serial 714  
Permanent link to this record
 

 
Author Aerts, R.; Martens, T.; Bogaerts, A. doi  openurl
  Title Influence of vibrational states on CO2 splitting by dielectric barrier discharges Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 44 Pages 23257-23273  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the splitting of CO2 in a pulsed plasma system, such as a dielectric barrier discharge (DBD), is evaluated from a chemical point of view by means of numerical modeling. For this purpose, a chemical reaction set of CO2 in an atmospheric pressure plasma is developed, including the vibrational states of CO2, O2, and CO. The simulated pulses are matched to the conditions of a filament (or microdischarge) and repeated with intervals of 1 μs. The influence of vibrationally excited CO2 as well as other neutral species, ions, and electrons on the CO2 splitting is discussed. Our calculations predict that the electrons have the largest contribution to the CO2 splitting at the conditions under study, by electron impact dissociation. The contribution of vibrationally excited CO2 levels in the splitting of CO2 is found be 6.4%, when only considering one microdischarge pulse and its afterglow, but it can be much higher for consecutive discharge pulses, as is typical for a filamentary DBD, when the interpulse time is short enough and accumulation effects in the vibrationally excited CO2 densities can occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000310769300012 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 112 Open Access  
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:101764 Serial 1659  
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 16 Pages 165217  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly-square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000175325000061 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 112 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:95128 Serial 3082  
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M.; Ivanov, V.A.; Fleurov, V.; Kikoin, K. url  doi
openurl 
  Title Double-exchange mechanisms for Mn-doped III-V ferromagnetic semiconductors Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 195215,1-16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225477800077 Publication Date 2004-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 115 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69395 Serial 754  
Permanent link to this record
 

 
Author Nistor, L.C.; van Landuyt, J.; Ralchenko, V.G.; Obratzova, E.D.; Smolin, A.A. openurl 
  Title Nanocrystalline diamond films: transmission electron microscopy and Raman spectroscopy characterization Type A1 Journal article
  Year 1997 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 6 Issue Pages 159-168  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1997WN37300021 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited (up) 116 Open Access  
  Notes Approved Most recent IF: 2.561; 1997 IF: 1.758  
  Call Number UA @ lucian @ c:irua:21406 Serial 2249  
Permanent link to this record
 

 
Author Goldoni, G.; Peeters, F.M. doi  openurl
  Title Stability, dynamical properties and melting of a classical bi-layer Wigner crystal Type A1 Journal article
  Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 53 Issue Pages 4591-4603  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996TZ17700056 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited (up) 117 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:15800 Serial 3123  
Permanent link to this record
 

 
Author Efimov, K.; Xu, Q.; Feldhoff, A. pdf  doi
openurl 
  Title Transmission electron microscopy study of BA0.5Sr0.5CO0.8Fe0.2O3-\delta Perovskite decomposition at intermediate temperatures Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 21 Pages 5866-5875  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The cubic perovskite Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (denoted BSCF) is the state-of-the-art ceramic membrane material used for oxygen separation technologies above 1150 K. BSCF is a mixed oxygen-ion and electron conductor (MIEC) and exhibits one of the highest oxygen permeabilities reported so far for dense oxides. Additionally, it has excellent phase stability above 1150 K. In the intermediate temperature range (750-1100 K), however, BSCF suffers from a slow decomposition of the cubic perovskite into variants with hexagonal stacking that are barriers to oxygen transport. To elucidate details of the decomposition process, both sintered BSCF ceramic and powder were annealed for 180-240 h in ambient air at temperatures below 1123 K and analyzed by different transmission electron microscopy techniques. Aside from hexagonal perovskite Ba(0.5)Sr(0.5)CoO(3-delta) , the formation of lamellar noncubic phases was observed in the quenched samples. The structure of the lamellae with the previously unknown composition Ba(1-x)Sr(x)Co(2-y)Fe(y)O(5-delta) was found to be related to the 15R hexagonal perovskite polytype. The valence and spin-state transition of cobalt leading to a considerable diminution of its ionic radius can be considered a reason for BSCF's inherent phase instability at intermediate temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000283623700010 Publication Date 2010-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 117 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:95546 Serial 3720  
Permanent link to this record
 

 
Author Snoeckx, R.; Aerts, R.; Tu, X.; Bogaerts, A. pdf  doi
openurl 
  Title Plasma-based dry reforming : a computational study ranging from the nanoseconds to seconds time scale Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 10 Pages 4957-4970  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a computational study for the conversion of CH4 and CO2 into value-added chemicals, i.e., the so-called dry reforming of methane, in a dielectric barrier discharge reactor. A zero-dimensional chemical kinetics model is applied to study the plasma chemistry in a 1:1 CH4/CO2 mixture. The calculations are first performed for one microdischarge pulse and its afterglow, to study in detail the chemical pathways of the conversion. Subsequently, long time-scale simulations are carried out, corresponding to real residence times in the plasma, assuming a large number of consecutive microdischarge pulses, to mimic the conditions of the filamentary discharge regime in a dielectric barrier discharge (DBD) reactor. The conversion of CH4 and CO2 as well as the selectivity of the formed products and the energy cost and energy efficiency of the process are calculated and compared to experiments for a range of different powers and gas flows, and reasonable agreement is reached.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000316308400010 Publication Date 2013-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 118 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:106516 Serial 2628  
Permanent link to this record
 

 
Author van der Stam, W.; Berends, A.C.; Rabouw, F.T.; Willhammar, T.; Ke, X.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. pdf  url
doi  openurl
  Title Luminescent CuInS2 quantum dots by partial cation exchange in Cu2-xS nanocrystals Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 621-628  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Here, we show successful partial cation exchange reactions in Cu2-xS nanocrystals (NCs) yielding luminescent CuInS2 (CIS) NCs. Our approach of mild reaction conditions ensures slow Cu extraction rates, which results in a balance with the slow In incorporation rate. With this method, we obtain CIS NCs with photoluminescence (PL) far in the near-infrared (NIR), which cannot be directly synthesized by currently available synthesis protocols. We discuss the factors that favor partial, self-limited cation exchange from Cu2-xS to CIS NCs, rather than complete cation exchange to In2S3. The product CIS NCs have the wurtzite crystal structure, which is understood in terms of conservation of the hexagonal close packing of the anionic sublattice of the parent NCs into the product NCs. These results are an important step toward the design of CIS NCs with sizes and shapes that are not attainable by direct synthesis protocols and may thus impact a number of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348618400028 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 119 Open Access OpenAccess  
  Notes 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:125291 Serial 1858  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. doi  openurl
  Title Excitons and charged excitons in semiconductor quantum wells Type A1 Journal article
  Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 61 Issue Pages 13873-13881  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000087284900075 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 120 Open Access  
  Notes Approved Most recent IF: 3.836; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:28513 Serial 1126  
Permanent link to this record
 

 
Author Leroux, C.; Nihoul, G.; Van Tendeloo, G. doi  openurl
  Title From VO2(B) to VO2(R): theoretical structures of VO2 polymorphs and in situ electron microscopy Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 57 Issue 9 Pages 5111-5121  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000072358600037 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 122 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:25658 Serial 1290  
Permanent link to this record
 

 
Author Shapiro, S.M.; Yang, B.X.; Noda, Y.; Tanner, L.E.; Schryvers, D. openurl 
  Title Neutron-scattering and electron microscopy studies of premartensitic phenomena in NixAl100-x alloys Type A1 Journal article
  Year 1991 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 44 Issue Pages 9301-9313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1991GP26700019 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited (up) 123 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:48351 Serial 2299  
Permanent link to this record
 

 
Author Aierken, Y.; Çakır, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 081408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Different allotropes of phosphorene are possible of which black and blue phosphorus are the most stable. While blue phosphorus has isotropic properties, black phosphorus is strongly anisotropic in its electronic and optical properties due to its anisotropic crystal structure. In this work, we systematically investigated the lattice thermal properties of black and blue phosphorene by using first-principles calculations based on the quasiharmonic approximation approach. Similar to the optoelectronic and electronic properties, we predict that black phosphorene has highly anisotropic thermal properties, in contrast to the blue phase. The linear thermal expansion coefficients along the zigzag and armchair direction differ up to 20% in black phosphorene. The armchair direction of black phosphorene is more expandable as compared to the zigzag direction and the biaxial expansion of blue phosphorene under finite temperature. Our comparative analysis reveals that the inclusion of finite-temperature effects makes the blue phase thermodynamically more stable over the black phase above 135 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359860700005 Publication Date 2015-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 124 Open Access  
  Notes This work was supported by the Flemish Science Founda- tion (FWO-Vl) and the Methusalem foundation of the Flem- ish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Comput- ing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges the support from Anadolu University (BAP-1407F335), and Turkish Academy of Sciences (TUBA-GEBIP). Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127754 Serial 4034  
Permanent link to this record
 

 
Author Földi, P.; Molnár, B.; Benedict, M.G.; Peeters, F.M. url  doi
openurl 
  Title Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue Pages 033309,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000226735900014 Publication Date 2005-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 126 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69402 Serial 3105  
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 165406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the number of stacking layers and the type of stacking on the electronic and optical properties of bilayer and trilayer black phosphorus are investigated by using first-principles calculations within the framework of density functional theory. We find that inclusion of many-body effects (i.e., electron-electron and electron-hole interactions) modifies strongly both the electronic and optical properties of black phosphorus. While trilayer black phosphorus with a particular stacking type is found to be a metal by using semilocal functionals, it is predicted to have an electronic band gap of 0.82 eV when many-body effects are taken into account within the G(0)W(0) scheme. Though different stacking types result in similar energetics, the size of the band gap and the optical response of bilayer and trilayer phosphorene are very sensitive to the number of layers and the stacking type. Regardless of the number of layers and the type of stacking, bilayer and trilayer black phosphorus are direct band gap semiconductors whose band gaps vary within a range of 0.3 eV. Stacking arrangements that are different from the ground state structure in both bilayer and trilayer black phosphorus exhibit significant modified valence bands along the zigzag direction and result in larger hole effective masses. The optical gap of bilayer (trilayer) black phosphorus varies by 0.4 (0.6) eV when changing the stacking type. The calculated binding energy of the bound exciton hardly changes with the type of stacking and is found to be 0.44 (0.30) eV for bilayer (trilayer) phosphorous.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362435300005 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 127 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges support from Turkish Academy of Sciences (TUBA-GEBIP). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128320 Serial 4242  
Permanent link to this record
 

 
Author Horzum, S.; Çakir, D.; Suh, J.; Tongay, S.; Huang, Y.-S.; Ho, C.-H.; Wu, J.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Formation and stability of point defects in monolayer rhenium disulfide Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 15 Pages 155433  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, rhenium disulfide (ReS2) monolayers were experimentally extracted by conventional mechanical exfoliation technique from as-grown ReS2 crystals. Unlike the well-known members of transition metal dichalcogenides (TMDs), ReS2 crystallizes in a stable distorted-1T structure and lacks an indirect to direct gap crossover. Here we present an experimental and theoretical study of the formation, energetics, and stability of the most prominent lattice defects in monolayer ReS2. Experimentally, irradiation with 3-MeV He+2 ions was used to break the strong covalent bonds in ReS2 flakes. Photoluminescence measurements showed that the luminescence from monolayers is mostly unchanged after highly energetic a particle irradiation. In order to understand the energetics of possible vacancies in ReS2 we performed systematic first-principles calculations. Our calculations revealed that the formation of a single sulfur vacancy has the lowest formation energy in both Re and S rich conditions and a random distribution of such defects are energetically more preferable. Sulfur point defects do not result in any spin polarization whereas the creation of Re-containing point defects induce magnetization with a net magnetic moment of 1-3 mu B. Experimentally observed easy formation of sulfur vacancies is in good agreement with first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000337301200009 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 130 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the bilateral project FWO-TUBITAK, and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. was supported by a FWO Pegasus Long Marie Curie Fellowship. D. C. was supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:118410 Serial 1250  
Permanent link to this record
 

 
Author Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Normal and Dirac fermions in graphene multilayers: tight-binding description of the electronic structure Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue Pages 193402,1-3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000246890800021 Publication Date 2007-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 130 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69651 Serial 2366  
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Amelinckx, S.; Leibold, B.; Habermeier, H.-U. doi  openurl
  Title Structure and microstructure of La1-xCaxMnO3- thin films prepared by pulsed layer deposition Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 58 Issue 12 Pages 8065-8074  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000076130500085 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 131 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:25679 Serial 3288  
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 6 Issue 5 Pages 2337-2345  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000423981200049 Publication Date 2018-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited (up) 131 Open Access  
  Notes ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945  
Permanent link to this record
 

 
Author Rusakov, D.; Abakumov, A.M.; Yamaura, K.; Belik, A.A.; Van Tendeloo, G.; Takayama-Muromachi, E. doi  openurl
  Title Structural evolution of the BiFeO3-LaFeO3 system Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 2 Pages 285-292  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The (1 − x)BiFeO3−xLaFeO3 system has been investigated and characterized by room-temperature and high-temperature laboratory and synchrotron powder X-ray diffraction, electron diffraction, high-resolution transmission electron microscopy, differential scanning calorimetry, and magnetization measurements. At room temperature, the ferroelectric R3c phase is observed for 0.0 ≤ x ≤ 0.10. The PbZrO3-related √2ap × 2√2ap × 4ap superstructure (where ap is the parameter of the cubic perovskite subcell) is observed for Bi0.82La0.18FeO3, while an incommensurately modulated phase is formed for 0.19 ≤ x ≤ 0.30 with the √2ap × 2ap × √2ap basic unit cell. The GdFeO3-type phase with space group Pnma (√2ap × 2ap × √2ap) is stable at 0.50 ≤ x ≤ 1. Bi0.82La0.18FeO3 has no detectable homogeneity range (space group Pnam, a = 5.6004(1) Å, b = 11.2493(3) Å, c = 15.6179(3) Å). The incommensurately modulated Bi0.75La0.25FeO3 structure was solved from synchrotron X-ray powder diffraction data (Imma(00γ)s00 superspace group, a = 5.5956(1) Å, b = 7.8171(1) Å, c = 5.62055(8) Å, q = 0.4855(4)c*, RP = 0.023, RwP = 0.033). In this structure, cooperative displacements of the Bi and O atoms occur, which order within the (AO) (where A = Bi, La) layers, resulting in an antipolar structure. Local fluctuations of the intralayer antipolar ordering are compensated by an interaction with the neighboring (AO) layers. A coupling of the antipolar displacements with the cooperative tilting distortion of the perovskite octahedral framework is proposed as the origin of the incommensurability. All the phases transform to the GdFeO3-type structure at high temperatures. Bi0.82La0.18FeO3 shows an intermediate PbZrO3-type phase with √2ap × 2√2ap × 2ap (space group Pbam; a = 5.6154(2) Å, b = 11.2710(4) Å, and c = 7.8248(2) Å at 570 K). The compounds in the compositional range of 0.18 ≤ x ≤ 0.95 are canted antiferromagnets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000286160800021 Publication Date 2010-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 133 Open Access  
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:88650 Serial 3236  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: