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With increasing applied current, we show that the moving vortex lattice changes its structure from a
triangular one to a set of parallel vortex rows in a pinning free superconductor. This effect originates from the
change of the shape of the vortex core due to nonequilibrium effects �similar to the mechanism of vortex
motion instability in the Larkin-Ovchinnikov theory�. The moving vortex creates a deficit of quasiparticles in
front of its motion and an excess of quasiparticles behind the core of the moving vortex. This results in the
appearance of a wake �region with suppressed order parameter� behind the vortex, which attracts other vortices
resulting in an effective direction-dependent interaction between vortices. When the vortex velocity v reaches
the critical value vc, quasiphase slip lines �lines with fast vortex motion� appear, which may coexist with
slowly moving vortices between such lines. Our results are found within the framework of the time-dependent
Ginzburg-Landau equations and are strictly valid when the coherence length ��T� is larger or comparable with
the decay length Lin of the nonequilibrium quasiparticle distribution function. We qualitatively explain experi-
ments on the instability of vortex flow at low magnetic fields when the distance between vortices a�Lin

���T�. We speculate that a similar instability of the vortex lattice should exist for v�vc even when a�Lin.

DOI: 10.1103/PhysRevB.76.014521 PACS number�s�: 74.25.Op, 74.20.De, 73.23.�b

I. INTRODUCTION

In 1976, Larkin and Ovchinnikov1 �LO� predicted an in-
stability of vortex motion that is related to the deviation of
the quasiparticle distribution function from its equilibrium
value near the vortex core �for review, see Ref. 2�. When the
vortex moves with a velocity v, the order parameter � in the
vortex core varies on a time scale ������ /v that can be
smaller than the relaxation time of the nonequilibrium qua-
siparticles �in �due to inelastic electron-phonon or electron-
electron interactions�. As a consequence, the quasiparticle
distribution function deviates from its equilibrium and it re-
sults to a shrinkage of the vortex core at temperatures close
to the critical temperature.2 This effect is mainly connected
with the removal of quasiparticles from the vortex core by
the induced electric field3 and, in some respect, is similar to
the dynamic enhancement of superconductivity in weak su-
perconducting links.3,4

Analytical calculations made in the “dirty” limit �mean
free path length l of the electrons is smaller than the coher-
ence length �� predicted a decrease of the viscosity coeffi-
cient � of the vortex motion and the existence of a critical
velocity vc�1/��in at which the viscous force −�v reaches
its maximal value.2 Macroscopically, it results into a nonlin-
ear current-voltage characteristic V� I��I� with pronounced
hysteresis at relatively weak magnetic fields.2 Such a behav-
ior was experimentally observed in many low3,5–7 and
high8–13 temperature superconductors, and quantitative
agreement with theory was found. From the experimental
value of the critical voltage Vc=vcBL �B is a magnetic flux
induction and L is the distance between voltage leads�, the
critical velocity vc and relaxation time �in were extracted.

We should stress the nontrivial nature of the LO effect. If
we use the Bardeen-Stephen expression14 for the viscosity of
the vortex motion, �=	0

2 /2
�2�nc, we find that it actually
increases if the size of the vortex core decreases �with, for

example, a decrease of the temperature�. In the LO theory,
the vortex core shrinks and this results in a decrease of the
viscosity coefficient �. The possible explanation for this con-
tradiction is the failure of the Bardeen-Stephen model for the
vortex as a normal cylinder with radius � in case of a moving
vortex with high enough velocity.

At low temperatures, small changes in the quasiparticle
distribution function cannot influence the order parameter.2

As a result, nonlinear effects will start at larger electrical
fields and they become significant not only in the vortex core
but also around the vortex. Effectively, such nonequilibrium
effects were described as due to heating of the quasiparticles
by the induced electric field up to a temperature larger than
the sample and/or phonon temperature. This results in a sup-
pression of the order parameter near the vortex core and the
vortex core expands. This effect was used to explain the
experimental results on the vortex motion instability at low
temperatures for both “dirty”7,16–18 and “pure” �l���
superconductors.19 In the latter case, the instability occurs
due to a logarithmic dependence of the vortex viscosity on
the electronic temperature.

Returning to the LO theory, we note that the main as-
sumption here was the uniform distribution of the nonequi-
librium quasiparticle distribution function f�E� in the super-
conductor. �In particular, this leads to a field-independent
critical velocity.� From the good quantitative agreement be-
tween theory and experiment in large magnetic fields, one
may conclude that the above condition is well satisfied when
the distance between vortices satisfies a�B��Lin. However,
experiments at low magnetic fields showed that this ap-
proach fails when a�B���	0 /B becomes larger than
Lin.

6,9,13,15 In Ref. 15, it was proposed that the instability
occurs when the nonequilibrium distribution becomes uni-
form over the superconductor, which is possible if vc�in

�a�B�. This leads to a dependence vc��1/B at moderate
magnetic fields, which was observed in many
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experiments.6,9,13,15 However, at lower magnetic fields, the
critical velocity should behave as vc�1/B to explain the
field-independent value for the critical voltage Vc �Ref. 13�
�the same conclusion can be drawn from Fig. 10 of Ref. 3�.
Note that at these fields, the current induced magnetic field is
still much less than the external magnetic field and, conse-
quently, it cannot explain the observed effect.

Despite the large number of experimental works, there is
still the fundamental question of what will happen with the
vortex structure when the critical velocity is approached
and/or exceeded. In the original paper of Larkin and Ovchin-
nikov, it was assumed that the vortex lattice does not exhibit
any structural changes and transits for v�vc to a state with a
resistance close to the normal value �in the current driven
regime�. However, experiments on low- and high-
temperature superconductors showed that another type of be-
havior is possible. For example, a transition to a state with
phase slip lines was experimentally observed in Refs. 20–24
for low-temperature superconductors, and similar I-V char-
acteristics �which were differently interpreted� were ob-
served in high-temperature superconductors in the voltage
driven regime.16–18 These experimental results support the
idea that some kind of phase transition occurs in the vortex
lattice at the instability point, and regions with fast and slow
vortex motions appear in the sample.16–18,20–24

To answer the above questions theoretically, one should
use a rather complicated set of integro-differential equations
for the order parameter, Green’s functions of the supercon-
ductor, and quasiparticle distribution function.2 At the
present time, it looks almost as an impossible task to solve
these equations even numerically. Therefore, we will limit
ourselves to the equations that were derived from the micro-
scopic equations for a superconductor in the “dirty” limit
under the assumption that the relaxation length Lin=�D�in of
f�E� �D is the diffusion constant� is smaller than the coher-
ence length ��T�.25,26 They are the extended �or generalized�
time-dependent Ginzburg-Landau equations and contain ex-
plicitly a parameter �in. From the very beginning, we are in a
different limit as compared to the LO theory, because we
consider a nonequilibrium f�E� that is nonuniform in the
sample. The longitudinal �odd in energy� part fL�E�= f�−E�
− f�E� of the nonequilibrium f�E� distribution �which is ac-
tually responsible for the variation of ���� is localized only in
the region where the time derivative ���� /�t is finite �see
Eqs. �6� and �10� in Ref. 25�. It means that fL�E� is nonzero
only near the moving vortex core.

The paper is organized as follows. In Sec. II, we present
our model system. In Sec. III, we study the rearrangement of
the vortex structure due to nonequilibrium effects at moder-
ate and high magnetic fields and, in Sec. IV, the nonequilib-
rium vortex dynamics at zero magnetic field. Finally, in Sec.
V, we discuss our results and make a comparison with ex-
periments.

II. MODEL SYSTEM

As a model system, we use a bulk superconductor which
is infinite in the z and y directions and is finite in the x
direction �see Fig. 1�. This model allows us to study the

effect of the nonuniform current distribution in the supercon-
ductor �due to transport current� on the vortex dynamics at
zero and low magnetic fields.

In our calculations, we neglect the possibility of the for-
mation of curved vortices in the z direction and, therefore,
our problem becomes two dimensional. The generalized
time-dependent Ginzburg-Landau equations in our case can
be written as

u
�1 + 
2���2

	 �

�t
+


2

2

����2

�t

� = ��− iA�2� + �1 − ���2�� ,

�1a�

�A

�t
= Re��*�− i � − A��� − �2 rot rot A , �1b�

where the parameter 
=2�in��T� /� is the product of the in-
elastic collision time �in for electron-phonon scattering and
��T�=4kBTcu

1/2 /
�1−T /Tc is the value of the order param-
eter at temperature T, which follows from Gor’kov’s
derivation27 of the Ginzburg-Landau equations. In Eqs. �1a�
and �1b�, the physical quantities are measured in dimension-
less units: temperature in units of the critical temperature Tc,
the vector potential A= �Ax ,Ay ,0� and the momentum of the
superconducting condensate p=��−A are scaled in units
	0 / �2
��T�� �where 	0 is the quantum of magnetic flux�,
the order parameter �= ���ei� in units of ��T�, and the coor-
dinates are in units of the coherence length ��T�= �8kB�Tc

−T� /
�D�−1/2. Time is scaled in units of the Ginzburg-
Landau relaxation time �GL=
� /8kB�Tc−T�u, and voltage
�V� is in units of �0=� /2e�GL ��n is the normal-state con-
ductivity�. In these units, the magnetic field is scaled with
Hc2=	0 /2
�2 and the current density with j0=�n� /2e�GL�.
Following Ref. 25, the parameter u is taken to be equal to
5.79.

Instead of the usual gauge div A=0, we chose the electro-
static potential equal to zero �=0. The semi-implicit algo-
rithm was used,28 which provides an effective numerical so-
lution of Eqs. �1a� and �1b� for the case of large values of the
Ginzberg-Landau parameter �. We apply periodic boundary
conditions in the y direction, ��y�=��y+L�, A�y�=A�y+L� �

FIG. 1. Model system—a superconducting slab �infinitely long
in the y and z directions� in a parallel magnetic field H with trans-
port current I.
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L is the period—see Fig. 1�, and the superconductor-vacuum
boundary conditions in the x direction, ���x− iAx���x=0,W=0.
The transport current was introduced via the boundary con-
dition for the vector potential in the x direction, �rot A�z�x
=0,W�=H±HI, where HI=2
I /c is the magnetic field in-
duced by the current I �per unit length in the z-direction� and
H is the applied magnetic field. In all our calculations, we
chose �=5 and the parameter 
 is varied from 0 to 40.

Due to the discrete nature of the vortex motion, the volt-
age response in our system is a time-dependent variable. We
average it over a finite time interval which is taken to be
larger than the period of the voltage variation. However, this
time interval can be comparable to the switching time be-
tween different dynamic phases and it smoothens the current-
voltage characteristics at the transition points.

III. REARRANGEMENT OF THE VORTEX LATTICE

First, we consider the situation when the applied magnetic
field is larger than the magnetic field due to the transport
current H�HI. Therefore, the current density distribution is
almost uniform over the width of the superconductor and it
simplifies the analysis of the obtained numerical results. In
Fig. 2, we present the current-voltage �I-V� characteristic of
our system �W=50�, L=25�, and 
=10� under investigation
at H=0.3Hc2. Vortex flow starts at some finite current Is �due
to the presence of the surface barrier in the system�, and the
vortex structure is close to the triangular lattice. With in-
creasing current, it transforms to a rowlike structure but
keeping the triangular ordering �see point 2 in Fig. 2�. In-
creasing the current �arrow 3 in Fig. 3�, there is a transition
in the vortex structure which is visible as a kink in the I-V
characteristic. The number of vortex rows decreases �from 6
to 5 in this particular case� and the number of vortices in the
rows increases. Note that the number of vortices in the sys-
tem does not change and the kink in the I-V characteristic is
connected with a faster vortex motion in this vortex configu-
ration. At the current indicated by arrow 4, there is a second

transition where the number of rows decreases further �from
5 to 4� and the distance between the vortices in each row
decreases. Simultaneously, the vortex velocity increases
steeply and we have a transition to a state with a much larger
voltage.

The transitions in the vortex lattice will be explained by
the modification of the shape of the vortex core due to non-
equilibrium processes. Indeed, the motion of the vortex
means a suppression of the order parameter in front of the
vortex and recovering the order parameter behind it �see Fig.
3�. If the vortex velocity is large enough �v�� /�in�, the
number of quasiparticles in front of the vortex will be less
than the equilibrium value and larger behind the vortex due
to the finite relaxation time �in of the quasiparticle distribu-
tion function. Effectively, we have a cooling of the quasipar-
ticles in front of the vortex and heating behind the vortex
�see Fig. 3�. This effect is very similar to the behavior of a
superconducting weak link at voltages V�1/�in �Refs.
29–31� when there is a cooling at the decrease of the order
parameter and a heating when the order parameter increases
in the weak link. Because the relaxation time of the order
parameter depends on the temperature as �����1/ �Tc−T�, we
have a long healing time of the order parameter behind the
vortex and a short time suppression of the order parameter in
front of the vortex. It leads to an elongated shape of the
vortex core with a point where ���=0 shifted to the direction
of the vortex motion. This is visible �see Fig. 2� for vortices
close to the right side of the superconductor, where the cur-
rent density and the vortex velocity are maximal.

When the transition from five to four vortex rows in the
vortex lattice occurs, the distance between the vortices sud-
denly decreases. If the vortex velocity is large enough such
that v�vc�a /���� �a is the distance between vortices in the
row�, the order parameter does not have sufficient time to
recover after every vortex passage in the row and ��� will be
strongly suppressed along the vortex trajectory. It speeds up
the vortex motion because the time variation of ��� depends
on the value of ���: �����
����GL.32 This is the reason for a
transition from slow to fast vortex motion �quasiphase slip
line behavior� and a steep increase in the voltage at the point
where the current is Ic and the voltage is Vc in Fig. 2.

At higher magnetic fields, the situation is similar to the
case H=0.3Hc2, but, in addition, a transition to a state with
vortex rows moving with different velocities is possible �see
Fig. 4�. When a fast vortex row �which we will further call a
quasiphase slip line �PSL�� appears in the sample, the super-

FIG. 2. �Color online� Current-voltage characteristics of the su-
perconducting slab with width W=50�, 
=10, and H=0.3Hc2. Cur-
rent increases from zero to some finite value. In the inset, snapshots
of the order parameter at different values of the applied current are
shown.

FIG. 3. Deformation of the vortex core due to vortex motion
�schematic�. The density of the horizontal lines shows the density of
the quasiparticles. In case the diffusion length Lin is smaller than the
coherence length ��T�, diffusion of the quasiparticles is not strong
and locally there is an effective cooling and heating of the
quasiparticles.
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conducting current decreases around the PSL on the scale of
the decay of the electric field E �or charge imbalance� LE.4

Then, vortices in adjacent to PSL areas are forced to move
with smaller velocities because the superconducting current
mainly drives them. In the framework of the model equations
�Eqs. �1a� and �1b��, LE��
 /u��Lin,

32 and we indeed
found that for larger values of 
, the current and magnetic
field range over which this structure may exist increase. For
example, for 
=20, the slow and fast vortex rows may co-
exist already at H=0.3Hc2, and for 
=40, they may coexist
even at H=0.

Note that in contrast to the case H=0.3Hc2, the instability
of the vortex lattice leads to quasichaotic vortex motion at
currents between points 2 and 3. We relate this to the usage
of periodic boundary conditions. For example, in case of H
=0.3Hc2, the same chaotic behavior �not shown here� disap-
pears between points 2 and 3 in Fig. 2 with an increase of the
period of our system by a factor of 2 �with a small effect on
the values of the currents where structural transitions occur�.
However, for H=0.4Hc2, doubling the period did not result
in any effect.

We explain the influence of the boundary conditions by
incommensurability effects between the period L and LE. Ac-
tually the latter length defines the scale of the interaction
between phase slip lines. Changing the parameter 
, we
change LE. For example, for 
=20 and H=0.4Hc2, we did
not observe any irregular vortex distribution for the super-
conductor for the parameters corresponding to Fig. 3 even
when L=25�.

At magnetic fields close to Hc2, there are also transitions
in the vortex structures, but they are masked by a large num-

ber of possible transitions due to the increased number of
vortices in the system �see Fig. 5�. The kinks in the current-
voltage characteristics become almost invisible, and the
jumps in the voltage gradually decreases at the current Ic
where the quasiphase slip lines appear in the system.

IV. VORTEX MOTION AT ZERO MAGNETIC FIELD

In Fig. 6, we present the I-V characteristic of the same
sample as in Fig. 2 at zero magnetic field. At low currents,
we have slow vortex motion, while at large current, qua-
siphase slip lines appear. We should note that we did not
observe any structural changes in the vortex lattice at low
magnetic fields due to the small number of vortices and
hence the large distance between them.

In case of zero magnetic field, the current density is
strongly nonuniform over the width of the sample �see Fig.
7�. When the current exceeds the critical value Is �current of
suppression of the surface barrier for vortex entry�, the
Meissner state is destroyed, and vortices and antivortices en-
ter the sample, pass through it, and annihilate in the center.
This process results in the appearance of an additional maxi-
mum in the current density in the center of the sample—see
Fig. 7 �in agreement with analytical calculations of Refs. 33
and 34�. For sample parameters of Fig. 6, the quasiphase slip
behavior starts when the current density in the center reaches

FIG. 4. �Color online� Current-voltage characteristics of the su-
perconducting slab with width W=50�, 
=10, and H=0.4Hc2.

FIG. 5. �Color online� Current-voltage characteristics of the su-
perconducting slab for the parameters of Fig. 2 and H=0.7Hc2.

FIG. 6. �Color online� Current-voltage characteristics of the su-
perconducting slab with the same parameters as in Fig. 2, but now
for zero magnetic field.

FIG. 7. �Color online� Distribution of the time and length aver-
aged current density �j� = jn+ js over the width of the superconduct-
ing slab at zero magnetic field and different values of the transport
current. Numbers 1–3 in the figure correspond to different values of
the transport current in Fig. 6.
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the value close to the depairing current density jdep. We
found that at this moment, the annihilation of vortex-
antivortex pairs speeds up and it provides a favorable condi-
tion for fast vortex motion across the whole sample. How-
ever, with increasing width of the sample, the transition to
the fast vortex motion behavior starts at a larger current �see
Fig. 8�. As the speed of the fleet is defined by the speed of
the slowest ship, the nucleation of the quasiphase slip line
depends on the vortex motion in the place where the current
density is minimal. When we increase the width of the
sample, we decrease the minimal current density jmin in the
sample �compare Figs. 8�b� and 7�. When jmin reaches the
critical value, the quasiphase slip line nucleates in the
sample. This critical value is smaller the larger 
. This result
is closely connected with the findings of Ref. 32 where it
was shown that the phase slip process does not exist in a
quasi-one-dimensional superconductor and two-dimensional
thin superconducting films with uniform distribution of the
current density35 if the current density is smaller than some
critical value jc1�
�.

We like to stress that we did not find that the vortices and
antivortices can pass through each other as predicted in Ref.
36. Probably, the uniform current distribution used in Ref. 36
is essential to observe this effect.

V. DISCUSSION

A. Comparison with other theoretical works

Our results strongly support the intuitive idea �published
already in Ref. 20� about nucleation of phase slip lines at
large currents against a background of vortex flow. This idea

was further developed in the theoretical work37 where the
current-voltage characteristics of a wide superconducting
film with both viscous vortex flow and phase slip lines were
calculated. However, the author used equations that are av-
eraged over the intervortex distance and did not find the
rearrangements of the vortex structure at high vortex veloci-
ties.

In Ref. 38, the appearance of the wake behind the moving
vortex was theoretically predicted on the basis of an analyti-
cal solution of the linearized equation �Eq. �1a�� for the ab-
solute value of the order parameter. Actually, such a wake
should exist even in the simple time-dependent Ginzburg-
Landau equation �with 
=0� due to the finite time for the
order parameter relaxation ������GL. Indeed, when a vortex
moves, the current density in front of its motion is the sum of
the current density from the vortex jvort and the transport
current density jext, and likewise behind the vortex, it is the
difference jvort− jext. The time relaxation of the order param-
eter depends on the value of the current density if j is close
to the depairing current, density �the larger the current the
smaller is ����—see Chap. 11.4 in Ref. 4�. If jext is close to
jdep, the difference between ���� in front and behind the mov-
ing vortex is substantial,39 and the moving vortex becomes
elongated in the direction of its motion.

The change in the shape of the vortex was also found in
Ref. 40 on the basis of a numerical solution of the 2D time-
dependent Ginzburg-Landau equations. Such vortices were
called kinematic vortices due to their high velocity. They
were found to exist when a quasiphase slip line nucleated in
the sample. The system resembles a Josephson vortex in a
long Josephson junction where anisotropy is connected with
different penetration depths of the screening current along
and across the Josephson junction �see Chap. 6.4 in Ref. 4�.
In case of a phase slip line, the anisotropy is connected with
a strongly suppressed order parameter in the direction of the
vortex motion �along the quasiphase slip line�.

In both of the above works, the dependence of the relax-
ation time ���� on the value of the order parameter was ig-
nored. In Ref. 40, the term 
2����2 /2�t on the left hand side
of Eq. �1a� was neglected, and instead of the coefficient
u /�1+
2���2, the variable parameter u* was used.40 Actually,
in Ref. 38, the same approach was used because in Eq. �1a�,
a fixed value for the order parameter ��� in the term ����
=�GLu�1+
2���2 was put.

However, in a TDGL model with 
=0 and arbitrary value
of u, we did not find any steep transition from slow vortex
flow to fast vortex motion �quasiphase slip line� at finite
value of the applied magnetic field. The reason is simple: in
that model, the relaxation time of the order parameter prac-
tically does not depend on the value of the order parameter
and the mechanism of the switching in vortex motion dis-
cussed in Sec. III does not work. Besides, we did not find
any vortex structure rearrangement in the model with 
=0
and arbitrary u. Probably, the change of the shape of the
vortex is small in the above simplified model.

In Ref. 35, Eq. �1a� was coupled with the equation for the
electrostatic potential and the transition from the slow vortex
flow to the quasiphase slip lines behavior was numerically
observed in case of thin 2D superconducting films of finite
length in a perpendicular magnetic field. However, the rear-

FIG. 8. �Color online� �a� Current-voltage characteristics of the
superconducting slab with parameters 
=20 and W=75� at zero
magnetic field. In the inset in �a�, we present snapshots of ��� at
different values of the current. �b� Distribution of the time and
length averaged current density �j� = jn+ js for wider sample. Num-
bers correspond to different values of the current in �a�.
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rangement of the vortex lattice and the coexistence of the fast
and slow vortex motions were not found because of the small
width of the samples.

B. Range of validity of the obtained results

Our results are strictly valid only when Lin���T�, while
usually, in experiments, Lin���T�. However, it is obvious
that cooling and heating of the quasiparticles around the vor-
tex core occur in both limits. Large Lin provides some kind of
space averaging of these different processes �due to diffusion
of the nonequilibrium quasiparticles from the overheated re-
gion to the overcooled one�. In the framework of the LO
theory, the zero order effect was calculated �when the depen-
dence on the direction of the vortex motion was neglected�,
which roughly leads to an effective cooling of the system and
a symmetrical shrinkage of the vortex core if the distance
between the vortices is much smaller than Lin. In this limit,
the separation of the system into slow moving vortices and
quasiphase slip lines is, in principle, possible for v�vc when
the vortex motion becomes unstable. The origin for such a
behavior is the presence of the normal component of the
current density �electric field� and its finite decay length from
the phase slip line LE. The slow vortex motion between the
quasiphase slip line may occur due to a weakening of the
superconducting component of the current near the qua-
siphase slip line. In the LO theory, this effect was neglected
and only deviations of the longitudinal part of the quasipar-
ticle distribution function from equilibrium were taken into
account, while the transverse �even in energy� part of f�E� is
responsible for the appearance of the finite normal current in
the superconductor.4

The situation is different if the distance between the vor-
tices exceeds Lin and the effective averaging becomes
weaker. The anisotropy of the vortex core and the effective
attraction between vortices should be more pronounced and
lead to the appearance of vortex rows and/or lines �slow or
fast� even at vortex velocities less than vc.

C. Comparison with experiments

The important property which follows from our calcula-
tions is the weak dependence of the critical voltage V=Vc on
the applied magnetic field �see inset in Fig. 9�. We explained
it by the rearrangements of the vortex lattice when the vortex
velocity approaches vc. Because in this case we do not have
a triangular vortex lattice, the distance between vortices in
the rows will be smaller than a��	0 /B and defined by a
�1/B dependence. Indeed, at current I= Ic, the transition to a
state with four quasiphase slip lines occurs �see Figs. 2, 4,
and 5� in the magnetic field range 0.3–0.7 Hc2, while the
number of the vortices in the sample increases linearly with
magnetic field. Assuming that the transition to the fast vortex
motion state occurs when the distance between the vortices
in the row is equal to a�1/B�vc���� �see Sec. III�, we ob-
tain vc�1/B���� and the field-independent critical voltage
Vc=vcBL. Such a dependence was experimentally observed
in Ref. 13 for both low and high-temperature superconduct-
ors in the low magnetic field regime where the vortex sepa-

ration a�Lin and the self-field of the transport current was
negligible.

From the above estimations, it follows that Vc�1/
. We
see from the inset in Fig. 9 that indeed Vc�1/
, and besides,
the resistivity of the superconductor at low currents follows
the dependence � /�n�1/
 �see Fig. 9� analytically found in
Ref. 41 for large magnetic fields in the temperature interval
Tc−� /kB�in�T�Tc, where Eqs. �1a� and �1b� are valid.

Our estimation of the critical velocity was made in the
spirit of the paper of Doettinger et al.15 They supposed that
the vortex motion instability occurs when the nonequilibrium
quasiparticles induced in the vortex core do not have time to
relax to equilibrium when the next vortex arrives to the place
where they were induced, �in=a /vc. Actually, it means that
the order parameter did not have time to increase �because its
value depends on f�E� and it cannot grow faster than �in�.

The stairlike structure of the I-V characteristics �which is
a fingerprint of the nucleation of the phase slip centers or
quasiphase slip lines� was observed both in low- and high-
temperature superconductors20–24 at low magnetic fields. In
wide samples �in which the strongly nonuniform current den-
sity distribution over the width of the sample is realized in
the Meissner state�, a slow vortex motion was found at low
currents, which is changed into the quasiphases slip line be-
havior at higher currents.20–23 It is interesting to note that the
stairlike structure was also experimentally observed at high
magnetic fields �and temperatures far below the critical one�
in high-temperature superconductors.17,18 In this case, one
was able to observe it only in the voltage driven regime.

In the experiments of Kunchur et al.,16–18 the quasiphase
slip lines become visible because the penetration length of
the electric field LE increases in high magnetic field due to
the suppression of the order parameter by vortices and a
steep increase of �in at low temperatures.9 At low magnetic
fields and high temperatures, too many quasiphase slip lines
appear simultaneously at I= Ic and it smoothes out the stair
structure of the I-V characteristic.

FIG. 9. �Color online� Current-voltage characteristics of the su-
perconducting slab with width W=50�, �=5, and different values of
the parameter 
 at two values of the magnetic field. In the inset, the
dependence of the critical voltage on the magnetic field is shown
for three values of the parameter 
=10,20,40.
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We explain the absence of the stairlike structure in the
majority of the experiments where the LO effect was studied
due to the large length of the samples as compared to LE. At
the instability point, many quasiphase slip lines should ap-
pear in such a sample, and it results into a large heating of
the electronic subsystem and the sample itself. This could be
the reason for the transition to the nearly normal state. Be-
sides, in those samples, the role of the voltage can be very
pronounced and it leads to an additional suppression of su-
perconductivity, the effect which is absent in the model equa-
tions �Eqs. �1a� and �1b��.42 Therefore, it would be interest-
ing to perform an experiment on a short superconducting
bridge with length of about several LE at different tempera-
tures and magnetic fields. Taking into account the strong de-
pendence of �in and hence LE on temperature, it would be
worth studying several samples with different lengths satis-
fying the condition L�LE at different temperatures. By
variation of the magnetic field, one could observe the pre-
dicted splitting of the vortex flow into regions with fast vor-
tex flow �quasiphase slip lines� and slow vortex flow. A good
candidate is NbGe which has rather low bulk pinning even at
T�Tc /2.7

D. Hysteretic behavior

The hysteresis is almost absent in zero magnetic field for
a superconducting slab with W=50, �=5, and 
=10 �see
Fig. 10�. Hysteresis appears when we increase the applied
magnetic field �see Fig. 10� or decrease the width of the
sample. In both cases, the current density distribution be-
comes more uniform in the sample and it brings hysteresis in
the system.

The physical reason for this effect is as follows. Consider
first the case of zero applied magnetic field H=0. In Refs. 32
and 35, it was found that in a superconductor with uniform
current density distribution, the phase slip center and/or line
does not exist at current density jc1�
� which can be smaller
than jdep �in case of zero fluctuations�. However, the super-
conducting state in such a system can be stable up to Ic
= jdepdW. When a quasiphase slip line nucleates at Ic, it can
exist up to a smaller current I1= jc1dW and it leads to hyster-
etic behavior. When we take into account screening effects,
the current density distribution becomes nonuniform over the

width of the sample. It is maximal on the edge and minimal
in the center of the sample being in the Meissner state. At
current I= Is� Ic, the current density on the edge reaches the
depairing current density and the superconducting state be-
comes unstable. Vortices enter the sample, and if the minimal
current density is larger than jc1, they move fast and form a
quasiphase slip line. If the minimal current density is smaller
than jc1, they move slowly and form quasiphase slip lines at
a larger current when the condition jmin� jc1 is fulfilled. In
the latter case, hysteresis is absent because the transition
from the slow to the fast vortex motion �or vice versa� occurs
when the current density in one point �over the width of the
sample� reaches the critical value. It does not lead to a cru-
cial redistribution of the normal and superconducting current
densities over the sample and the vortex motion is almost
nonhysteretic.

When a magnetic field is applied, the transition to the fast
vortex motion occurs when the current density reaches a
critical value �which depends on the magnetic field� practi-
cally over the whole sample. As a result, the distribution of
the normal and superconducting current densities changes
drastically over the whole sample, and it provides the hyster-
etic behavior for vortex motion in our model system.

In our calculations, we did not take into account heating
effects. Their incorporation in the considered model will in-
crease the hysteresis43 and mask all effects44 discussed in our
paper.

E. Synchronization of vortex motion in adjacent vortex rows

Can the motion of the vortices in two adjacent quasiphase
slip rows and/or lines be synchronized? It was found in many
papers �for a review, see Refs. 45 and 46� that the dynamics
of the order parameter in one phase slip center may influence
the dynamics of the order parameter in a remote phase slip
center even if the distance between them is large. The effect
is mainly connected with the long decay length of the qua-
siparticle �normal� current from the phase slip center. As a
result, the ac component of the normal current affects the
oscillations of the order parameter in the other phase slip
center in a way similar to a Josephson junction under the
action of an external ac current or electromagnetic radiation.
The interaction between phase slip centers becomes more
complicated if one takes into account the nucleation of the
charge imbalance waves,45 which can both enhance and sup-
press the synchronization of the order parameter oscillations
in adjacent phase slip centers and/or lines.45

In our calculations, effects due to charge imbalance waves
were not considered and quasiphase slip lines interact only
via the ac component of the normal current. In Fig. 11, we
present the time dependence of the averaged, over the length
of the sample, electric field at the edge of the superconductor
and the local electric field in the point where the quasiphase
slip line at large current nucleates �at H=0.3Hc2 and different
currents�. At low currents, when the induced voltage and
normal current are small, the motion of the vortices in adja-
cent rows is out of phase because of weak interactions be-
tween vortices and strong repulsion between vortices. On the
contrary, at large currents, the exit of the vortices from the

FIG. 10. �Color online� Hysteresis in the current-voltage char-
acteristics of the superconducting slab with W=50�, 
=10, and
different magnetic fields.
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superconductor in adjacent rows becomes in phase. It means
that the emitted electromagnetic radiation should be consid-
erably enhanced in this case in comparison with the low
current limit.

The frequency of the radiation can be tuned by an applied
magnetic field or/and by applied current. The applied mag-
netic field changes the number of the vortices in the row and
hence changes the distance between vortices while transport
current changes the vortex velocity. Both factors influence
the frequency of the extracted radiation �=v /a. Taking typi-
cal values for the critical velocity in YBaCuO compounds at
T=77 K and B=1 T, vc=103 m/s �Ref. 9�, and the intervor-
tex distance a��	0 /B=40 nm, we obtain ��4�1011 Hz.
In the quasiphase slip line regime, the vortex velocity v
�vc and the frequency approaches the terahertz regime.

VI. CONCLUSIONS

In the framework of the generalized time-dependent
Ginzburg-Landau equations, we showed that with increasing
applied current, the moving Abrikosov vortex lattice changes
its structure from a triangular one to a set of parallel vortex
rows. The effect originates from changes in the shape of the
moving vortex. The vortex core becomes elongated in the

direction of vortex motion because of different relaxation
times of the order parameter in front and behind the moving
vortex. In front of the moving vortex, the order parameter
may vary very fast due to a large value of the local current
density and a deficit of quasiparticles in comparison with its
equilibrium value. On the contrary, the number of the quasi-
particles exceeds locally their equilibrium value, and the cur-
rent density is small behind the moving vortex and it in-
creases the relaxation time of the order parameter. This
results in the appearance of a wake behind the vortex which
attracts other vortices.

We found that the rearrangement of the vortex lattice re-
sults in field-independent values of the critical voltage at
which the transition to the state with quasiphase slip lines
occurs. This is connected with changes of the intervortex
distance at the structural transitions of the vortex lattice. In a
triangular lattice, the average distance between vortices var-
ies as a�1/�B, while in the case of vortex rows, the mini-
mal intervortex distance decreases with increasing magnetic
field as a�1/B. It results in the dependence Vc��B for
triangular lattice and Vc�const for vortex rows.

At some magnetic field, the quasiphase slip lines can co-
exist with slowly moving vortices between such lines. Be-
sides, we found that the motion of the vortices in adjacent
quasiphase slip lines can be synchronized at large vortex
velocity v�vc. Both effects are possible due to the long
decay length of the normal current near the quasiphase slip
line. It decreases the superconducting component of the cur-
rent in the system and provides synchronization of oscilla-
tions in the order parameter at the quasiphase slip lines.

Although our results are strictly valid when ��T��Lin,
they qualitatively explain experiments on the instability of
the vortex flow at low magnetic fields when the distance
between vortices a�Lin���T�. Besides, our results support
the idea that a similar instability of the vortex lattice should
exist for v�vc even when a�Lin.
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