toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Loreto, S.; Cuypers, B.; Brokken, J.; Van Doorslaer, S.; De Wael, K.; Meynen, V. pdf  url
doi  openurl
  Title The effect of the buffer solution on the adsorption and stability of horse heart myoglobin on commercial mesoporous titanium dioxide : a matter of the right choice Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 21 Pages 13503-13514  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Despite the numerous studies on the adsorption of different proteins onto mesoporous titanium dioxide and indications on the important role of buffer solutions in bioactivity, a systematic study on the impact of the buffer on the protein incorporation into porous substrates is still lacking. We here studied the interaction between a commercial mesoporous TiO2 and three of the most used buffers for protein incorporation, i.e. HEPES, Tris and phosphate buffer. In addition, this paper analyzes the adsorption of horse heart myoglobin (hhMb) onto commercial mesoporous TiO2 as a model system to test the influence of buffers on the protein incorporation behavior in mesoporous TiO2. N2 sorption analysis, FT-IR and TGA/DTG measurements were used to evaluate the interaction between the buffers and the TiO2 surface, and the effect of such an interaction on hhMb adsorption. Cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) were used to detect changes in the microenvironment surrounding the heme. The three buffers show a completely different interaction with the TiO2 surface, which drastically affects the adsorption of myoglobin as well as its structure and electrochemical activity. Therefore, special attention is required while choosing the buffer medium to avoid misguided evaluation of protein adsorption on mesoporous TiO2.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000402488300013 Publication Date 2017-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 2 Open Access  
  Notes ; We are grateful to Gert Nuyts for performing the XRF measurements, and Dr Stanislav Trashin for his assistance during the electrochemical experiments. This work is supported by the Research Foundation – Flanders (FWO) (grant G.0687.13) and the University of Antwerp (BOF project). ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:143514 Serial 5582  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Meynen, V.; Van Doorslaer, S.; De Wael, K. pdf  url
doi  openurl
  Title Enzymatic sensor for phenols based on titanium dioxide generating surface confined ROS after treatment with H2O2 Type A1 Journal article
  Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 283 Issue 283 Pages 343-348  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Titanium dioxide (TiO2) is a popular material as host matrix for enzymes. We now evidence that TiO2 can accumulate and retain reactive oxygen species after treatment by hydrogen peroxide (H2O2) and support redox cycling of a phenolic analyte between horseradish peroxidase (HRP) and an electrode. The proposed detection scheme is identical to that of second generation biosensors, but the measuring solution requires no dissolved H2O2. This significantly simplifies the analysis and overcomes issues related to H2O2 being present (or generated) in the solution. The modified electrodes showed rapid stabilization of the baseline, a low noise level, fast realization of a steady-state current response, and, in addition, improved sensitivity and limit of detection compared to the conventional approach, i.e. in the presence of H2O2 in the measuring solution. Hydroquinone, 4-aminophenol, and other phenolic compounds were successfully detected at sub-μM concentrations. Particularly, a linear response in the concentration range between 0.025 and 2 μM and LOD of 24 nM was demonstrated for 4-aminophenol. The proposed sensor design goes beyond the traditional concept with three sensors generations offering a new possibility for the development of enzymatic sensors based on peroxidases and the formation of ROS on titania after treatment with H2O2.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000455854000043 Publication Date 2018-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 1 Open Access  
  Notes ; The authors thank the University of Antwerp for GOA funding and the Scientific Research-Flanders (FWO) (grant 12T4219N). V. Rahemi is financially supported through a postdoctoral fellowship of the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:155665 Serial 5605  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Ribbens, S.; Tytgat, T.; Hauchecorne, B.; Smits, M.; Meynen, V.; Cool, P.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title The benefit of glass bead supports for efficient gas phase photocatalysis : case study of a commercial and a synthesised photocatalyst Type A1 Journal article
  Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 174 Issue 1 Pages 318-325  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the field of photocatalytic air purification, the immobilisation of catalyst particles on support surfaces without loss of photon efficiency is an important challenge. Therefore, an immobilisation method involving a one-step suspension coating of pre-synthesised photocatalysts on glass beads was applied. The various benefits are exemplified in the gas phase photodegradation of ethylene. Coating of glass beads is easy, fast, cheap and offers a more efficient alternative to bulk catalyst pellets. Furthermore, this coating procedure allows to use porous, pre-synthesised catalysts to their full potential, as the surface area and morphology of the initial powder is barely altered after coating, in strong contrast to pelletising. With this technique it became possible to study the gas phase photocatalytic activity of commercial titanium dioxide, trititanate nanotubes and mixed phase anatase/trititanate nanotubes in a packed bed reactor towards the degradation of ethylene without changing the catalyst properties. Coating of glass beads with the photocatalyst revealed the superior activity of the as-prepared nanotubes, compared to TiO2 Aerolyst® 7710 in gaseous phase.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000296950300041 Publication Date 2011-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 39 Open Access  
  Notes ; The author wishes to acknowledge the Research Foundation of Flanders (FWO) for the financial support. Evonik is greatly thanked for supplying the TiO<INF>2</ INF> Aerolyst (R) 7710 pellets. ; Approved Most recent IF: 6.216; 2011 IF: 3.461  
  Call Number UA @ admin @ c:irua:93364 Serial 5929  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion Type A1 Journal article
  Year 2020 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 10 Issue 5 Pages 530  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work proposes to use core-shell structured spheres to evaluate whether it allows to individually optimize bulk and surface effects of a packing material, in order to optimize conversion and energy efficiency. Different core-shell materials have been prepared by spray coating, using dense spheres (as core) and powders (as shell) of SiO2, Al2O3, and BaTiO3. The materials are investigated for their performance in CO2 dissociation and compared against a benchmark consisting of a packed-bed reactor with the pure dense spheres, as well as an empty reactor. The results in terms of CO2 conversion and energy efficiency show various interactions between the core and shell material, depending on their combination. Al2O3 was found as the best core material under the applied conditions here, followed by BaTiO3 and SiO2, in agreement with their behaviour for the pure spheres. Applying a thin shell layer on the cores showed equal performance between the different shell materials. Increasing the layer thickness shifts this behaviour, and strong combination effects were observed depending on the specific material. Therefore, this method of core-shell spheres has the potential to allow tuning of the packing properties more closely to the application by designing an optimal combination of core and shell.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000546007000092 Publication Date 2020-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access  
  Notes Interreg, Project EnOp ; Fonds Wetenschappelijk Onderzoek, G.0254.14N ; Universiteit Antwerpen, Project SynCO2Chem ; We want to thank Jasper Lefevre (VITO) for assistance in the development of the coating suspension for the core-shell spheres. Approved Most recent IF: 3.9; 2020 IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:169222 Serial 6364  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title On the kinetics and equilibria of plasma-based dry reforming of methane Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 405 Issue Pages 126630  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma reactors are interesting for gas-based chemical conversion but the fundamental relation between the plasma chemistry and selected conditions remains poorly understood. Apparent kinetic parameters for the loss and formation processes of individual components of gas conversion processes, can however be extracted by performing experiments in an extended residence time range (2–75 s) and fitting the gas composition to a firstorder kinetic model of the evolution towards partial chemical equilibrium (PCE). We specifically investigated the differences in kinetic characteristics and PCE state of the CO2 dissociation and CH4 reforming reactions in a dielectric barrier discharge reactor (DBD), how these are mutually affected when combining both gases in the dry reforming of methane (DRM) reaction, and how they change when a packing material (non-porous SiO2) is added to the reactor. We find that CO2 dissociation is characterized by a comparatively high reaction rate of 0.120 s−1 compared to CH4 reforming at 0.041 s−1; whereas CH4 reforming reaches higher equilibrium conversions, 82% compared to 53.6% for CO2 dissociation. Combining both feed gases makes the DRM reaction to proceed at a relatively high rate (0.088 s−1), and high conversion (75.4%) compared to CO2 dissociation, through accessing new chemical pathways between the products of CO2 and CH4. The addition of the packing material can also distinctly influence the conversion rate and position of the equilibrium, but its precise effect depends strongly on the gas composition. Comparing different CO2:CH4 ratios reveals the delicate balance of the combined chemistry. CO2 drives the loss reactions in DRM, whereas CH4 in the mixture suppresses back reactions. As a result, our methodology provides some of the insight necessary to systematically tune the conversion process.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000621197700003 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; grant number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:172458 Serial 6411  
Permanent link to this record
 

 
Author Van Dijck, J.G.; Mampuys, P.; Ching, H.Y.V.; Krishnan, D.; Baert, K.; Hauffman, T.; Verbeeck, J.; Van Doorslaer, S.; Maes, B.U.W.; Dorbec, M.; Buekenhoudt, A.; Meynen, V. pdf  url
doi  openurl
  Title Synthesis – properties correlation and the unexpected role of the titania support on the Grignard surface modification Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 527 Issue Pages 146851-17  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract While the impact of reaction conditions on surface modification with Grignard reactants has been studied for silica supports, such information is absent for metal oxides like titania. Differences between modified titania and silica are observed, making it paramount to explore the reaction mechanism. A detailed study on the impact of the reaction conditions is reported, with a focus on the chain length of the alkyl Grignard reactant, its concentration, the reaction time and temperature, and the type of titania support. While the increase in the chain length reduces the amount of organic groups on the surface, the concentration, time and temperature show little/no influence on the modification degree. However, the type of titania support used and the percentage of amorphous phase present has a significant impact on the amount of grafted groups. Even though the temperature and concentration show no clear impact on the modification degree, they can cause changes in the surface hydroxyl population, which are thus not linked to the modification degree. Furthermore, the titania support is reduced during functionalization. This reduction dependents on the reaction temperature, the titania support and the chain length of the Grignard reactant. Similarly, this reduction is not linked to the modification degree.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000564205300003 Publication Date 2020-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 5 Open Access OpenAccess  
  Notes ; The FWO (Fonds Wetenschappelijk Onderzoek) is gratefully acknowledged for the VITO-FWO grant of fellow Jeroen G. Van Dijck (11W9416N) and the financial support granted in project GO12712N. The E.U. is acknowledged for H.Y. Vincent Ching's H2020-MSCA-IF (grant number 792946, iSPY). Dileep Krishnan and Johan Verbeeck acknowledge funding from GOA project “solarpaint” of the University of Antwerp. ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:169722 Serial 6712  
Permanent link to this record
 

 
Author Kaliyappan, P.; Paulus, A.; D’Haen, J.; Samyn, P.; Uytdenhouwen, Y.; Hafezkhiabani, N.; Bogaerts, A.; Meynen, V.; Elen, K.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title Probing the impact of material properties of core-shell SiO₂@TiO₂ spheres on the plasma-catalytic CO₂ dissociation using a packed bed DBD plasma reactor Type A1 Journal article
  Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 46 Issue Pages 101468  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis, a promising technology for conversion of CO2 into value-added chemicals near room temperature, is gaining increasing interest. A dielectric barrier discharge (DBD) plasma has attracted attention due to its simple design and operation at near ambient conditions, ease to implement catalysts in the plasma zone and upscaling ability to industrial applications. To improve its main drawbacks, being relatively low conversion and energy efficiency, a packing material is used in the plasma discharge zone of the reactor, sometimes decorated by a catalytic material. Nevertheless, the extent to which different properties of the packing material influence plasma performance is still largely unexplored and unknown. In this study, the particular effect of synthesis induced differences in the morphology of a TiO2 shell covering a SiO2 core packing material on the plasma conversion of CO2 is studied. TiO2 has been successfully deposited around 1.6–1.8 mm sized SiO2 spheres by means of spray coating, starting from aqueous citratoperoxotitanate(IV) precursors. Parameters such as concentration of the Ti(IV) precursor solutions and addition of a binder were found to affect the shells’ properties and surface morphology and to have a major impact on the CO2 conversion in a packed bed DBD plasma reactor. Core-shell SiO2@TiO2 obtained from 0.25 M citratoperoxotitante(IV) precursors with the addition of a LUDOX binder showed the highest CO2 conversion 37.7% (at a space time of 70 s corresponding to an energy efficiency of 2%) and the highest energy efficiency of 4.8% (at a space time of 2.5 s corresponding to a conversion of 3%).  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000634280300004 Publication Date 2021-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.292  
  Call Number UA @ admin @ c:irua:175958 Serial 6773  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title 3D porous catalysts for plasma-catalytic dry reforming of methane : how does the pore size affect the plasma-catalytic performance? Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 464 Issue Pages 142574-12  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The effect of pore size on plasma catalysis is crucial but still unclear. Studies have shown plasma cannot enter micropores and mesopores, so catalysts for traditional thermocatalysis may not fit plasma catalysis. Here, 3D porous Cu and CuO with different pore sizes were prepared using uniform silica particles (10–2000 nm) as templates, and compared in plasma-catalytic dry reforming. In most cases, the smaller the pore size, the higher the conversion of CH4 and CO2. Large pores reachable by more electrons did not improve the reaction efficiency. We attribute this to the small surface area and large crystallite size, as indicated by N2-sorption, mercury intrusion and XRD. While the smaller pores might not be reachable by electrons, due to the sheath formed in front of them, as predicted by modeling, they can still be reached by radicals formed in the plasma, and ions can even be attracted into these pores. An exception are the samples synthesized from 1 μm silica, which show better performance. We believe this is due to the electric field enhancement for pore sizes close to the Debye length. The performances of CuO and Cu with different pore sizes can provide references for future research on oxide supports and metal components of plasma catalysts.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000966076400001 Publication Date 2023-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:194862 Serial 7262  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Kavak, S.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title Modifying the Stöber Process: Is the Organic Solvent Indispensable? Type A1 Journal Article
  Year 2022 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000898283500001 Publication Date 2022-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access OpenAccess  
  Notes The authors are grateful to Alexander Vansant and Dr. Steven Mullens of VITO for their contributions to the DLS measurements in this paper. J.W acknowledges the State Scholarship funded by the China Scholarship Council (201806060123). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). S.K acknowledges the Flemish Fund for Scientific Research (FWO Flanders) through a PhD research grant (1181122N). Approved Most recent IF: 4.3  
  Call Number EMAT @ emat @c:irua:191646 Serial 7233  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume Issue Pages 142953-29  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000986051300001 Publication Date 2023-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:195603 Serial 7264  
Permanent link to this record
 

 
Author Satyawali, Y.; Van Roy, S.; Roevens, A.; Meynen, V.; Mullens, S.; Jochems, P.; Doyen, W.; Cauwenberghs, L.; Dejonghe, W. pdf  doi
openurl 
  Title Characterization and analysis of the adsorption immobilization mechanism of \beta-galactosidase on metal oxide powders Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal  
  Volume 3 Issue 46 Pages 24054-24062  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Immobilization of the enzymes plays a vital role in enhancing their applicability in a wide range of applications, thus ensuring the use of sustainable enzymatic processes over the conventional chemical processes on an industrial scale. This study provides the background information for the selection and screening of inorganic metal oxide (MO) powders for their use as fillers in mixed matrix membranes for enzyme immobilization as the future aim. A total of 13 MOs, ranging in size from 0.01 μm to <5 μm, were tested for their performance as a support for enzyme (β-galactosidase) immobilization via adsorption. Alumina appeared to be the best performing MO with the amount and activity of the immobilized enzyme being 64 mg g−1 and up to 288 U g−1, respectively. The amount of immobilized enzyme on alumina (α-Al2O3 C and γ-Al2O3) was >3 times higher than ZrO2 (used as a reference MO in this study). Upon heat treatment at 900 °C, up to 15%, 52% and 42% decline was observed in the amount of immobilized enzyme in case of alumina metal oxides (MOs), ZrO2 and TiO2, respectively. The results suggested that both isoelectric point and surface area of the MO influence the immobilization. The most important observation in this study was that the bonding of the enzyme to the MO surface seems to be mediated by the bonding/interaction of the buffer to the enzyme.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000326745100030 Publication Date 2013-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111300 Serial 7607  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798  
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V. pdf  url
doi  openurl
  Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
  Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal  
  Volume Issue Pages e202300437-13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 001071673900001 Publication Date 2023-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075  
  Call Number UA @ admin @ c:irua:198934 Serial 8911  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: