toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verbruggen, S.W.; Keulemans, M.; van Walsem, J.; Tytgat, T.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor Type A1 Journal article
  Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 292 Issue Pages 42-50  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We present the use of computational fluid dynamics (CFD) for accurately determining the adsorption parameters of acetaldehyde on photocatalytic fiber filter material, integrated in a continuous flow system. Unlike the traditional analytical analysis based on Langmuir adsorption, not only steady-state situations but also transient phenomena can be accounted for. Air displacement effects in the reactor and gas detection cell are investigated and inherently made part of the model. Incorporation of a surface aldol condensation reaction in the CFD analysis further improves the accuracy of the model which enables to extract precise, intrinsic adsorption parameters for situations in which analytical analysis would otherwise fail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373648000005 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 12 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges the IWT for a Ph.D. fellowship. Konstantina Kalafata and Ioanna Fasaki are greatly thanked for providing the NanoPhos suspension. Bioscience Engineering bachelor students M. Gerritsma, J. Helsen and Y. Riahi Drif are thanked for their assistance in performing the adsorption experiments. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:130876 Serial 5934  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. url  doi
openurl 
  Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 50 Pages 30594-30603  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503919500061 Publication Date 2019-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164530 Serial 5938  
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Determination of intrinsic kinetic parameters in photocatalytic multi-tube reactors by combining the NTUm-method with radiation field modelling Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 354 Issue 354 Pages 1042-1049  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we propose an adapted Number of Transfer Units (NTUm)-method as an effective tool to determine the Langmuir-Hinshelwood kinetic parameters for a photocatalytic multi-tube reactor. The Langmuir-Hinshelwood rate constant kLH and the Langmuir adsorption constant KL were determined from several experiments under different UV-irradiance conditions, resulting in irradiance depending values for kLH. In order to determine a unique, intrinsic empirical constant k0, valid for all irradiation conditions, we coupled the adapted NTUm-method with a radiation field model to predict UV-irradiance distribution inside the reactor. The final set of kinetic parameters were derived using a Generalized Reduced Gradient (GRG) nonlinear solving method in Matlab which minimizes the differences between model and experimental reactor outlet concentrations of acetaldehyde for various photocatalytic experiments under varying operating conditions, including inlet concentration, flow rate and UV-irradiance. An excellent agreement of the intrinsic empirical constant k0, derived from the coupled NTUm-radiation field model and an earlier published CFD approach was found, emphasizing its validity and reliability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445413900099 Publication Date 2018-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 2 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:154845 Serial 5940  
Permanent link to this record
 

 
Author Delabie, L.; Honoré, M.; Lenaerts, S.; Huyberechts, G.; Roggen, J.; Maes, G. doi  openurl
  Title The effect of sintering and Pd-doping on the conversion of CO to CO2 on SnO2 gas sensor materials Type A1 Journal article
  Year 1997 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 44 Issue Pages 446-451  
  Keywords A1 Journal article  
  Abstract The principal aim of this work is to study the effect of the processes of sintering and Pd doping of SnO2 gas sensor materials on the conversion of CO to CO2. For this purpose, the gas phase above screen printed sensor material is investigated using FTIR spectroscopy, while surface area, porosity and particle size measurements are performed on the SnO2 powders. During sintering, larger agglomerates of primary particles are formed, which results in a larger conversion degree of CO. The effect of Pd doping of the tin dioxide film on the CO conversion is more pronounced. The transformation of CO starts at a lower temperature and the conversion degree increases remarkably.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000071717900035 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access  
  Notes Approved Most recent IF: 5.401; 1997 IF: 0.858  
  Call Number UA @ admin @ c:irua:82017 Serial 5947  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Van Hal, M.; Bosserez, T.; Rongé, J.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Harvesting hydrogen gas from air pollutants with an un-biased gas phase photo-electrochemical cell Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 7 Pages 1413-1418  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The concept of an all-gas-phase photo-electrochemical cell (PEC) producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen gas, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward photo-electrochemical remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398838600017 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 6 Open Access  
  Notes ; S.W.V. and J.R. acknowledge the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. T.B. and J.A.M. acknowledge the Flemish government for long-term structural funding (Methusalem). Nicolaas Schewyck is greatly thanked for his experimental work during his master thesis. ; Approved Most recent IF: 7.226  
  Call Number UA @ admin @ c:irua:140922 Serial 5955  
Permanent link to this record
 

 
Author Dong, Y.; Chen, S.-Y.; Lu, Y.; Xiao, Y.-X.; Hu, J.; Wu, S.-M.; Deng, Z.; Tian, G.; Chang, G.-G.; Li, J.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchical MoS2@TiO2 heterojunctions for enhanced photocatalytic performance and electrocatalytic hydrogen evolution Type A1 Journal article
  Year 2018 Publication Chemistry: an Asian journal Abbreviated Journal Chem-Asian J  
  Volume 13 Issue 12 Pages 1609-1615  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchical MoS2@TiO2 heterojunctions were synthesized through a one-step hydrothermal method by using protonic titanate nanosheets as the precursor. The TiO2 nanosheets prevent the aggregation of MoS2 and promote the carrier transfer efficiency, and thus enhance the photocatalytic and electrocatalytic activity of the nanostructured MoS2. The obtained MoS2@TiO2 has significantly enhanced photocatalytic activity in the degradation of rhodamineB (over 5.2times compared with pure MoS2) and acetone (over 2.8times compared with pure MoS2). MoS2@TiO2 is also beneficial for electrocatalytic hydrogen evolution (26times compared with pure MoS2, based on the cathodic current density). This work offers a promising way to prevent the self-aggregation of MoS2 and provides a new insight for the design of heterojunctions for materials with lattice mismatches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000435773300011 Publication Date 2018-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1861-4728; 1861-471x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.083 Times cited 22 Open Access  
  Notes ; This work was supported by the National Key R&D Program of China (2017YFC1103800), PCSIRT (IRT15R52), NSFC (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), ISTCP (2015DFE52870), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 4.083  
  Call Number UA @ admin @ c:irua:151971 Serial 5956  
Permanent link to this record
 

 
Author Xiao, S.; Lu, Y.; Xiao, B.-Y.; Wu, L.; Song, J.-P.; Xiao, Y.-X.; Wu, S.-M.; Hu, J.; Wang, Y.; Chang, G.-G.; Tian, G.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchically dual-mesoporous TiO2 microspheres for enhanced photocatalytic properties and lithium storage Type A1 Journal article
  Year 2018 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 24 Issue 50 Pages 13246-13252  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchically dual‐mesoporous TiO2 microspheres have been synthesized via a solvothermal process in the presence of 1‐butyl‐3‐methylmidazolium tetrafluoroborate ([BMIm][BF4]) and diethylenetriamine (DETA) as co‐templates. Secondary mesostructured defects in the hierarchical TiO2 microspheres produce the oxygen vacancies, which not only significantly enhance the photocatalytic activity on degrading methyl blue (over 1.7 times to P25) and acetone (over 2.9 times of P25), but which also are beneficial for lithium storage. Moreover, we propose a mechanism to obtain a better understanding of the role of dual mesoporosity of TiO2 microspheres for enhancing the molecular diffusion, ion transportation and electron transformation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443804100025 Publication Date 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 6 Open Access  
  Notes ; This work is supported by the National Key R&D Program of China (2017YFC1103800), the Program for Changjiang Scholars and Innovative Research Team in University (IRT 15R52), the National Natural Science Foundation of China (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), the International Science & Technology Cooperation Program of China (2015DFE52870), the Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), the Open Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007), and the CNPC Research Institute of Safety and Environmental Technology. ; Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:151812 Serial 5957  
Permanent link to this record
 

 
Author Van Hal, M.; Verbruggen, S.W.; Yang, X.-Y.; Lenaerts, S.; Tytgat, T. url  doi
openurl 
  Title Image analysis and in situ FTIR as complementary detection tools for photocatalytic soot oxidation Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 367 Issue 367 Pages 269-277  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution, especially particulate matter (PM), is an increasingly urgent problem in urban environments, causing both short and long-term health problems, climate interference and aesthetical problems due to building fouling. Photocatalysis has been shown to be a possible solution to that end. In this work two complementary detection methods for photocatalytic soot oxidation are studied and their advantages and disadvantages are discussed. First, a colour-based digital image analysis method is drastically improved towards an accurate, detailed and straightforward detection tool, that enables simultaneous measurement of the degradation of different grades of soot fouling (for instance a shallow soot haze versus condensed soot deposits). In the next part, a second soot oxidation detection method is presented based on in situ FTIR spectroscopy. This method has the additional advantage of providing more insight into the photocatalytic soot degradation process by monitoring both gaseous and adsorbed intermediates as well as reaction products while the reactions are ongoing. As an illustration, the proposed detection strategies were applied on four different commercially available and synthesized photocatalytic materials. The digital image analysis showed that P25 (Evonik) is the fastest photocatalytic soot degrader of all studied materials for both a uniform soot haze as well as concentrated soot spots. Application of the in situ method showed that for all studied materials adsorbed formate-related surface species were formed and that commercially available ZnO nanopowder has the highest specificity towards complete mineralization into CO2. With this we aim to provide a set of complementary experimental tools for the convenient, reliable, realistic and standardised detection of photocatalytic soot degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461380400028 Publication Date 2019-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 1 Open Access  
  Notes ; M.V.H. acknowledges the Research Foundation-Flanders (FWO) for a doctoral fellowship. M.V.H., S.W.V., S.L. and X-Y.Y. thank the FWO and the National Natural Science Foundation of China (NSFC) for funding an international collaboration project. Mr. M. Minjauw is greatly thanked for his help in the AFM measurements. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157789 Serial 5958  
Permanent link to this record
 

 
Author Sóti, V.; Jacquet, N.; Apers, S.; Richel, A.; Lenaerts, S.; Cornet, I. pdf  url
doi  openurl
  Title Monitoring the laccase reaction of vanillin and poplar hydrolysate Type A1 Journal article
  Year 2016 Publication Journal of chemical technology and biotechnology Abbreviated Journal J Chem Technol Biot  
  Volume 91 Issue 6 Pages 1914-1922  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract BACKGROUND Laccase is an intensively researched enzyme for industrial use. Except for decolorisation measurements, HPLC analysis is the conventional method for monitoring the phenolic removal during laccase enzyme reaction. This paper reports an investigation of the continuous UV absorbance follow-up of the laccase reaction with steam pretreated poplar hydrolysate. RESULTS Vanillin was used as a model substrate and lignocellulose xylose rich fraction (XRF) as a biologically complex substrate for laccase detoxification. The reaction was followed by HPLC-UV as well as by UV spectrometric measurements. Results suggest that the reaction can be successfully monitored by measuring the change of UV absorbance at 280 nm, without previous compound separation. In case of XRF experiments the spectrophotometric follow-up is especially useful, as HPLC analysis takes a long time and provides less information than in case of single substrates. The method seems to be suitable for optimization and process control. CONCLUSION The obtained results can help to construct a fast, easy and straightforward monitoring system for laccase-phenolic substrate reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375768300040 Publication Date 2015-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.135 Times cited 3 Open Access  
  Notes ; This research is financed by the University of Antwerp (project number 15 FA100 002). ; Approved Most recent IF: 3.135  
  Call Number UA @ admin @ c:irua:127694 Serial 5972  
Permanent link to this record
 

 
Author Jammaer, J.; Aprile, C.; Verbruggen, S.W.; Lenaerts, S.; Pescarmona, P.P.; Martens, J.A. doi  openurl
  Title A non-aqueous synthesis of TiO2SiO2 composites in supercritical CO2 for the photodegradation of pollutants Type A1 Journal article
  Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 4 Issue 10 Pages 1457-1463  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Titania/silica composites with different Ti/Si ratios are synthesized via a nonconventional synthesis route. The synthesis involves non-aqueous reaction of metal alkoxides and formic acid at 75 °C in supercritical carbon dioxide. The as-prepared composite materials contain nanometer-sized anatase crystallites and amorphous silica. Large specific surface areas are obtained. The composites are evaluated in the photocatalytic degradation of phenol in aqueous medium, and in the elimination of acetaldehyde from air. The highest photocatalytic activity in both processes is achieved with a composite containing 40 wt % TiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296497400010 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 15 Open Access  
  Notes ; The authors acknowledge sponsorship from CECAT and Methusalem (long-term financing of the Flemish government). We thank Dr. E. Gobechiya for assistance with XRD measurements and A. Lemaire for assistance with mercury porosimetry measurements. ; Approved Most recent IF: 7.226; 2011 IF: 6.827  
  Call Number UA @ admin @ c:irua:93363 Serial 5973  
Permanent link to this record
 

 
Author Smits, M.; Chan, C. kit; Tytgat, T.; Craeye, B.; Costarramone, N.; Lacombe, S.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic degradation of soot deposition : self-cleaning effect on titanium dioxide coated cementitious materials Type A1 Journal article
  Year 2013 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 222 Issue Pages 411-418  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diesel soot emissions deteriorate the appearance of architectural building materials by soot fouling. This soot deposition devalue the aesthetic value of the building. A solution to counteract this problem is applying titanium dioxide on building materials. TiO2 can provide air-purifying and self-cleaning properties due to its photocatalytic activity. In literature, photocatalytic soot oxidation is observed on glass or silicon substrates. However, degradation of soot by photocatalysis was not yet investigated on cementitious samples (mortar, concrete) although it is one of the most frequently used building materials. In this study, photocatalytic soot oxidation by means of TiO2 coated cementitious samples is addressed. The soot removal capacity of four types of TiO2 layers, coated on mortar samples, is evaluated by means of two detection methods. The first method is based on colorimetric measurements, while the second method uses digital image processing to calculate the area of soot coverage. The experimental data revealed that cementitious materials coated with commercially available TiO2 exhibited self-cleaning properties as it was found that all coated samples were able to remove soot. The P25 coating gave the best soot degradation performance, while the Eoxolit product showed the slowest soot degradation rate. In addition, gas chromatography measurements in a closed chamber experiment with P25 confirmed that complete mineralization of about 60% of the soot was obtained within 24 hours since CO2 was the sole observed oxidation product. Due to its realistic approach, this study proves that photocatalytic soot removal on TiO2 coated cementitious surfaces is possible in practice, which is an important step towards the practical application of self-cleaning building materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319528900046 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 43 Open Access  
  Notes ; This work was supported by a PhD grant (M. Smits) from the University of Antwerp, a PhD grant (T. Tytgat) funded by the Institute of Innovation by Science and Technology in Flanders (IWT) and the exchange program Tournesol (Project T2012.05) financed by the Flemish government. ; Approved Most recent IF: 6.216; 2013 IF: 4.058  
  Call Number UA @ admin @ c:irua:106519 Serial 5979  
Permanent link to this record
 

 
Author Smits, M.; Ling, Y.; Lenaerts, S.; Van Doorslaer, S. doi  openurl
  Title Photocatalytic removal of soot : unravelling of the reaction mechanism by EPR and in situ FTIR spectroscopy Type A1 Journal article
  Year 2012 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem  
  Volume 13 Issue 18 Pages 4251-4257  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic soot oxidation is studied on P25 TiO2 as an important model reaction for self-cleaning processes by means of electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. Contacting of carbon black with P25 leads on the one hand to a reduction of the local dioxygen concentration in the powder. On the other hand, the weakly adsorbed radicals on the carbon particles are likely to act as alternative traps for the photogenerated conduction-band electrons. We find furthermore that the presence of dioxygen and oxygen-related radicals is vital for the photocatalytic soot degradation. The complete oxidation of soot to CO2 is evidenced by in situ FTIR spectroscopy, no intermediate CO is detected during the photocatalytic process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313692600026 Publication Date 2012-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 9 Open Access  
  Notes ; This work was supported by the University of Antwerp (PhD grants of M. S. and Y.L.). We would like to thank Birger Hauchecorne for the scientific discussion. ; Approved Most recent IF: 3.075; 2012 IF: 3.349  
  Call Number UA @ admin @ c:irua:104568 Serial 5980  
Permanent link to this record
 

 
Author Minjauw, M.M.; Solano, E.; Sree, S.P.; Asapu, R.; Van Daele, M.; Ramachandran, R.K.; Heremans, G.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Detavernier, C.; Dendooven, J. pdf  doi
openurl 
  Title Plasma-enhanced atomic layer deposition of silver using Ag(fod)(PEt3) and NH3-plasma Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 17 Pages 7114-7121  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A plasma-enhanced atomic layer deposition (ALD) process using the Ag(fod)(PEt3) precursor [(triethylphosphine)(6,6,7,7,8,8,8-heptafluoro-2,2-dimethy1-3,5-octanedionate)silver(I)] in combination with NH3-plasma is reported. The steady growth rate of the reported process (0.24 +/- 0.03 nm/cycle) was found to be 6 times larger than that of the previously reported Ag ALD process based on the same precursor in combination with H-2-plasma (0.04 +/- 0.02 nm/cycle). The ALD characteristics of the H-2-plasma and NH3-plasma processes were verified. The deposited Ag films were polycrystalline face-centered cubic Ag for both processes. The film morphology was investigated by ex situ scanning electron microscopy and grazing-incidence small-angle X-ray scattering, and it was found that films grown with the NH3-plasma process exhibit a much higher particle areal density and smaller particle sizes on oxide substrates compared to those deposited using the H-2-plasma process. This control over morphology of the deposited Ag is important for applications in catalysis and plasmonics. While films grown with the H-2-plasma process had oxygen impurities (similar to 9 atom %) in the bulk, the main impurity for the NH3-plasma process was nitrogen (similar to 7 atom %). In situ Fourier transform infrared spectroscopy experiments suggest that these nitrogen impurities are derived from NH surface groups generated during the NH3-plasma, which interact with the precursor molecules during the precursor pulse. We propose that the reaction of these surface groups with the precursor leads to additional deposition of Ag atoms during the precursor pulse compared to the H-2-plasma process, which explains the enhanced growth rate of the NH3-plasma process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410868600012 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes ; M.M.M. and J.D. acknowledge the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO Vlaanderen) for financial support through a personal research grant. We also acknowledge FWO Vlaanderen for providing project funding for this work. We are grateful to the ESRF staff for smoothly running the synchrotron and beamline facilities. We also thank Olivier Janssens for performing the SEM measurements and Stefaan Broekaert for mechanical assistance. J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem). ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:146757 Serial 5983  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Martens, J.A.; Lenaerts, S. doi  openurl
  Title Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 37 Pages 19142-19145  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gold-silver alloy nanoparticles display surface plasmon resonance (SPR) over a broad range of the UV-vis spectrum. We propose a model to predict the SPR wavelength of gold-silver alloy colloids based on the combined effect of alloy composition and particle size. The SPR wavelength is derived from extinction spectra simulated using available experimental dielectric constant data and accounts for particle size by applying Mie theory. Comparison of calculated values with experimental data evidences the accuracy of the model. The new SPR wavelength estimation tool will be of particular interest for developing dedicated bimetallic plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330162600042 Publication Date 2013-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 51 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. JAM. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ admin @ c:irua:114837 Serial 5985  
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Proof of concept of an upscaled photocatalytic multi-tube reactor : a combined modelling and experimental study Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 378 Issue 378 Pages 122038  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Three upscaled multi-tube photocatalytic reactors designed for integration into HVAC (Heating, Ventilation and Air Conditioning) systems were proposed and evaluated using a CFD modelling approach, with emphasis on the flow, irradiation and concentration distribution in the reactor and hence, photocatalytic performance. Based on the obtained insights, the best reactor design was selected, further characterized and improved by an additional proof of concept study and eventually converted into practice. Subsequently, the scaled-up prototype was experimentally tested according to the CEN-EN-16846-1 standard (2017) for volatile organic compound (VOC) removal by an external scientific research center. The combined modelling and experimental approach used in this work, leads to essential insights into the design and assessment of photocatalytic reactors. Therefore, this study provides an essential step towards the optimization and commercialization of photocatalytic reactors for HVAC applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487764800011 Publication Date 2019-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:162190 Serial 5986  
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; You, F.; Van Passel, S. doi  openurl
  Title A multi-objective optimization-extended techno-economic assessment : exploring the optimal microalgal-based value chain Type A1 Journal article
  Year 2019 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 21 Issue 21 Pages 5945-5959  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The use of fossil-based products induces a large environmental burden. To lighten this burden, green technologies are required that can replace their fossil-based counterparts. To enable the development of economically viable green technologies, an optimization towards both economic and environmental objectives is required. To perform this multi-objective optimization (MOO), the environmental techno-economic assessment (ETEA) methodology is extended towards a MOO-extended ETEA. The development of this MOO-extended ETEA is the main objective of this manuscript. As an example of a green technology, the concept of microalgae biorefineries is used as a case study to illustrate the MOO-extended ETEA. According to the results, all optimal value chains include open pond cultivation, a membrane for medium recycling and spray drying. The optimal economic value chain uses Nannochloropsis sp. in a one-stage cultivation to produce fish larvae feed, while the optimal environmental design uses Dunaliella salina or Haematococcus pluvialis to produce carotenoids and fertilizer or energy products, by means of anaerobic digestion or gasification. The crucial parameters for both environmental and economic feasibility are the content, price and reference impact of the main end product, the growth parameters and the biomass and carotenoid recovery efficiency alongside the different process steps. By identifying the economic and environmentally optimal algal-based value chain and the crucial drivers, the MOO-extended ETEA provides insights on how algae-based value chains can be developed in the most economic and environmentally-friendly way. For example, the inclusion of a medium recycling step to lower the water and salt consumption is required in all Pareto-optimal scenarios. Another major insight is the requirement of high-value products such as carotenoids or specialty food to obtain and economically and environmentally feasible algal-based value chain. Due to the modular nature of the MOO-extended ETEA, multiple processes can be included or excluded from the superstructure. Although this case study is limited to current microalgae biorefinery technologies, the MOO-extended ETEA can also be used to assess the economic and environmental effect of more innovative technologies. This way, the MOO-extended ETEA provides a methodology to assess the economic and environmental potential of innovative green technologies and shorten their time-to-market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493077100016 Publication Date 2019-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:164296 Serial 6230  
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Van Passel, S.; You, F. url  doi
openurl 
  Title How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework Type A1 Journal article
  Year 2019 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 21 Issue 18 Pages 4868-4886  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract For sustainable production and consumption, emerging green technologies need to be optimized towards a minimal environmental impact and a maximal economic impact. In an early stage of technology development, more flexibility is available to adapt the technology. Therefore, a prospective environmental and techno-economic assessment is required. The prospective assessment differs at the different stages of technology development, as also the data availability and accuracy evolves. This paper reviews the different prospective technological, economic and environmental assessment methods which have been used to assess the potential of new green chemical technologies. Based on the current best practices, an overarching framework is introduced to assess the technological, economic and environmental potential of an emerging green chemical technology at the different stages of technology development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486309300002 Publication Date 2019-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:163782 Serial 6211  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Tytgat, T.; Van Passel, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air Type A1 Journal article
  Year 2014 Publication Chemicke zvesti Abbreviated Journal Chem Pap  
  Volume 68 Issue 9 Pages 1273-1278  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the commercialisation of photocatalytic air purifiers, the performance as well as the cost of the catalytic material plays an important role. Where most comparative studies only regard the photocatalytic activity as a decisive parameter, in this study both activity and cost are taken into account. Using a cost-effectiveness analysis, six different commercially available TiO2-based catalysts are evaluated in terms of their activities in photocatalytic degradation of acetaldehyde as a model reaction for indoor air purification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336443400015 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 0366-6352 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.258 Times cited 10 Open Access  
  Notes ; S. W. V. wishes to thank the Research Foundation Flanders (FWO) for the financial support received. The authors are grateful to the University of Antwerp for supporting and funding this research. Evonik is sincerely thanked for providing catalyst samples for our experiments free of charge. All companies are thanked for providing specific pricing data. ; Approved Most recent IF: 1.258; 2014 IF: 1.468  
  Call Number UA @ admin @ c:irua:117297 Serial 6174  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F. pdf  url
doi  openurl
  Title A first-principles study of C3N nanostructures : control and engineering of the electronic and magnetic properties of nanosheets, tubes and ribbons Type A1 Journal article
  Year 2020 Publication Chemphyschem Abbreviated Journal Chemphyschem  
  Volume 21 Issue 2 Pages 164-174  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two-dimensional materials (2DM) with a stoichiometry C3N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3N nanoribbons, as well as the radius and length of C3N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half-metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503453100001 Publication Date 2019-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.9 Times cited 27 Open Access  
  Notes ; ; Approved Most recent IF: 2.9; 2020 IF: 3.075  
  Call Number UA @ admin @ c:irua:165045 Serial 6282  
Permanent link to this record
 

 
Author Choukroun, D.; Daems, N.; Kenis, T.; Van Everbroeck, T.; Hereijgers, J.; Altantzis, T.; Bals, S.; Cool, P.; Breugelmans, T. pdf  url
doi  openurl
  Title Bifunctional nickel-nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 124 Pages 1369-1381  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bifunctionality is a key feature of many industrial catalysts, supported metal clusters and particles in particular, and the development of such catalysts for the CO2 reduction reaction (CO2RR) to hydrocarbons and alcohols is gaining traction in light of recent advancements in the field. Carbon-supported Cu nanoparticles are suitable candidates for integration in the state-of-the-art reaction interfaces, and here, we propose, synthesize, and evaluate a bifunctional Ni–N-doped-C-supported Cu electrocatalyst, in which the support possesses active sites for selective CO2 conversion to CO and Cu nanoparticles catalyze either the direct CO2 or CO reduction to hydrocarbons. In this work, we introduce the scientific rationale behind the concept, its applicability, and the challenges with regard to the catalyst. From the practical aspect, the deposition of Cu nanoparticles onto carbon black and Ni–N–C supports via an ammonia-driven deposition precipitation method is reported and explored in more detail using X-ray diffraction, thermogravimetric analysis, and hydrogen temperature-programmed reduction. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDXS) give further evidence of the presence of Cu-containing nanoparticles on the Ni–N–C supports while revealing an additional relationship between the nanoparticle’s composition and the electrode’s electrocatalytic performance. Compared to the benchmark carbon black-supported Cu catalysts, Ni–N–C-supported Cu delivers up to a 2-fold increase in the partial C2H4 current density at −1.05 VRHE (C1/C2 = 0.67) and a concomitant 10-fold increase of the CO partial current density. The enhanced ethylene production metrics, obtained by virtue of the higher intrinsic activity of the Ni–N–C support, point out toward a synergistic action between the two catalytic functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508467700015 Publication Date 2020-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access OpenAccess  
  Notes ; N.D. acknowledges sponsoring from the research foundation of Flanders (FWO) in the frame of a postdoctoral grant (12Y3919N N.D.). J.H. greatly acknowledges the Research Foundation Flanders (FWO) for support through a postdoctoral fellowship (28761). T.V.E. and P.C. acknowledge financial support from the EU-Partial-PGMs project (H2020NMP-686086). The authors also acknowledge financial support from the university research fund (BOF-GOA PS ID No. 33928). ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:165326 Serial 6286  
Permanent link to this record
 

 
Author Spreitzer, M.; Klement, D.; Egoavil, R.; Verbeeck, J.; Kovac, J.; Zaloznik, A.; Koster, G.; Van Tendeloo, G.; Suvorov, D.; Rijnders, G. url  doi
openurl 
  Title Growth mechanism of epitaxial SrTiO3 on a (1 x 2) + (2 x 1) reconstructed Sr(1/2 ML)/Si(001) surface Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry C Abbreviated Journal J Mater Chem C  
  Volume 8 Issue 2 Pages 518-527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sub-monolayer control over the growth at silicon-oxide interfaces is a prerequisite for epitaxial integration of complex oxides with the Si platform, enriching it with a variety of functionalities. However, the control over this integration is hindered by the intense reaction of the constituents. The most suitable buffer material for Si passivation is metallic strontium. When it is overgrown with a layer of SrTiO3 (STO) it can serve as a pseudo-substrate for the integration with functional oxides. In our study we determined a mechanism for epitaxial integration of STO with a (1 x 2) + (2 x 1) reconstructed Sr(1/2 ML)/Si(001) surface using all-pulsed laser deposition (PLD) technology. A detailed analysis of the initial deposition parameters was performed, which enabled us to develop a complete protocol for integration, taking into account the peculiarities of the PLD growth, STO critical thickness, and process thermal budget, in order to kinetically trap the reaction between STO and Si and thus to minimize the thickness of the interface layer. The as-prepared oxide layer exhibits STO(001)8Si(001) out-of-plane and STO[110]8Si[100] in-plane orientation and together with recent advances in large-scale PLD tools these results represent a new technological solution for the implementation of oxide electronics on demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000506852400036 Publication Date 2019-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited 12 Open Access OpenAccess  
  Notes ; The research was financially supported by the Slovenian Research Agency (Project No. P2-0091, J2-9237) and Ministry of Education, Science and Sport of the Republic of Slovenia (SIOX projects). This work was also funded by the European Union Council under the 7th Framework Program grant no. NMP3-LA-2010-246102 IFOX. J. V. and G. V. T. acknowledge funding from the Fund for Scientific Research Flanders under project no. G.0044.13N. ; Approved Most recent IF: 6.4; 2020 IF: 5.256  
  Call Number UA @ admin @ c:irua:165672 Serial 6298  
Permanent link to this record
 

 
Author Wu, Y.; Chen, G.; Yu, J.; Wang, D.; Ma, C.; Li, C.; Pennycook, S.J.; Yan, Y.; Wei, S.-H. pdf  doi
openurl 
  Title Hole-induced spontaneous mutual annihilation of dislocation pairs Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 10 Issue 23 Pages 7421-7425  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dislocations are always observed during crystal growth, and it is usually desirable to reduce the dislocation density in high-quality crystals. Here, the annihilation process of the 30 degrees Shockley partial dislocation pairs in CdTe is studied by first-principles calculations. We found that the dislocations can glide relatively easily due to the weak local bonding. Our systematic study of the slipping mechanism of the dislocations suggests that the energy barrier for the annihilation process is low. Band structure calculations reveal that the band bending caused by the charge transfer between the two dislocation cores depends on the core-core distance. A simple linear model is proposed to describe the mechanism of formation of the dislocation pair. More importantly, we demonstrate that hole injection can affect the core structure, increase the mobility, and eventually trigger a spontaneous mutual annihilation, which could be employed as a possible facile way to reduce the dislocation density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000501622700017 Publication Date 2019-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.353 Times cited Open Access  
  Notes Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:165068 Serial 6302  
Permanent link to this record
 

 
Author Van der Paal, J.; Hong, S.-H.; Yusupov, M.; Gaur, N.; Oh, J.-S.; Short, R.D.; Szili, E.J.; Bogaerts, A. url  doi
openurl 
  Title How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage : an experimental and computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 35 Pages 19327-19341  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486175400045 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:162782 Serial 6303  
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V. pdf  doi
openurl 
  Title Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 43 Pages 26201-26210  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493865700019 Publication Date 2019-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164664 Serial 6310  
Permanent link to this record
 

 
Author Zhou, R.; Zhou, R.; Xian, Y.; Fang, Z.; Lu, X.; Bazaka, K.; Bogaerts, A.; Ostrikov, K.(K.) pdf  url
doi  openurl
  Title Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 382 Issue 382 Pages 122745  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Selective conversion of bio-renewable ethanol under mild conditions especially at room temperature remains a major challenge for sustainable production of hydrogen and valuable carbon-based materials. In this study, adaptive non-thermal plasma is applied to deliver pulsed energy to rapidly and selectively reform ethanol in the absence of a catalyst. Importantly, the carbon atoms in ethanol that would otherwise be released into the environment in the form of CO or CO2 are effectively captured in the form of carbon dots (CDs). Three modes of non-thermal spark plasma discharges, i.e. single spark mode (SSM), multiple spark mode (MSM) and gliding spark mode (GSM), provide additional flexibility in ethanol reforming by controlling the processes of energy transfer and distribution, thereby affecting the flow rate, gas content, and energy consumption in H-2 production. A favourable combination of low temperature (< 40 degrees C), attractive conversion rate (gas flow rate of similar to 120 mL/min), high hydrogen yield (H-2 content > 90%), low energy consumption (similar to 0.96 kWh/m(3) H-2) and the effective generation of photoluminescent CDs (which are applicable for bioimaging or biolabelling) in the MSM indicate that the proposed strategy may offer a new carbon-negative avenue for comprehensive utilization of alcohols and mitigating the increasingly severe energy and environmental issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503381200200 Publication Date 2019-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited 20 Open Access  
  Notes ; ; Approved Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number UA @ admin @ c:irua:165648 Serial 6318  
Permanent link to this record
 

 
Author Heirman, P.; Van Boxem, W.; Bogaerts, A. pdf  doi
openurl 
  Title Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 24 Pages 12881-12894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-treated liquids have great potential for biomedical applications. However, insight into the underlying mechanisms and the exact chemistry is still scarce. In this study, we present the combination of a 0D chemical kinetics and a 2D fluid dynamics model to investigate the plasma treatment of a buffered water solution with the kINPen (R) plasma jet. Using this model, we calculated the gas and liquid flow profiles and the transport and chemistry of all species in the gas and the liquid phase. Moreover, we evaluated the stability of the reactive oxygen and nitrogen species after plasma treatment. We found that of all species, only H2O2, HNO2/NO2-, and HNO3/NO3- are stable in the buffered solution after plasma treatment. This is because both their production and loss processes in the liquid phase are dependent on short-lived radicals (e.g. OH, NO, and NO2). Apart from some discrepancy in the absolute values of the concentrations, which can be explained by the model, all general trends and observations in our model are in qualitative agreement with experimental data and literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472214000012 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161314 Serial 6320  
Permanent link to this record
 

 
Author Eren, I.; Ozen, S.; Sozen, Y.; Yagmurcukardes, M.; Sahin, H. url  doi
openurl 
  Title Vertical van der Waals heterostructure of single layer InSe and SiGe Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 51 Pages 31232-31237  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present a first-principles investigation on the stability, electronic structure, and mechanical response of ultrathin heterostructures composed of single layers of InSe and SiGe. First, by performing total energy optimization and phonon calculations, we show that single layers of InSe and SiGe can form dynamically stable heterostructures in 12 different stacking types. Valence and conduction band edges of the heterobilayers form a type-I heterojunction having a tiny band gap ranging between 0.09 and 0.48 eV. Calculations on elastic-stiffness tensor reveal that two mechanically soft single layers form a heterostructure which is stiffer than the constituent layers because of relatively strong interlayer interaction. Moreover, phonon analysis shows that the bilayer heterostructure has highly Raman active modes at 205.3 and 43.7 cm(-1), stemming from the out-of-plane interlayer mode and layer breathing mode, respectively. Our results show that, as a stable type-I heterojunction, ultrathin heterobilayer of InSe/SiGe holds promise for nanoscale device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000505632900050 Publication Date 2019-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:165718 Serial 6332  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 39 Pages 21293-21304  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577151900008 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access  
  Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:172693 Serial 6452  
Permanent link to this record
 

 
Author Rutten, I.; Daems, D.; Lammertyn, J. url  doi
openurl 
  Title Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry B Abbreviated Journal J Mater Chem B  
  Volume 8 Issue 16 Pages 3606-3615  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The interaction between a bioreceptor and its target is key in developing sensitive, specific and robust diagnostic devices. Suboptimal interbioreceptor distances and bioreceptor orientation on the sensor surface, resulting from uncontrolled deposition, impede biomolecular interactions and lead to a decreased biosensor performance. In this work, we studied and implemented a 3D DNA origami design, for the first time comprised of assay specifically tailored anchoring points for the nanostructuring of the bioreceptor layer on the surface of disc-shaped microparticles in the continuous microfluidic environment of the innovative EvalutionTM platform. This bioreceptor immobilization strategy resulted in the formation of a less densely packed surface with reduced steric hindrance and favoured upward orientation. This increased bioreceptor accessibility led to a 4-fold enhanced binding kinetics and a 6-fold increase in binding efficiency compared to a directly immobilized non-DNA origami reference system. Moreover, the DNA origami nanotailored biosensing concept outperformed traditional aptamer coupling with respect to limit of detection (11 × improved) and signal-to-noise ratio (2.5 × improved) in an aptamer-based sandwich bioassay. In conclusion, our results highlight the potential of these DNA origami nanotailored surfaces to improve biomolecular interactions at the sensing surface, thereby increasing the overall performance of biosensing devices. The combination of the intrinsic advantages of DNA origami together with a smart design enables bottom-up nanoscale engineering of the sensor surface, leading towards the next generation of improved diagnostic sensing devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000548186500032 Publication Date 2020-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2050-750x; 2050-7518 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 2 Open Access  
  Notes ; We gratefully acknowledge financial support from Fund for Scientific Research (FWO, FWO-Flanders Doctoral grant Iene Rutten 1S30016N and FWO-Flanders Postdoctoral Fellow Devin Daems 12U1618N). We kindly thank MyCartis for access to their EvalutionTM platform, microparticle supplies and technical support. We would also like to thank Steven De Feyter and Joan Teyssandier (Molecular imaging and Photonics, Department of Chemistry, KU Leuven, Belgium) for providing the AFM facilities and technical support. We thank Peter Vangheluwe (Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven) for access to their gel imaging system, Typhoon FLA 9000. ; Approved Most recent IF: 7; 2020 IF: 4.543  
  Call Number UA @ admin @ c:irua:166104 Serial 6462  
Permanent link to this record
 

 
Author Anastasiou, I.; Van Velthoven, N.; Tomarelli, E.; Lombi, A.; Lanari, D.; Liu, P.; Bals, S.; De Vos, D.E.; Vaccaro, L. pdf  doi
openurl 
  Title C2-H arylation of indoles catalyzed by palladium-containing metal-organic-framework in γ-valerolactone Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 13 Issue 10 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An efficient and selective procedure was developed for the direct C2-H arylation of indoles using a Pd-loaded metal-organic framework (MOF) as a heterogeneous catalyst and the nontoxic biomass-derived solvent gamma-valerolactone (GVL) as a reaction medium. The developed method allows for excellent yields and C-2 selectivity to be achieved and tolerates various substituents on the indole scaffold. The established conditions ensure the stability of the catalyst as well as recoverability, reusability, and low metal leaching into the solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520285700001 Publication Date 2020-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited 22 Open Access Not_Open_Access  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Programme of the European Union's Horizon 2020 Framework Programme H2020/2014-2020/under grant agreement no [720996]. The Universit degli Studi di Perugia and MIUR are acknowledged for financial support to the project AMIS, through the program “Dipartimenti di Eccellenza -2018-2022”. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble (France). We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Niels Van Velthoven and Dirk E. De Vos also thank FWO for funding. ; Approved Most recent IF: 8.4; 2020 IF: 7.226  
  Call Number UA @ admin @ c:irua:167678 Serial 6465  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: