|   | 
Details
   web
Records
Author van Laer, K.; Bogaerts, A.
Title Improving the Conversion and Energy Efficiency of Carbon Dioxide Splitting in a Zirconia-Packed Dielectric Barrier Discharge Reactor Type A1 Journal article
Year 2015 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 3 Issue 3 Pages 1038-1044
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The use of plasma technology for CO2 splitting is gaining increasing interest, but one of the major obstacles to date for industrial implementation is the considerable energy cost. We demonstrate that the introduction of a packing of dielectric zirconia (ZrO2) beads into a dielectric barrier discharge (DBD) plasma reactor can enhance the CO2 conversion and energy efficiency up to a factor 1.9 and 2.2, respectively, compared to that in a normal (unpacked) DBD reactor. We obtained a maximum conversion of 42 % and a maximum energy efficiency of 9.6 %. However, it is the ability of the packing to almost double both the conversion and the energy efficiency simultaneously at certain input parameters that makes it very promising. The improved conversion and energy efficiency can be explained by the higher values of the local electric field and electron energy near the contact points of the beads and the lower breakdown voltage, demonstrated by 2 D fluid modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362913600006 Publication Date 2015-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited 59 Open Access
Notes This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (http://psiiap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K.V.L. is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support Approved Most recent IF: 2.789; 2015 IF: 2.824
Call Number c:irua:128224 Serial (down) 3992
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Merging Metadynamics into Hyperdynamics: Accelerated Molecular Simulations Reaching Time Scales from Microseconds to Seconds Type A1 Journal article
Year 2015 Publication Journal of chemical theory and computation Abbreviated Journal J Chem Theory Comput
Volume 11 Issue 11 Pages 4545-4554
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The hyperdynamics method is a powerful tool to simulate slow processes at the atomic level. However, the construction of an optimal hyperdynamics potential is a task that is far from trivial. Here, we propose a generally applicable implementation of the hyperdynamics algorithm, borrowing two concepts from metadynamics. First, the use of a collective variable (CV) to represent the accelerated dynamics gives the method a very large flexibility and simplicity. Second, a metadynamics procedure can be used to construct a suitable history-dependent bias potential on-the-fly, effectively turning the algorithm into a self-learning accelerated molecular dynamics method. This collective variable-driven hyperdynamics (CVHD) method has a modular design: both the local system properties on which the bias is based, as well as the characteristics of the biasing method itself, can be chosen to match the needs of the considered system. As a result, system-specific details are abstracted from the biasing algorithm itself, making it extremely versatile and transparent. The method is tested on three model systems: diffusion on the Cu(001) surface and nickel-catalyzed methane decomposition, as examples of reactive processes with a bond-length-based CV, and the folding of a long polymer-like chain, using a set of dihedral angles as a CV. Boost factors up to 109, corresponding to a time scale of seconds, could be obtained while still accurately reproducing correct dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362921700004 Publication Date 2015-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.245 Times cited 41 Open Access
Notes K.M.B. is funded as Ph.D. fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant No. 11 V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), funded by the Hercules Foundation and the Flemish Government−Department EWI. Approved Most recent IF: 5.245; 2015 IF: 5.498
Call Number c:irua:128183 Serial (down) 3991
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors Type A1 Journal article
Year 2015 Publication Nature communications Abbreviated Journal Nat Commun
Volume 6 Issue 6 Pages 10306
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.
Address PLASMANT research group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000367584500001 Publication Date 2015-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 37 Open Access
Notes The authors gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO), Belgium, grant number 12M1315N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. We thank Professor Adri C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 12.124; 2015 IF: 11.470
Call Number c:irua:129975 Serial (down) 3990
Permanent link to this record
 

 
Author Yao, X.; Cao, S.; Zhang, X.P.; Schryvers, D.
Title Microstructural Characterization and Transformation Behavior of Porous Ni50.8Ti49.2 Type P1 Proceeding
Year 2015 Publication Materials Today: Proceedings Abbreviated Journal
Volume 2 Issue 2 Pages S833-S836
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract Porous Ni50.8Ti49.2 bulk material was prepared by powder metallurgy sintering. Solid solution and aging treatments were applied to improve the phase homogeneity and phase transformation behavior. Scanning and transmission electron microscopy, aided by energy dispersive X-ray analysis, were used to study the microstructure and chemical phase content of the alloys. In-situ cooling was carried out to observe the phase transformation behavior. As-received material contains dispersed Ni2Ti4O particles while Ni4Ti3 precipitates appear after aging. Close to pore edges, the latter have a preferential orientation due to the induced stress fields in the matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371032100081 Publication Date 2015-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7853 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes The author gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a scholarship and the Key Project of the Natural Science Foundation of Guangdong Province under grant No. S2013020012805. Approved Most recent IF: NA
Call Number c:irua:129980 Serial (down) 3989
Permanent link to this record
 

 
Author Yao, X.; Li, Y.; Cao, S.; Ma, X.; Zhang, X.-ping; Schryvers, D.
Title Optimization of Automated Crystal Orientation and Phase Mapping in TEM Applied to Ni-Ti All Round Shape Memory Alloy Type P1 Proceeding
Year 2015 Publication MATEC web of conferences T2 – Proceedings of ESOMAT 2015 10th European Symposium on Martensitic Transformations, September 14-18, 2015, Antwerp, Belgium Abbreviated Journal
Volume 33 Issue 33 Pages 03022
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract A new application which focuses on an artificial sphincter fabricated by Ni-Ti SMAs for human implantation is under investigation by applying the all-round shape memory effect with precise control of the phase transformation temperatures. In this study, a Ni51at.%-Ti alloy was fabricated by arc melting with fast solidification, followed by a proper strained aging which induces the two way shape memory effect needed for this particular application. Differential scanning calorimetry was used to investigate the thermal behavior and transmission electron microscopy was used for studying the microstructure of the alloys. With the latter the novel technique of automated crystal orientation microscopy is used and optimized to obtain phase and orientation mapping of the various structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372402800037 Publication Date 2015-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2261-236X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes The author gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a scholarship. Approved Most recent IF: NA
Call Number c:irua:129977 Serial (down) 3988
Permanent link to this record
 

 
Author Bogaerts, A.; Kozak, T.; van Laer, K.; Snoeckx, R.
Title Plasma-based conversion of CO2: current status and future challenges Type A1 Journal article
Year 2015 Publication Faraday discussions Abbreviated Journal Faraday Discuss
Volume 183 Issue 183 Pages 217-232
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper discusses our recent results on plasma-based CO2 conversion, obtained by a combination of experiments and modeling, for a dielectric barrier discharge (DBD), a microwave plasma and a packed bed DBD reactor. The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.
Address Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Antwerp, Belgium. annemie.bogaerts@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000365914900013 Publication Date 2015-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.588 Times cited 89 Open Access
Notes We thank R. Aerts and W. van Gaens for setting up the experimental systems and for the interesting results obtained during their PhD study in our group. We also acknowledge nancial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Fund for Scientic Research Flanders (FWO) and the EU-FP7-ITN network “RAPID”. Approved Most recent IF: 3.588; 2015 IF: 4.606
Call Number c:irua:130318 Serial (down) 3983
Permanent link to this record
 

 
Author Adami, O.-A.; Jelić, Ž.L.; Xue, C.; Abdel-Hafiez, M.; Hackens, B.; Moshchalkov, V.V.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V.
Title Onset, evolution, and magnetic braking of vortex lattice instabilities in nanostructured superconducting films Type A1 Journal article
Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 134506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In 1976, Larkin and Ovchinnikov [Zh. Eksp. Teor. Fiz. 68, 1915 (1975) [Sov. Phys.–JETP 41, 960 (1976)]] predicted that vortex matter in superconductors driven by an electrical current can undergo an abrupt dynamic transition from a flux-flow regime to a more dissipative state at sufficiently high vortex velocities. Typically, this transition manifests itself as a large voltage jump at a particular current density, so-called instability current density J∗, which is smaller than the depairing current. By tuning the effective pinning strength in Al films, using an artificial periodic pinning array of triangular holes, we show that a unique and well-defined instability current density exists if the pinning is strong, whereas a series of multiple voltage transitions appear in the relatively weaker pinning regime. This behavior is consistent with time-dependent Ginzburg-Landau simulations, where the multiple-step transition can be unambiguously attributed to the progressive development of vortex chains and subsequently phase-slip lines. In addition, we explore experimentally the magnetic braking effects, caused by a thick Cu layer deposited on top of the superconductor, on the instabilities and the vortex ratchet effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362433200003 Publication Date 2015-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ACKNOWLEDGMENTS: This work was partially supported by the Fonds de la Recherche Scientifique-FNRS, the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO), and COST Action MP1201. The work of A.V.S. and Z.L.J. is partially supported by “Mandat d’Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. B.H. is an associate researcher of the Fonds de la Recherche Scientifique- FNRS. The authors thank J. Cuppens for the data analysis at the early stage of this work, R. Delamare for his valuable help during the fabrication of the samples, and G. Grimaldi for helpful discussions. Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:128747 Serial (down) 3981
Permanent link to this record
 

 
Author Jelić, Ž.L.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V.
Title Stroboscopic phenomena in superconductors with dynamic pinning landscape Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 14604
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Introducing artificial pinning centers is a well established strategy to trap quantum vortices and increase the maximal magnetic field and applied electric current that a superconductor can sustain without dissipation. In case of spatially periodic pinning, a clear enhancement of the superconducting critical current arises when commensurability between the vortex configurations and the pinning landscape occurs. With recent achievements in (ultrafast) optics and nanoengineered plasmonics it has become possible to exploit the interaction of light with superconductivity, and create not only spatially periodic imprints on the superconducting condensate, but also temporally periodic ones. Here we show that in the latter case, temporal matching phenomena develop, caused by stroboscopic commensurability between the characteristic frequency of the vortex motion under applied current and the frequency of the dynamic pinning. The matching resonances persist in a broad parameter space, including magnetic field, driving current, or material purity, giving rise to unusual features such as externally variable resistance/impedance and Shapiro steps in current-voltage characteristics. All features are tunable by the frequency of the dynamic pinning landscape. These findings open further exploration avenues for using flashing, spatially engineered, and/or mobile excitations on superconductors, permitting us to achieve advanced functionalities.
Address Departement de Physique, Universite de Liege, Allee du 6-Aout 17, B-4000 Liege, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000362082500001 Publication Date 2015-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 29 Open Access
Notes Acknowledgements: This work was supported by the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO) and the COST Action MP1201. The work of Ž.L.J. and A.V.S. was partially supported by “Mandat d’Impulsion Scientifique” of the F.R.S.-FNRS. Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:129807 c:irua:129807 Serial (down) 3980
Permanent link to this record
 

 
Author Hamon, C.; Novikov, S.M.; Scarabelli, L.; Solís, D.M.; Altantzis, T.; Bals, S.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M.
Title Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals Type A1 Journal article
Year 2015 Publication ACS Photonics Abbreviated Journal Acs Photonics
Volume 2 Issue 2 Pages 1482-1488
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Gold nanorod supercrystals have been widely employed for the detection of relevant bioanalytes with detection limits ranging from nano- to picomolar levels,

confirming the promising nature of these structures for biosensing. Even though a relationship between the height of the supercrystal (i.e., the number of stacked nanorod layers)and the enhancement factor has been proposed, no systematic

study has been reported. In order to tackle this problem, we prepared gold nanorod supercrystals with varying numbers of stacked layers and analyzed them extensively by atomic force microscopy, electron microscopy and surface enhanced Raman scattering. The experimental results were compared to numerical

simulations performed on real-size supercrystals composed of thousands of nanorod building blocks. Analysis of the hot spot distribution in the simulated supercrystals showed the presence of standing waves that were distributed at different depths, depending on the number of layers in each supercrystal. On the basis of these theoretical results, we interpreted the experimental

data in terms of analyte penetration into the topmost layer only, which indicates that diffusion to the interior of the supercrystals would be crucial if the complete field enhancement produced by the stacked nanorods is to be exploited. We propose that our conclusions will be of high relevance in the design of next generation plasmonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363435600013 Publication Date 2015-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.756 Times cited 70 Open Access OpenAccess
Notes The authors are thankful to Dr. Luis Yate for assistance with sample preparation. This work was supported by the European Research Council (ERC Advanced Grant #267867 Plasmaquo and ERC Starting Grant #335078 Colouratom) and the Spanish Ministerio de Economía y Competitividad (MAT2013-46101-R). D.M.S., J.M.T., and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Economiá y Competitividad (MAT2014-58201-C2-1-R, MAT2014-58201- C2-2-R, Project TACTICA), from the ERDF and the Galician Regional Government under Projects CN2012/279 and CN2012/260 (AtlantTIC) and the Plan I2C (2011−2015), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura Project IB13185).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.756; 2015 IF: NA
Call Number c:irua:129458 Serial (down) 3978
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A.
Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 5161-5169
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000359499100003 Publication Date 2015-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 39 Open Access OpenAccess
Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:127758 Serial (down) 3977
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Gonzalez-Izquierdo, J.; Banares, L.; Tardajos, G.; Rivera, A.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Guerrero-Martinez, A.; Liz-Marzan, L.M.
Title Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 8282-8288
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Directed assembly of gold nanorods through the use of dithiolated molecular linkers is one of the most efficient methodologies for the morphologically controlled tip-to-tip assembly of this type of anisotropic nanocrystals. However, in a direct analogy to molecular polymerization synthesis, this process is characterized by difficulties in chain-growth control over nanoparticle oligomers. In particular, it is nearly impossible to favor the formation of one type of oligomer, making the methodology hard to use for actual applications in nanoplasmonics. We propose here a light-controlled synthetic procedure that allows obtaining selected plasmonic oligomers in high yield and with reaction times in the scale of minutes by irradiation with low fluence near-infrared (NIR) femtosecond laser pulses. Selective inhibition of the formation of gold nanorod n-mers (trimers) with a longitudinal localized surface plasmon in resonance with a 800 nm Ti:sapphire laser, allowed efficient trapping of the (n – 1)-mers (dimers) by hot spot mediated photothermal decomposition of the interparticle molecular linkers. Laser irradiation at higher energies produced near-field enhancement at the interparticle gaps, which is large enough to melt gold nanorod tips, offering a new pathway toward tip-to-tip welding of gold nanorod oligomers with a plasmonic response at the NIR. Thorough optical and electron microscopy characterization indicates that plasmonic oligomers can be selectively trapped and welded, which has been analyzed in terms of a model that predicts with reasonable accuracy the relative concentrations of the main plasmonic species.
Address Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000366339600075 Publication Date 2015-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 101 Open Access OpenAccess
Notes This work has been funded by the Spanish MINECO (MAT2012-38541, MAT2013-46101-R, MAT2014-59678-R and CTQ2012-37404-C02-01). A.G.-M. and G.G.-R., respectively, acknowledge receipt of Ramón y Cajal and FPI Fellowships from the Spanish MINECO. O.P.-R. is grateful with Moncloa Campus of International Excellence (UCMUPM) for the PICATA postdoctoral fellowship. The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant 335078 COLOURATOMS.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:129686 Serial (down) 3976
Permanent link to this record
 

 
Author Mayer, M.; Scarabelli, L.; March, K.; Altantzis, T.; Tebbe, M.; Kociak, M.; Bals, S.; Garcia de Abajo, F.J.; Fery, A.; Liz-Marzan, L.M.
Title Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 5427-5437
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Inspired by the concept of living polymerization reaction, we are able to produce silver-gold-silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with approximately 210 nm x 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of approximately 4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000359613700087 Publication Date 2015-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 117 Open Access OpenAccess
Notes L.M.L.-M. acknowledges funding from the European Research Council Advanced Grant PLASMAQUO (No. 267867) and from the Spanish MINECO (grant MAT2013-46101-R). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreements 312483 (ESTEEM2) and 262348 (ESMI). M.M., M.T., and A.F. acknowledge funding from the European Research Council starting grant METAMECH (No 306686). M.T. was supported by the Elite Network Bavaria in the frame of the Elite Study Program “Macromolecular Science” and funded via a grant for Ph.D. candidates according to Bavarian elite promotion law (BayEFG). F.J.G.deA. acknowledges funding from the Spanish MINECO (grant MAT2014-59096-P).; esteem2jra3; esteem2jra4; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:129687 c:irua:129687 Serial (down) 3975
Permanent link to this record
 

 
Author van Aarle, W.; Palenstijn, W.J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K.J.; Sijbers, J.
Title The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 157 Issue 157 Pages 35-47
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract We present the ASTRA Toolbox as an open platform for 3D image reconstruction in tomography. Most of the software tools that are currently used in electron tomography offer limited flexibility with respect to the geometrical parameters of the acquisition model and the algorithms used for reconstruction. The ASTRA Toolbox provides an extensive set of fast and flexible building blocks that can be used to develop advanced reconstruction algorithms, effectively removing these limitations. We demonstrate this flexibility, the resulting reconstruction quality, and the computational efficiency of this toolbox by a series of experiments, based on experimental dual-axis tilt series.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000361002400005 Publication Date 2015-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 562 Open Access OpenAccess
Notes The authors acknowledge financial support from the iMinds ICONMetroCT project,the IWT SBO Tom Food project and from the Netherlands Organisation for Scientific Research (NWO),Project no. 639.072.005. Networking support was provided by the EXTREMA COST Action MP 1207. Sara Bals acknowledges financial support from the European Research Council (ERC Starting Grant #335078 COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:127834 Serial (down) 3974
Permanent link to this record
 

 
Author Pfannmöller, M.; Heidari, H.; Nanson, L.; Lozman, O.R.; Chrapa, M.; Offermans, T.; Nisato, G.; Bals, S.
Title Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 6634-6642
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells.
Address EMAT-University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000363003100052 Publication Date 2015-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 26 Open Access OpenAccess
Notes This work was supported by the FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7-contract num. 287594). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). M.P. gratefully acknowledges the SIM NanoForce program for their financial support. We acknowledge AGFA for providing the neutral PEDOT:PSS and GenesInk for the ZnO nanoparticles. We would like to thank Stijn Van den broeck for extensive support on FIB sample preparation. M.P. and H.H. thank Daniele Zanaga for the many fruitful discussions.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:129423 c:irua:129423 Serial (down) 3973
Permanent link to this record
 

 
Author Wang, Y.; Sentosun, K.; Li, A.; Coronado-Puchau, M.; Sánchez-Iglesias, A.; Li, S.; Su, X.; Bals, S.; Liz-Marzán, L.M.
Title Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 8032-8040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution,

we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy (3D TEM) revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer-Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities.

These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366223200023 Publication Date 2015-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 18 Open Access OpenAccess
Notes The authors thank Bart Goris for his help with electron tomography. This work was funded by the European Commission (Grant #310445-2, SAVVY). The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 267867- PLASMAQUO, ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). Wang Y. and Su X. would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore, for the financial support under the Grant JCO 14302FG096. M. C.-P. acknowledges an FPU scholarship from the Spanish Ministry of Education, Culture and Sports.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:129598 c:irua:129598 Serial (down) 3972
Permanent link to this record
 

 
Author Pizzochero, M.; Leenaerts, O.; Partoens, B.; Martinazzo, R.; Peeters, F.M.
Title Hydrogen adsorption on nitrogen and boron doped graphene Type A1 Journal article
Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 27 Issue 27 Pages 425502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption process by increasing the binding energy at the sites closest to the substitutional species. It is also found that doping does not induce magnetism despite the odd number of electrons per atom introduced by the foreign species, and that it quenches the paramagnetic response of chemisorbed H atoms on graphene. Overall, the effects are similar for B and N doping, with only minor differences in the adsorption energetics due to different sizes of the dopant atoms and the accompanying lattice distortions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000362573500008 Publication Date 2015-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 20 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl). MP gratefully acknowledges the Condensed Matter Theory group at Universiteit Antwerpen for the hospitality during his stay. Approved Most recent IF: 2.649; 2015 IF: 2.346
Call Number c:irua:128759 Serial (down) 3971
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M.
Title Strain engineering of the electronic properties of bilayer graphene quantum dots: Strain engineering of the electronic properties of bilayer graphene quantum dots Type A1 Journal article
Year 2015 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
Volume 10 Issue 10 Pages 39-45
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the effect of mechanical deformations on the elec- tronic properties of hexagonal flakes of bilayer graphene. The behavior of electrons induced by triaxial strain can be de- scribed by an effective pseudo-magnetic field which is homo- geneous in the center of the flake. We find that in-plane strain, applied to both layers equally, can break the layer symmetry leading to different behavior in the top and bottom layers of graphene. At low energy, just one of the layers feels

the pseudo-magnetic field: the zero-energy pseudo-Landau level is missing in the second layer, thus creating a gap be- tween the lowest non-zero levels. While the layer asymmetry is most significant at zero energy, interaction with the edges of the flake extends the effect to higher pseudo-Landau lev- els. The behavior of the top and bottom layers may be re- versed by rotating the triaxial strain by 60°.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368814500005 Publication Date 2015-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.032 Times cited 9 Open Access
Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government. Approved Most recent IF: 3.032; 2015 IF: 2.142
Call Number c:irua:129592 Serial (down) 3970
Permanent link to this record
 

 
Author Milovanović, S.P.; Moldovan, D.; Peeters, F.M.
Title Veselago lensing in graphene with a p-n junction: Classical versus quantum effects Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 154308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The feasibility of Veselago lensing in graphene with a p-n junction is investigated numerically for realistic injection leads. Two different set-ups with two narrow leads are considered with absorbing or reflecting side edges. This allows us to separately determine the influence of scattering on electron focusing for the edges and the p-n interface. Both semiclassical and tight-binding simulations show a distinctive peak in the transmission probability that is attributed to the Veselago lensing effect. We investigate the robustness of this peak on the width of the injector, the position of the p-n interface, and different gate potential profiles. Furthermore, the influence of scattering by both short- and long-range impurities is considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363535800022 Publication Date 2015-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:129452 Serial (down) 3969
Permanent link to this record
 

 
Author Muguerra, H.; Pescheux, A.-C.; Meledin, A.; Van Tendeloo, G.; Soubeyroux, J.-L.
Title A La2−xGdxZr2O7layer deposited by chemical solution: a promising seed layer for the fabrication of high Jcand low cost coated conductors Type A1 Journal article
Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 3 Issue 3 Pages 11766-11772
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We deposited La2-xGdxZr2O7 seed layers by a chemical solution method on a Ni-5%W substrate to study the influence of these layers on the growth process of a 60 nm-thick La2Zr2O7 layer. We measured the performances of these new buffer layers integrated in a coated conductor with a 300 nm-thick Y0.5Gd0.5Ba2Cu3O7-x layer. For the seed layers{,} we considered two different gadolinium contents (x = 0.2 and x = 0.8) and three different thicknesses for these compositions (20 nm{,} 40 nm{,} and 60 nm). The most promising buffer layer stacks are those with 20 nm of the La1.8Gd0.2Zr2O7 layer or La1.2Gd0.8Zr2O7. Indeed the La2-xGdxZr2O7/La2Zr2O7 films are highly textured{,} similar to a 100 nm-thick La2Zr2O7 layer{,} but their roughness is four times lower. Moreover they contain less and smaller pores in the seed layer than a pure La2Zr2O7 layer. The surface of La2Zr2O7 is also homogenous and crystalline with an orientation deviation from the ideal ?011? (100) direction below 10[degree]. With the 20 nm La2-xGdxZr2O7 seed layers we obtain in the coated conductors an efficiently textured transfer with no gradual degradation from the substrate throughout the superconducting layer. The highest Tc and Jc values are achieved with the La1.8Gd0.2Zr2O7 layer and are{,} respectively{,} 91 K and 1.4 MA cm-2. This trend seems to be due to an improvement of the surface quality of the Ni5%W substrate by the addition of a thin seed layer. Our results offer the potential of the La2-xGdxZr2O7 seed layers as promising alternatives for the classic Ni-5%W/LZO/CeO2/YBCO architectures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364826000024 Publication Date 2015-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 4 Open Access
Notes This work was performed within the framework of the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280438), funded by the European Union. The authors also thank L. Porcar and P. Chometon for superconducting transition temperature and critical current density measurements and P. Odier for fruitful discussion. Approved Most recent IF: 5.256; 2015 IF: 4.696
Call Number c:irua:130181 Serial (down) 3968
Permanent link to this record
 

 
Author Sentosun, K.; Sanz Ortiz, M.N.; Batenburg, K.J.; Liz-Marzán, L.M.; Bals, S.
Title Combination of HAADF-STEM and ADF-STEM Tomography for Core-Shell Hybrid Materials Type A1 Journal article
Year 2015 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 32 Issue 32 Pages 1063-1067
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract Characterization of core-shell type nanoparticles in 3D by transmission electron microscopy (TEM) can be very challenging. Especially when both heavy and light elements co-exist within the same nanostructure, artefacts in the 3D reconstruction are often present. A representative example would be a particle comprising an anisotropic metallic (Au) nanoparticle coated with a (mesoporous) silica shell. To obtain a reliable 3D characterization of such an object, we propose a dose-efficient strategy to simultaneously acquire high angle annular dark field scanning TEM and annular dark field tilt series for tomography. The 3D reconstruction is further improved by applying an advanced masking and interpolation approach to the acquired data. This new methodology enables us to obtain high quality reconstructions from which also quantitative information can be extracted. This approach is broadly applicable to investigate hybrid core-shell materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368446800003 Publication Date 2015-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 13 Open Access OpenAccess
Notes S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant #335078-COLOURATOM). L.M. acknowledges funding from the EU, Grant# 310651-2 Self-Assembly in Confined Space (SACS). K.J.B acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO), project number 639.072.005 and NWO CW 700.57.026. Networking support was provided by COST Action MP1207. The authors acknowledge the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 for financial support.; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.474; 2015 IF: 3.081
Call Number c:irua:129590 c:irua:129590 Serial (down) 3967
Permanent link to this record
 

 
Author Cayado, P.; De Keukeleere, K.; Garzón, A.; Perez-Mirabet, L.; Meledin, A.; De Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; Coll, M.; Ricart, S.; Palau, A.; Gázquez, J.; Ros, J.; Van Tendeloo, G.; Van Driessche, I.; Puig, T.; Obradors, X.
Title Epitaxial YBa2Cu3O7−xnanocomposite thin films from colloidal solutions Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 124007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A methodology of general validity to prepare epitaxial nanocomposite films based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles ( ex situ nanocomposites) is reported. The trifluoroacetate (TFA) metal–organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa 2 Cu 3 O 7 (YBCO) films. For this reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO 2 and ZrO 2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis of these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticles pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents ( J c ∼ 3–4 MA cm −2 at 77 K) were reached, indicating no current limitation effects associated with epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirm the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366288100009 Publication Date 2015-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 32 Open Access
Notes All authors acknowledge the EU (EU-FP7 NMP-LA-2012-280432 EUROTAPES project). ICMAB acknowledges MINECO (MAT2014-51778-C2-1-R) and Generalitat de Catalunya (2014SGR 753 and Xarmae). UGhent acknowledges the Special Research Fund (BOF), the Research Foundation Flanders (FWO) and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT). TEM microscopy work was conducted in the Catalan Institute of Nanoscience and Nanotechnology (ICN2). The authors acknowledge the ICN2 Electron Microscopy Division for offering access to their instruments and expertise. Part of the STEM microscopy work was conducted in 'Laboratorio de Microscopias Avanzadas' at the Instituto de Nanociencia de Aragon—Universidad de Zaragoza. The authors acknowledge the LMA-INA for offering access to their instruments and expertise. JG and MC also acknowledge the Ramon y Cajal program (RYC-2012-11709 and RYC-2013-12448 respectively). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129593 Serial (down) 3966
Permanent link to this record
 

 
Author Cabana, L.; Gonzalez-Campo, A.; Ke, X.; Van Tendeloo, G.; Nunez, R.; Tobias, G.
Title Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes Type A1 Journal article
Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 21 Issue 21 Pages 16792-16795
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to pi-pi interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.
Address Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de la UAB. 08193, Bellaterra (Spain). gerard.tobias@icmab.es
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366501600011 Publication Date 2015-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 5 Open Access
Notes The research leading to these results received financial support from MINECO (MAT2014-53500-R; CTQ2013-44670-R), Generalitat de Catalunya (2014/SGR/149), and from the European Commission under the FP7 ITN Marie-Curie Network programme RADDEL (grant agreement 290023), the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure (ESMI) and the European Research Council, ERC Grant No 246791-COUNTATOMS. A.G.C. thanks the CSIC for the JAE-DOC grant. Approved Most recent IF: 5.317; 2015 IF: 5.731
Call Number c:irua:129215 Serial (down) 3964
Permanent link to this record
 

 
Author Yan, Y.; Zhou, X.; Jin, H.; Li, C.-Z.; Ke, X.; Van Tendeloo, G.; Liu, K.; Yu, D.; Dressel, M.; Liao, Z.-M.
Title Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons Type A1 Journal article
Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
Volume 9 Issue 9 Pages 10244-10251
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg2 and out-of-plane A1g1 modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg2 phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm–1/%, which is twice of that in Bi2Se3 bulk material (0.52 cm–1/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000363915300079 Publication Date 2015-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 14 Open Access
Notes Y.Y. would like to thank Xuewen Fu for helpful discussions. This work was supported by MOST (Nos. 2013CB934600, 2013CB932602) and NSFC (Nos. 11274014, 11234001). Approved Most recent IF: 13.942; 2015 IF: 12.881
Call Number c:irua:129216 Serial (down) 3963
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Disordered graphene Josephson junctions Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 054506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349436500001 Publication Date 2015-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:129192 Serial (down) 3961
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A.
Title The Dominant Pathways for the Conversion of Methane into Oxygenates and Syngas in an Atmospheric Pressure Dielectric Barrier Discharge Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages 22331-22350
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A one-dimensional fluid model for a dielectric barrier discharge in CH4/O2 and CH4/CO2 gas mixtures is developed. The model describes the gas-phase chemistry for partial oxidation and for dry reforming of methane. The spatially averaged densities of the various plasma species are presented as a function of time and initial gas mixing ratio. Besides, the conversion of the inlet gases and the selectivities of the reaction products are calculated. Syngas, higher hydrocarbons, and higher oxygenates are typically found to be important reaction products. Furthermore, the main underlying reaction pathways for the formation of syngas, methanol, formaldehyde, and other higher oxygenates are determined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362385700010 Publication Date 2015-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 46 Open Access
Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. The authors also acknowledge financial support from the IAP/7 (Interuniversity Attraction Pole) program “PSI-Physical Chemistry of Plasma- Surface Interactions” by the Belgian Federal Office for Science Policy (BELSPO) and from the Fund for Scientific Research Flanders (FWO). Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:128774 Serial (down) 3960
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Van Tendeloo, G.; Martens, J.A.
Title Hematite iron oxide nanorod patterning inside COK-12 mesochannels as an efficient visible light photocatalyst Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 19884-19891
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The uniform dispersion of functional oxide nanoparticles on the walls of ordered mesoporous silica to tailor optical, electronic, and magnetic properties for biomedical and environmental applications is a scientific challenge. Here, we demonstrate homogeneous confined growth of 5 nanometer-sized hematite iron oxide (α-Fe2O3) inside mesochannels of ordered mesoporous COK-12 nanoplates. The three-dimensional inclusion of the α-Fe2O3 nanorods in COK-12 particles is studied using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray (EDX) spectroscopy and electron tomography. High resolution imaging and EDX spectroscopy provide information about the particle size, shape and crystal phase of the loaded α-Fe2O3 material, while electron tomography provides detailed information on the spreading of the nanorods throughout the COK-12 host. This nanocomposite material, having a semiconductor band gap energy of 2.40 eV according to diffuse reflectance spectroscopy, demonstrates an improved visible light photocatalytic degradation activity with rhodamine 6G and 1-adamantanol model compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362041300033 Publication Date 2015-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 9 Open Access
Notes L.H.W. and S.T. thank the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N) and under contract number G004613N . J.A.M gratefully acknowledge financial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:132567 Serial (down) 3959
Permanent link to this record
 

 
Author Tang, X.; Reckinger, N.; Poncelet, O.; Louette, P.; Urena, F.; Idrissi, H.; Turner, S.; Cabosart, D.; Colomer, J.-F.; Raskin, J.-P.; Hackens, B.; Francis, L.A.
Title Damage evaluation in graphene underlying atomic layer deposition dielectrics Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 13523
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Based on micro-Raman spectroscopy (muRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, muRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.
Address ICTEAM Institute, Universite catholique de Louvain, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000360147400001 Publication Date 2015-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 18 Open Access
Notes The authors thank the staff of UCL’s Winfab and Welcome for technical support. Xiaohui Tang is a senior research of UCL. This work is financially supported by the Multi-Sensor-Platform for Smart Building Management project (No. 611887) and the Action de Recherche Concertée (ARC) “StressTronics”, Communauté française de Belgique. Part of this work is financially supported by the Belgian Fund for Scientific Research (FRS-FNRS) under FRFC contract “Chemographene” (No. 2.4577.11). J.-F. Colomer and B. Hackens are Research Associates of FRS-FNRS. This research used resources of the Electron Microscopy Service located at the University of Namur (“Plateforme Technologique Morphologie – Imagerie”). This research used resources of the ELISE Service of the University of Namur. This Service is member of the “Plateforme Technologique SIAM”. The research leading to this work has received partial funding from the European Union Seventh Framework Program under grant agreement No 604391 Graphene Flagship. Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:129193 Serial (down) 3958
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Kaunisto, K.; Sada, C.; Turner, S.; Gönüllü, Y.; Ruoko, T.-P.; Borgese, L.; Bontempi, E.; Van Tendeloo, G.; Lemmetyinen, H.; Mathur, S.
Title Fe2O3-TiO2Nano-heterostructure Photoanodes for Highly Efficient Solar Water Oxidation Type A1 Journal article
Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 2 Issue 2 Pages 1500313
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one-sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α-Fe2O3) nanostructures fabricated by plasma enhanced-chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico-physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large-scale generation of renewable energy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368914700011 Publication Date 2015-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 56 Open Access
Notes The authors kindly acknowledge the fi nancial support under the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2014 projects, Grant No. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S.T. acknowledges the FWO Flanders for a postdoctoral scholarship. Approved Most recent IF: 4.279; 2015 IF: NA
Call Number c:irua:129201 Serial (down) 3957
Permanent link to this record
 

 
Author Ghosh, S.; Gaspari, R.; Bertoni, G.; Spadaro, M.C.; Prato, M.; Turner, S.; Cavalli, A.; Manna, L.; Brescia, R.
Title Pyramid-Shaped Wurtzite CdSe Nanocrystals with Inverted Polarity Type A1 Journal article
Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
Volume 9 Issue 9 Pages 8537-8546
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We report on pyramid-shaped wurtzite cadmium selenide (CdSe) nanocrystals (NCs), synthesized by hot injection in the presence of chloride ions as shape-directing agents, exhibiting reversed crystal polarity compared to former reports. Advanced transmission electron microscopy (TEM) techniques (image-corrected high-resolution TEM with exit wave reconstruction and probe-corrected high-angle annular dark field-scanning TEM) unequivocally indicate that the triangular base of the pyramids is the polar (0001) facet and their apex points toward the [0001] direction. Density functional theory calculations, based on a simple model of binding of Cl(-) ions to surface Cd atoms, support the experimentally evident higher thermodynamic stability of the (0001) facet over the (0001) one conferred by Cl(-) ions. The relative stability of the two polar facets of wurtzite CdSe is reversed compared to previous experimental and computational studies on Cd chalcogenide NCs, in which no Cl-based chemicals were deliberately used in the synthesis or no Cl(-) ions were considered in the binding models. Self-assembly of these pyramids in a peculiar clover-like geometry, triggered by the addition of oleic acid, suggests that the basal (polar) facet has a density and perhaps type of ligands significantly different from the other three facets, since the pyramids interact with each other exclusively via their lateral facets. A superstructure, however with no long-range order, is observed for clovers with their (0001) facets roughly facing each other. The CdSe pyramids were also exploited as seeds for CdS pods growth, and the peculiar shape of the derived branched nanostructures clearly arises from the inverted polarity of the seeds.
Address Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT) , via Morego 30, I-16163 Genova, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000360323300085 Publication Date 2015-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 16 Open Access
Notes PMID:26203791 Approved Most recent IF: 13.942; 2015 IF: 12.881
Call Number c:irua:127807 Serial (down) 3956
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Neyts, E.C.; Jacob, T.; Fantauzzi, D.; Golkaram, M.; Shin, Y.-K.; van Duin, A.C.T.; Bogaerts, A.
Title Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field Type A1 Journal article
Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
Volume 17 Issue 17 Pages 103005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric pressure plasmas have proven to provide an alternative treatment of cancer by targeting tumorous cells while leaving their healthy counterparts unharmed. However, the underlying mechanisms of the plasma–cell interactions are not yet fully understood. Reactive oxygen species, and in particular hydroxyl radicals (OH), are known to play a crucial role in plasma driven apoptosis of

malignant cells. In this paper we investigate the interaction of OH radicals, as well as H2O2 molecules and HO2 radicals, with DNA by means of reactive molecular dynamics simulations using the ReaxFF force field. Our results provide atomic-scale insight into the dynamics of oxidative stress on DNA caused by the OH radicals, while H2O2 molecules appear not reactive within the considered timescale. Among the observed processes are the formation of 8-OH-adduct radicals, forming the first stages towards the formation of 8-oxoGua and 8-oxoAde, H-abstraction reactions of the amines, and the partial opening of loose DNA ends in aqueous solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367328100001 Publication Date 2015-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 18 Open Access
Notes CCWV,ECN and AB acknowledge the contribution of J Van Beeck who is investigating the interaction between H2O2 andDNAusingrMDsimulations. Furthermore, they acknowledge financial support from the Fund for Scientific Research—Flanders (project number G012413N). The calculations were performed using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. TJ and DF gratefully acknowledge support from the European Research Council through the ERC-Starting GrantTHEOFUN(Grant Agreement No. 259608). Approved Most recent IF: 3.786; 2015 IF: 3.558
Call Number c:irua:129178 Serial (down) 3955
Permanent link to this record