|
Record |
Links |
|
Author |
Pfannmöller, M.; Heidari, H.; Nanson, L.; Lozman, O.R.; Chrapa, M.; Offermans, T.; Nisato, G.; Bals, S. |
|
|
Title |
Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Nano letters |
Abbreviated Journal |
Nano Lett |
|
|
Volume |
15 |
Issue |
15 |
Pages |
6634-6642 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells. |
|
|
Address |
EMAT-University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Wos |
000363003100052 |
Publication Date |
2015-09-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-6984;1530-6992; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
12.712 |
Times cited |
26 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7-contract num. 287594). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). M.P. gratefully acknowledges the SIM NanoForce program for their financial support. We acknowledge AGFA for providing the neutral PEDOT:PSS and GenesInk for the ZnO nanoparticles. We would like to thank Stijn Van den broeck for extensive support on FIB sample preparation. M.P. and H.H. thank Daniele Zanaga for the many fruitful discussions.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); |
Approved |
Most recent IF: 12.712; 2015 IF: 13.592 |
|
|
Call Number |
c:irua:129423 c:irua:129423 |
Serial |
3973 |
|
Permanent link to this record |