|   | 
Details
   web
Records
Author Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; Ostrikov, K.K.
Title White paper on the future of plasma science in environment, for gas conversion and agriculture Type A1 Journal article
Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 16 Issue 1 Pages 1700238
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Climate change, environmental pollution control, and resource utilization efficiency, as well as food security, sustainable agriculture, and water supply are among the main challenges facing society today. Expertise across different academic fields, technologies,anddisciplinesisneededtogeneratenewideastomeetthesechallenges. This “white paper” aims to provide a written summary by describing the main aspects and possibilities of the technology. It shows that plasma science and technology can make significant contributions to address the mentioned issues. The paper also addresses to people in the scientific community (inside and outside plasma science) to give inspiration for further work in these fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455413600004 Publication Date 2018-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 19 Open Access Not_Open_Access
Notes This paper is a result of the PlasmaShape project, supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 316216. During this project, young scientists and renowned and outstanding scientists collaborated in the development of a political-scientific consensus paper as well as six scientific, strategic white papers. In an unique format core themes such as energy, optics and glass, medicine and hygiene, aerospace and automotive, plastics and textiles, environment and agriculture and their future development were discussed regarding scientific relevance and economic impact. We would like to thank our colleagues from 18 nations from all over the world (Australia, Belgium, Czech Republic, PR China, France, Germany, Great Britain, Italy, Japan, The Netherlands, Poland, Romania, Russia, Slovakia, Slovenia, Sweden, Switzerland, USA) who have participated both workshops of Future in Plasma Science I and II in Greifswald in 2015/2016. The valuable contribution of all participants during the workshops, the intensive cooperation between the project partners, and the comprehensive input of all working groups of Future in Plasma Science was the base for the present paper. Kindly acknowledged is the support of graphical work by C. Desjardins and K. Drescher. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156389 Serial (down) 5146
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A.
Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 47 Issue 44 Pages 15783-15790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450208000019 Publication Date 2018-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.029 Times cited Open Access Not_Open_Access
Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029
Call Number EMAT @ emat @c:irua:155771 Serial (down) 5137
Permanent link to this record
 

 
Author Fridman, A.; Lin, A.; Miller, V.; Bekeschus, S.; Wende, K.; Weltmann, K.-D.
Title The plasma treatment unit : an attempt to standardize cold plasma treatment for defined biological effects Type A1 Journal article
Year 2018 Publication Plasma medicine Abbreviated Journal
Volume 8 Issue 2 Pages 195-201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma bioscience and medicine are both rapidly growing fields. Their aim is to utilize cold physical plasmas for desired biological outcomes in medicine, biotechnology, agriculture, and general hygienic purposes. Great success has been achieved in many applications with individually designed plasma sources and plasma parameters. Although lab and application-specific tuning of plasmas is a great advantage of this technology, standardized units to define plasma treatments are required to facilitate comparison of the effects found by different researchers who do not use the same plasma sources. By drawing conclusions from over a century of plasma biomedical research, we propose that all researchers adopt the use of a standardized value, the plasma treatment unit (PTU), to describe the biological effects of different cold plasma sources and treatment regimens. It quantifies a key plasma effector in biological systems as an indicator and may provide the foundation for an analogous and clinically relevant unit in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:155652 Serial (down) 5123
Permanent link to this record
 

 
Author Lin, A.G.; Xiang, B.; Merlino, D.J.; Baybutt, T.R.; Sahu, J.; Fridman, A.; Snook, A.E.; Miller, V.
Title Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors Type A1 Journal article
Year 2018 Publication Oncoimmunology Abbreviated Journal
Volume 7 Issue 9 Pages e1484978
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Immunogenic cell death is characterized by the emission of danger signals that facilitate activation of an adaptive immune response against dead-cell antigens. In the case of cancer therapy, tumor cells undergoing immunogenic death promote cancer-specific immunity. Identification, characterization, and optimization of stimuli that induce immunogenic cancer cell death has tremendous potential to improve the outcomes of cancer therapy. In this study, we show that non-thermal, atmospheric pressure plasma can be operated to induce immunogenic cell death in an animal model of colorectal cancer. In vitro, plasma treatment of CT26 colorectal cancer cells induced the release of classic danger signals. Treated cells were used to create a whole-cell vaccine which elicited protective immunity in the CT26 tumor mouse model. Moreover, plasma treatment of subcutaneous tumors elicited emission of danger signals and recruitment of antigen presenting cells into tumors. An increase in T cell responses targeting the colorectal cancer-specific antigen guanylyl cyclase C (GUCY2C) were also observed. This study provides the first evidence that non-thermal plasma is a bone fide inducer of immunogenic cell death and highlights its potential for clinical translation for cancer immunotherapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000443993100030 Publication Date 2018-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-4011; 2162-402x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 28 Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:155651 Serial (down) 5119
Permanent link to this record
 

 
Author Bekeschus, S.; Lin, A.; Fridman, A.; Wende, K.; Weltmann, K.-D.; Miller, V.
Title A comparison of floating-electrode DBD and kINPen jet : plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions Type A1 Journal article
Year 2018 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
Volume 38 Issue 1 Pages 1-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A comparative study of two plasma sources (floating-electrode dielectric barrier discharge, DBD, Drexel University; atmospheric pressure argon plasma jet, kINPen, INP Greifswald) on cancer cell toxicity was performed. Cell culture protocols, cytotoxicity assays, and procedures for assessment of hydrogen peroxide (H2O2) were standardized between both labs. The inhibitory concentration 50 (IC50) and its corresponding H2O2 deposition was determined for both devices. For the DBD, IC50 and H2O2 generation were largely dependent on the total energy input but not pulsing frequency, treatment time, or total number of cells. DBD cytotoxicity could not be replicated by addition of H2O2 alone and was inhibited by larger amounts of liquid present during the treatment. Jet plasma toxicity depended on peroxide generation as well as total cell number and amount of liquid. Thus, the amount of liquid present during plasma treatment in vitro is key in attenuating short-lived species or other physical effects from plasmas. These in vitro results suggest a role of liquids in or on tissues during plasma treatment in a clinical setting. Additionally, we provide a platform for correlation between different plasma sources for a predefined cellular response.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000419479000001 Publication Date 2017-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.355 Times cited 12 Open Access OpenAccess
Notes Approved Most recent IF: 2.355
Call Number UA @ lucian @ c:irua:155653 Serial (down) 5084
Permanent link to this record
 

 
Author Hu, L.; Amini, M.N.; Wu, Y.; Jin, Z.; Yuan, J.; Lin, R.; Wu, J.; Dai, Y.; He, H.; Lu, Y.; Lu, J.; Ye, Z.; Han, S.-T.; Ye, J.; Partoens, B.; Zeng, Y.-J.; Ruan, S.
Title Charge transfer doping modulated raman scattering and enhanced stability of black phosphorus quantum dots on a ZnO nanorod Type A1 Journal article
Year 2018 Publication Advanced Optical Materials Abbreviated Journal Adv Opt Mater
Volume 6 Issue 15 Pages 1800440
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Black phosphorus (BP) has recently triggered an unprecedented interest in the 2D community. However, many of its unique properties are not exploited and the well-known environmental vulnerability is not conquered. Herein, a type-I mixed-dimensional (0D-1D) van der Waals heterojunction is developed, where three-atomic-layer BP quantum dots (QDs) are assembled on a single ZnO nanorod (NR). By adjusting the indium (In) content in ZnO NRs, the degree and even the direction of surface charge transfer doping within the heterojunction can be tuned, which result in selective Raman scattering enhancements between ZnO and BP. The maximal enhancement factor is determined as 4340 for BP QDs with sub-ppm level. Furthermore, an unexpected long-term ambient stability (more than six months) of BP QDs is revealed, which is ascribed to the electron doping from ZnO:In NRs. The first demonstration of selective Raman enhancements between two inorganic semiconductors as well as the improved stability of BP shed light on this emerging 2D material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440815200023 Publication Date 2018-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.875 Times cited 37 Open Access Not_Open_Access
Notes ; L. Hu and M. N. Amini contributed equally to this work. This work was supported by the National Natural Science Foundation of China under Grant Nos. 51502178, 81571763 and 81622026, the Shenzhen Science and Technology Project under Grant Nos. JCYJ20150324141711644, JCYJ20170412105400428, KQJSCX20170727101208249 and JCYJ20170302153853962. Parts of the computational calculations were carried out using the HPC infrastructure at University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the FWO-Vlaanderen and the Flemish Government (EWI Department). L. H. acknowledges the PhD Start-up Fund of Natural Science Foundation of Guangdong Province under Grand No. 2017A030310072. J. Y. acknowledges the funding of Shanghai Jiao Tong University (Nos. YG2016MS51 and YG2017MS54). ; Approved Most recent IF: 6.875
Call Number UA @ lucian @ c:irua:153112UA @ admin @ c:irua:153112 Serial (down) 5082
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A.
Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 740-741 Issue Pages 274-284
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453494500029 Publication Date 2018-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020
Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094
Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial (down) 5061
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G.
Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 115 Issue 38 Pages 9515-9520
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447224900057 Publication Date 2018-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 50 Open Access OpenAccess
Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661
Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial (down) 5059
Permanent link to this record
 

 
Author Godet, M.; Vergès-Belmin, V.; Gauquelin, N.; Saheb, M.; Monnier, J.; Leroy, E.; Bourgon, J.; Verbeeck, J.; Andraud, C.
Title Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing Type A1 Journal article
Year 2018 Publication Micron Abbreviated Journal Micron
Volume 115 Issue Pages 25-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nd-YAG QS laser cleaning of soiled stone at 1064 nm can sometimes result in a more yellow appearance compared to other cleaning techniques. Especially in France, this yellowing effect is still considered as a major aesthetic issue by the architects and conservators. One explanation states that the yellowing is linked to the formation of iron-rich nanophase(s) through the laser beam interaction with black crusts that would re-deposit on the cleaned substrate after irradiation. To characterize these nanophases, a model crust containing hematite was elaborated and laser irradiated using a Nd-YAG QS laser. The color of the sample shifted instantaneously from red to a bright yellow and numerous particles were ablated in a visible smoke. Transmission electron microscopy (TEM) was used to examine the morphology and the crystallinity of the neo-formed compounds, both on the surface of the samples and in the ablated materials. In addition, an investigation of the chemical and structural properties of the nanophases was conducted by X-ray dispersive energy (EDX) and electron energy loss (EELS) spectroscopies. It was found that both the surface of the sample and the ablated materials are covered by crystallized nano-spheres and nano-residues, all containing iron and oxygen, sometimes along with calcium and sulfur. In particular an interfacial area containing the four elements was evidenced between some nanostructures and the substrate. Magnetite Fe3O4 was also identified at the nanoscale. This study demonstrates that the laser yellowing of a model crust is linked to the presence of iron-rich nanophases including CaxFeySzOδ nanostructures and magnetite Fe3O4 at the surface after irradiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449125600004 Publication Date 2018-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 9 Open Access Not_Open_Access: Available from 19.08.2020
Notes The authors wish to thank Valérie Lalanne for the sample preparation for TEM and Stijn Van den Broeck for the FIB cut elaboration. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). Approved Most recent IF: 1.98
Call Number EMAT @ emat @c:irua:154356UA @ admin @ c:irua:154356 Serial (down) 5056
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Schowalter, M.; Zillmann, D.; Sellin, R.; Müller-Caspary, K.; Mahr, C.; Mehrtens, T.; Bimberg, D.; Rosenauer, A.
Title Strain analysis from nano-beam electron diffraction : influence of specimen tilt and beam convergence Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 190 Issue 190 Pages 45-57
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000432868800006 Publication Date 2018-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access OpenAccess
Notes ; This work was supported by the German Research Foundation (DFG) under Contracts RO2057/11-1 and RO2057/12-1. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:151454 Serial (down) 5041
Permanent link to this record
 

 
Author Bhat, S.G.; Gauquelin, N.; Sebastian, N.K.; Sil, A.; Béché, A.; Verbeeck, J.; Samal, D.; Kumar, P.S.A.
Title Orthorhombic vs. hexagonal epitaxial SrIrO3 thin films : structural stability and related electrical transport properties Type A1 Journal article
Year 2018 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 122 Issue 2 Pages 28003
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metastable orthorhombic SrIrO3 (SIO) is an arch-type spin-orbit coupled material. We demonstrate here a controlled growth of relatively thick (200 nm) SIO films that transform from bulk “6H-type” structure with monoclinic distortion to an orthorhombic lattice by controlling growth temperature. Extensive studies based on high-resolution X-ray diffraction and transmission electron microscopy infer a two distinct structural phases of SIO. Electrical transport reveals a weak temperature-dependent semi-metallic character for both phases. However, the temperature-dependent Hall-coefficient for the orthorhombic SIO exhibits a prominent sign change, suggesting a multiband character in the vicinity of E-F. Our findings thus unravel the subtle structure-property relation in SIO epitaxial thin films. Copyright (C) EPLA, 2018
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000435517300001 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access Not_Open_Access
Notes ; SGB and DS acknowledge useful discussions with E. P. Houwman, University of Twente, on X-ray diffraction. DS would like to thank H. Takagi, Max-Planck Institute for Solid State Research, Stuttgart, for the fruitful discussion on the transport properties of SIO thin films. SGB and NKS thank A. Aravind, Bishop Moore College, Mavelikara, for his valuable inputs while depositing the thin films of SIO. SGB, NKS and PSAK acknowledge Nano Mission Council, Department of Science & Technology, India, for the funding. DS acknowledges the financial support from Max-Planck Society through MaxPlanck Partner Group. NG, AB and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G093417N. ; Approved Most recent IF: 1.957
Call Number UA @ lucian @ c:irua:152074UA @ admin @ c:irua:152074 Serial (down) 5034
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Srinivasu, K.; Korneychuk, S.; Banerjee, D.; Barman, A.; Bhattacharya, G.; Phase, D.M.; Gupta, M.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.; Roy, S.S.
Title Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties Type A1 Journal article
Year 2018 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 83 Issue 83 Pages 118-125
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A detailed conductive atomic force microscopic investigation is carried out to directly image the electron emission behavior for nitrogen-doped diamond nanorods (N-DNRs). Localized emission measurements illustrate uniform distribution of high-density electron emission sites from N-DNRs. Emission sites coupled to nano graphitic phases at the grain boundaries facilitate electron transport and thereby enhance field electron emission from N-DNRs, resulting in a device operation at low turn-on fields of 6.23 V/mu m, a high current density of 1.94 mA/cm(2) (at an applied field of 11.8 V/mu m) and a large field enhancement factor of 3320 with a long lifetime stability of 980 min. Moreover, using N-DNRs as cathodes, a microplasma device that can ignite a plasma at a low threshold field of 390 V/mm achieving a high plasma illumination current density of 3.95 mA/cm2 at an applied voltage of 550 V and a plasma life-time stability for a duration of 433 min was demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000430767200017 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 9 Open Access Not_Open_Access
Notes ; S. Deshmulch, D. Banerjee and G. Bhattacharya are indebted to Shiv Nadar University for providing Ph.D. scholarships. K.J. Sankaran and K. Haenen like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. Korneychuk and J. Verbeeck acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.561
Call Number UA @ lucian @ c:irua:151609UA @ admin @ c:irua:151609 Serial (down) 5030
Permanent link to this record
 

 
Author Gauquelin, N.; Zhang, H.; Zhu, G.; Wei, J.Y.T.; Botton, G.A.
Title Atomic-scale identification of novel planar defect phases in heteroepitaxial YBa2Cu3O7-\delta thin films Type A1 Journal article
Year 2018 Publication AIP advances Abbreviated Journal Aip Adv
Volume 8 Issue 5 Pages 055022
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We have discovered two novel types of planar defects that appear in heteroepitaxial YBa2Cu3O7-delta(YBCO123) thin films, grown by pulsed-laser deposition (PLD) either with or without a La2/3Ca1/3MnO3 (LCMO) overlayer, using the combination of highangle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) mapping for unambiguous identification. These planar lattice defects are based on the intergrowth of either a BaO plane between two CuO chains or multiple Y-O layers between two CuO2 planes, resulting in non-stoichiometric layer sequences that could directly impact the high-Tc superconductivity. (C) 2018 Author(s).
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Melville, NY Editor
Language Wos 000433954000022 Publication Date 2018-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.568 Times cited 1 Open Access OpenAccess
Notes ; We are thankful to Julia Huang for FIB TEM sample preparation. This work is supported by NSERC (through Discovery Grants to GAB and JYTW) and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by McMaster University, the Canada Foundation for Innovation and NSERC. N.G. acknowledges H. Idrissi for useful discussions. ; Approved Most recent IF: 1.568
Call Number UA @ lucian @ c:irua:152063 Serial (down) 5013
Permanent link to this record
 

 
Author Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D.G.; Botton, G.A.; Wei, J.Y.T.
Title Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films Type A1 Journal article
Year 2018 Publication Physical review materials Abbreviated Journal
Volume 2 Issue 3 Pages 033803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7-delta grown by pulsed laser deposition are annealed at up to 700 atm O-2 and 900 degrees C, in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15-delta and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9-delta and YBa2Cu6O10-delta phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7-delta powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication College Park, Md Editor
Language Wos 000428244900004 Publication Date 2018-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access Not_Open_Access
Notes ; This work is supported by NSERC, CFI-OIT, and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by the Canada Foundation for Innovation under the Major Science Initiative program, McMaster University, and NSERC. The XAS work was performed at the Canadian Light Source, which is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150829 Serial (down) 4982
Permanent link to this record
 

 
Author van der Torren, A.J.H.; Liao, Z.; Xu, C.; Gauquelin, N.; Yin, C.; Aarts, J.; van der Molen, S.J.
Title Formation of a conducting LaAlO3/SrTiO3 interface studied by low-energy electron reflection during growth Type A1 Journal Article
Year 2017 Publication Physical Review Materials Abbreviated Journal Phys. Rev. Materials
Volume 1 Issue 7 Pages 075001
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The two-dimensional electron gas occurring between the band insulators SrTiO 3 and LaAlO 3 continues to attract considerable interest, due to the possibility of dynamic control over the carrier density, and the ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations, there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO 3 layer at the growth temperature (around 800 ◦ C) in oxygen (pressure around 5 × 10 −5 mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in-situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO 2 -rich surface and a conducting interface; or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418770200003 Publication Date 2017-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links
Impact Factor Times cited 2 Open Access Not_Open_Access
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; European Cooperation in Science and Technology, MP 1308 ; We want to acknowledge Ruud Tromp, Daniel Gee- len, Johannes Jobst, Regina Dittmann, Gert Jan Koster, Guus Rijnders and Jo Verbeek for discussions and ad- vice and Ruud van Egmond and Marcel Hesselberth for technical assistance. This work was supported by the Netherlands Organization for Scientific Research (NWO) by means of an ”NWO Groot” grant and by the Leiden- Delft Consortium NanoFront. The work is part of the re- search programmes NWOnano and DESCO, which are fi- nanced by NWO. N.G. acknowledges funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge order- ing). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. We would also like to acknowledge networking support by the COST Action MP 1308 (COST TO-BE). Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial (down) 4903
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; Girovsky, J.; Martinez-Velarte, M.C.; Manca, N.; Mattoni, G.; Monteiro, A.M.R.V.L.; Gauquelin, N.; Verbeeck, J.; Otte, A.F.; Gabay, M.; Picozzi, S.; Caviglia, A.D.
Title Spin-orbit semimetal SrIrO3 in the two-dimensional limit Type A1 Journal article
Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 119 Issue 25 Pages 256403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('We investigate the thickness-dependent electronic properties of ultrathin SrIrO3 and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO(3)d is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO3 requires antiferromagnetic order.'));
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000418619100014 Publication Date 2017-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 79 Open Access OpenAccess
Notes ; This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program (NanoFront), by the Dutch Foundation for Fundamental Research on Matter (FOM), and by the European Research Council under the European Union's H2020 programme/ERC Grant Agreement No. [677458]. The authors thank R. Claessen, P. Schutz, D. Di Sante, G. Sangiovanni, and A. Santander Syro for useful discussions. M. G. gratefully acknowledges support from the French National Research Agency (ANR) (Project LACUNES No. ANR-13-BS04-0006-01). C. A. and S. P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO”. N. G. and J. V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-AntEM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:148510 Serial (down) 4897
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V.
Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 9 Pages 8643-8649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411918200012 Publication Date 2017-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access
Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942
Call Number UA @ lucian @ c:irua:146770 Serial (down) 4895
Permanent link to this record
 

 
Author Li, L.; Liao, Z.; Gauquelin, N.; Minh Duc Nguyen; Hueting, R.J.E.; Gravesteijn, D.J.; Lobato, I.; Houwman, E.P.; Lazar, S.; Verbeeck, J.; Koster, G.; Rijnders, G.
Title Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) substrate Type A1 Journal article
Year 2018 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 5 Issue 2 Pages 1700921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Due to its physical properties gallium-nitride (GaN) is gaining a lot of attention as an emerging semiconductor material in the field of high-power and high-frequency electronics applications. Therefore, the improvement in the performance and/or perhaps even extension in functionality of GaN based devices would be highly desirable. The integration of ferroelectric materials such as lead-zirconate-titanate (PbZrxTi1-xO3) with GaN has a strong potential to offer such an improvement. However, the large lattice mismatch between PZT and GaN makes the epitaxial growth of Pb(Zr1-xTix)O-3 on GaN a formidable challenge. This work discusses a novel strain relaxation mechanism observed when MgO is used as a buffer layer, with thicknesses down to a single unit cell, inducing epitaxial growth of high crystallinity Pb(Zr0.52Ti0.48)O-3 (PZT) thin films. The epitaxial PZT films exhibit good ferroelectric properties, showing great promise for future GaN device applications.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000423173800005 Publication Date 2017-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 15 Open Access Not_Open_Access
Notes ; L.L., Z.L.L., and N.G. contributed equally to this work. L.L. acknowledges financial support from Nano Next NL (Grant no. 7B 04). The authors acknowledge NXP for providing the GaN/AlGaN/Si (111) wafer. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and J.V. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) project 42/FA070100/6088 “nieuwe eigenschappen in complexe Oxides.” N.G. acknowledges the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432) which partly funded this study. ; Approved Most recent IF: 4.279
Call Number UA @ lucian @ c:irua:148427UA @ admin @ c:irua:148427 Serial (down) 4872
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V.
Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 23 Pages 9954-9963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600013 Publication Date 2017-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access OpenAccess
Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:148531 Serial (down) 4869
Permanent link to this record
 

 
Author Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M.
Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages 094420
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411161700002 Publication Date 2017-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access OpenAccess
Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836
Call Number EMAT @ emat @c:irua:146748 Serial (down) 4774
Permanent link to this record
 

 
Author Li, J.; Pereira, P.J.; Yuan, J.; Lv, Y.-Y.; Jiang, M.-P.; Lu, D.; Lin, Z.-Q.; Liu, Y.-J.; Wang, J.-F.; Li, L.; Ke, X.; Van Tendeloo, G.; Li, M.-Y.; Feng, H.-L.; Hatano, T.; Wang, H.-B.; Wu, P.-H.; Yamaura, K.; Takayama-Muromachi, E.; Vanacken, J.; Chibotaru, L.F.; Moshchalkov, V.V.
Title Nematic superconducting state in iron pnictide superconductors Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue 1 Pages 1880
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba 0.5 K 0.5 Fe 2 As 2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000416933400002 Publication Date 2017-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 8 Open Access OpenAccess
Notes The authors J.L., P.J.P., and J.Y. contributed equally to this work. J.L. and J.Y. designed the experiments. J.L., H.-L.F., K.Y., and E.T.-M. grew the single crystals. J.L., J.Y., Y.-Y.L., M.-P.J., D.L., M.-Y.L., T.H., H.-B.W., P.-H.W., K.Y., E.T.-M., J.V., and V.V.M. fabricated the devices and measured transport properties. J.L., Y.-Y.L., Z.-Q.L., Y.-J.L., J.-F.W., and L.L. studied on the pulsed high field measurements. X.K. and G.V.T. measured the low temperature TEM. All authors discussed the data. J.L., P.J.P., and L.F.C. proposed the model and simulated the results. J.L., P.J.P., K.Y., E.T.-M., and L.F.C. analyzed the data and prepared the manuscript. Approved Most recent IF: 12.124
Call Number EMAT @ emat @c:irua:147348 Serial (down) 4772
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Batuk, D.; Colin, C.V.; Dalla Corte, D.A.; Tarascon, J.-M.
Title Synthesis, structure, and electrochemical properties of k-based sulfates K2M2(SO4)3) with M = Fe and Cu Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue 4 Pages 2013-2021
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Stabilizing new host structures through potassium extraction from K-based polyanionic materials has been proven to be an interesting approach to develop new Li+/Na+ insertion materials. Pursuing the same trend, we here report the feasibility of preparing langbeinite “Fe-2(SO4)(3)” via electrochemical and chemical oxidation of K2Fe2(SO4)(3). Additionally, we succeeded in stabilizing a new K2Cu2(SO4)(3) phase via a solid-state synthesis approach. This novel compound crystallizes in a complex orthorhombic structure that differs from that of langbeinite as deduced from synchrotron X-ray and neutron powder diffraction. Electrochemically, the performance of this new phase is limited, which we explain in terms of sluggish diffusion kinetics. We further show that K2Cu2(SO4)(3) decomposes into K2Cu3O(SO4)(3) on heating, and we report for the first time the synthesis of fedotovite K2Cu3O(SO4)(3). Finally, the fundamental attractiveness of these S = 1/2 systems for physicists is examined by neutron magnetic diffraction, which reveals the absence of a long-range ordering of Cu2+ magnetic moments down to 1.5 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000394736600027 Publication Date 2017-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 13 Open Access Not_Open_Access
Notes ; We thank Matthieu Courty for performing TGA/DSC measurements. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357 and is acknowledged. The French CRG D1B is acknowledged for allocating neutron beamtime. L.L. thanks the ANR “Hipolite” for the Ph.D. funding. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:142531 Serial (down) 4692
Permanent link to this record
 

 
Author Sankaran, K.J.; Duc Quang Hoang; Korneychuk, S.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D'Haen, J.; Verbeeck, J.; Leou, K.-C.; Leung, K.T.; Lin, I.-N.; Haenen, K.
Title Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance Type A1 Journal article
Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 6 Issue 93 Pages 90338-90346
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385451800044 Publication Date 2016-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 8 Open Access
Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. KJ Sankaran, and P Pobedinskas are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.108
Call Number UA @ lucian @ c:irua:144757UA @ admin @ c:irua:144757 Serial (down) 4662
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Srinivasu, K.; Korneychuk, S.; Turner, S.; Drijkoningen, S.; Pobedinskas, P.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.
Title Type A1 Journal article
Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 213 Issue 10 Pages 2654-2661
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Utilization of Au and nanocrystalline diamond ( NCD) as interlayers noticeably modifies the microstructure and field electron emission ( FEE) properties of hexagonal boron nitride nanowalls ( hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3V mu m(-1), attaining FEE current density of 2.58mAcm(-2) and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride ( aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388321500017 Publication Date 2016-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 5 Open Access
Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. K. J. Sankaran, P. Pobedinskas, and S. Turner are FWO Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:144644UA @ admin @ c:irua:144644 Serial (down) 4655
Permanent link to this record
 

 
Author Mikhailova, D.; Kuratieva, N.N.; Utsumi, Y.; Tsirlin, A.A.; Abakumov, A.M.; Schmidt, M.; Oswald, S.; Fuess, H.; Ehrenberg, H.
Title Composition-dependent charge transfer and phase separation in the V1-xRexO2 solid solution Type A1 Journal article
Year 2017 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal
Volume 46 Issue 5 Pages 1606-1617
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The substitution of vanadium in vanadium dioxide VO2 influences the critical temperatures of structural and metal-to-insulator transitions in different ways depending on the valence of the dopant. Rhenium adopts valence states between + 4 and + 7 in an octahedral oxygen surrounding and is particularly interesting in this context. Structural investigation of V1-xRexO2 solid solutions (0.01 <= x <= 0.30) between 80 and 1200 K using synchrotron X-ray powder diffraction revealed only two polymorphs that resemble VO2: the low-temperature monoclinic MoO2-type form (space group P2(1)/c), and the tetragonal rutile-like form (space group P4(2)/mnm). However, for compositions with 0.03 < x <= 0.15 a phase separation in the solid solution was observed below 1000 K upon cooling down from 1200 K, giving rise to two isostructural phases with slightly different lattice parameters. This is reflected in the appearance of two metal-toinsulator transition temperatures detected by magnetization and specific heat measurements. Comprehensive X-ray photoelectron spectroscopy studies showed that an increased amount of Re leads to a change in the Re valence state from solely Re6+ at a low doping level (<= 3 at% Re) via mixed-valence states Re4+/Re6+ for at least 0.03 < x <= 0.10, up to nearly pure Re4+ in V0.70Re0.30O2. Thus, compositions V1-xRexO2 with only one valence state of Re in the material (Re6+ or Re4+) can be obtained as a single phase, while intermediate compositions are subjected to a phase separation, presumably due to different valence states of Re.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000395442700030 Publication Date 2016-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 1 Open Access Not_Open_Access
Notes ; The authors are indebted to Dr G. Auffermann (Max Planck Institute for Chemical Physics of Solids, Dresden, Germany) for performing the ICP-OES analyses. This research has received a partial funding from the BMBF, project grant number 03SF0477B (DESIREE). AT acknowledges financial support from Federal Ministry for Education and Research under Sofja Kovalevksaya Award of Alexander von Humboldt Foundation. AMA is grateful to the Russian Science Foundation (grant 14-13-00680) for financial support. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:142580 Serial (down) 4642
Permanent link to this record
 

 
Author Grieten, E.; Schalm, O.; Tack, P.; Bauters, S.; Storme, P.; Gauquelin, N.; Caen, J.; Patelli, A.; Vincze, L.; Schryvers, D.
Title Reclaiming the image of daguerreotypes: Characterization of the corroded surface before and after atmospheric plasma treatment Type A1 Journal article
Year 2017 Publication Journal of cultural heritage Abbreviated Journal J Cult Herit
Volume Issue Pages
Keywords A1 Journal article; Art; History; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Technological developments such as atmospheric plasma jets for industry can be adapted for the conservation of cultural heritage. This application might offer a potential method for the removal or transformation of the corrosion on historical photographs. We focus on daguerreotypes and present an in-depth study of the induced changes by a multi-analytical approach using optical microscopy, scanning electron microscopy, different types of transmission electron microscopy and X-ray absorption fine structure. The H2-He afterglow removes S from an Ag2S or Cu2S layer which results in a nano-layer of metallic Ag or Cu on top of the deteriorated microstructure. In case the corrosion layer is composed of Cu-Ag-S compounds, our proposed setup can be used to partially remove the corrosion. These alterations of the corrosion results in an improvement in the readability of the photographic image.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414230700007 Publication Date 2017-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.838 Times cited 9 Open Access Not_Open_Access
Notes The authors thank Herman Maes for the daguerreotypes used in this study. The authors also acknowledge the opportunity to perform XAFS measurements at the DUBBLE beamline of the ESRF storage ring under the approval of the advisory Committee (beam time nr. 26-01-990) and acknowledge the DUBBLE beamline staff for their support. They are also grateful for the financial support by the EU-FP7 grant PANNA no. 282998 and the STIMPRO project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT). Approved Most recent IF: 1.838
Call Number EMAT @ emat @c:irua:144430 Serial (down) 4625
Permanent link to this record
 

 
Author Pullini, D.; Sgroi, M.; Mahmoud, A.; Gauquelin, N.; Maschio, L.; Lorenzo-Ferrari, A.M.; Groenen, R.; Damen, C.; Rijnders, G.; van den Bos, K.H.W.; Van Aert, S.; Verbeeck, J.
Title One step toward a new generation of C-MOS compatible oxide p-n junctions: Structure of the LSMO/ZnO interface elucidated by an experimental and theoretical synergic work Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 20974-20980
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterostructures formed by La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p–n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112̅0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404090000079 Publication Date 2017-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 4 Open Access OpenAccess
Notes Financial support is acknowledged from the European Commission – DG research and innovation to the collaborative research project named Interfacing oxides (IFOX, Contract No. NMP3-LA-2010-246102). N.G. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. S.V.A. and K.H.W.B. acknowledge financial support from the Research Foundation Flanders through project fundings (G.0374.13N , G.0368.15N, and G.0369.15N) and a Ph.D. research grant to K.H.W.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. CINECA is acknowledged for computational facilities (Iscra project HP10CMO1UP). Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:144431UA @ admin @ c:irua:144431 Serial (down) 4621
Permanent link to this record
 

 
Author Gauquelin, N.; van den Bos, K.H.W.; Béché, A.; Krause, F.F.; Lobato, I.; Lazar, S.; Rosenauer, A.; Van Aert, S.; Verbeeck, J.
Title Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 181 Issue 181 Pages 178-190
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO3-La0.67Sr0.33MnO3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411170800022 Publication Date 2017-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 34 Open Access OpenAccess
Notes The authors acknowledge financial support from Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W.v.d.B. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. A.B. and N.G. acknowledge the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no.280432) which partly funded this study. N.G., A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the LSMO-NGO test sample. Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:144435UA @ admin @ c:irua:144435 Serial (down) 4620
Permanent link to this record
 

 
Author Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M.
Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 11 Pages 6277-6285
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404808000110 Publication Date 2017-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 12 Open Access OpenAccess
Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942
Call Number EMAT @ emat @ c:irua:143192 Serial (down) 4569
Permanent link to this record
 

 
Author Smolin, S.Y.; Choquette, A.K.; Wilks, R.G.; Gauquelin, N.; Félix, R.; Gerlach, D.; Ueda, S.; Krick, A.L.; Verbeeck, J.; Bär, M.; Baxter, J.B.; May, S.J.
Title Energy Level Alignment and Cation Charge States at the LaFeO3/LaMnO3(001) Heterointerface Type A1 Journal article
Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 4 Issue 4 Pages 1700183
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electronic properties of LaFeO 3 /LaMnO 3 epitaxial heterojunctions are investigated to determine the valence and conduction band offsets and the nominal Mn and Fe valence states at the interface. Studying a systematic series of (LaFeO 3 ) n /(LaMnO 3 ) m bilayers (m ≈ 50) epitaxially grown in the (001) orientation using molecular beam epitaxy, layer-resolved electron energy loss spectroscopy reveals a lack of significant interfacial charge transfer, with a nominal 3+ valence state observed for both Mn and Fe across the interface. Through a combination of variable angle spectroscopic ellipsometry and hard X-ray photoelectron spectroscopy, type I energy level alignments are obtained at the LaFeO 3 /LaMnO 3 interface with positive valence and conduction band offsets of (1.20 ± 0.07) eV and (0.5–0.7 ± 0.3) eV, respectively, with minimal band bending. Variable temperature resistivity measurements reveal that the bilayers remain insulating and that the presence of the heterojunction does not result in a conducting interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406068400011 Publication Date 2017-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 14 Open Access Not_Open_Access
Notes The authors thank Dmytro Nykypanchuk for assistance with the near- infrared ellipsometry measurement of the LaMnO 3 film. S.Y.S., A.K.C., J.B.B, and S.J.M. acknowledge funding from the National Science Foundation under grant number ECCS-1201957. S.Y.S. acknowledges additional funding from the German Academic Exchange Service (DAAD) through the Research Internships in Science and Engineering (RISE) professional program 2015 ID 5708457. A.L.K. was funded by the National Science Foundation under grant number DMR-1151649. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Ellipsometry measurements of the LaMnO 3 film were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-ACO2-98CH10886. S.U. would like to thank the staff of HiSOR, Hiroshima University, and JAEA/Spring-8 for the development of HAXPES at BL15XU of SPring-8. The HAXPES measurements were performed with approval of NIMS Synchrotron X-ray Station (Proposal No. 2015B4601), and were partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors also thank HZB for the allocation of synchrotron radiation beamtime for HAXPES/XANES measurements. R.G.W., R.F, and M.B. are grateful to the Impuls- und Vernetzungsfonds of the Helmholtz Association (VH-NG-423).; National Science Foundation, ECCS-1201957 DMR-1151649 ; Deutscher Akademischer Austauschdienst, 2015 ID 5708457 ; GOA project; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Flemish Government; U.S. Department of Energy, DE-ACO2-98CH10886 ; Vernetzungsfonds of the Helmholtz Association, VH-NG-423 ; Approved Most recent IF: 4.279
Call Number EMAT @ emat @ c:irua:142346UA @ admin @ c:irua:142346 Serial (down) 4553
Permanent link to this record