|   | 
Details
   web
Records
Author Bahnamiri, O.S.; Verheyen, C.; Snyders, R.; Bogaerts, A.; Britun, N.
Title Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling Type A1 Journal Article;nitrogen fixation
Year 2021 Publication (down) Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 30 Issue 6 Pages 065007
Keywords A1 Journal Article;nitrogen fixation; pulsed microwave discharge; FTIR spectroscopy; discharge modelling; vibrational excitation; NO yield; energy cost; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract A pulsed microwave surfaguide discharge operating at 2.45 GHz was used for the conversion of molecular nitrogen into valuable compounds in several gas mixtures: N2 :O2 , N2 :O2 :CO2 and N2 :CO2 . The ro-vibrational absorption bands of the molecular species were monitored by a Fourier transform infrared apparatus in the post-discharge region in order to evaluate the relative number density of species, specifically NO production. The effects of specific energy input, pulse frequency, gas flow fraction, gas admixture and gas flow rate were studied for better understanding and optimization of the NO production yield and the corresponding energy cost (EC). By both the experiment and modelling, a highest NO yield is obtained at N2 :O2 (1:1) gas ratio in N2 :O2 mixture. The NO yield reveals a small growth followed by saturation when pulse repetition frequency increases. The energy efficiency start decreasing after the energy input reaches about 5 eV/molec, whereas the NO yield rises steadily at the same time. The lowest EC of about 8 MJ mol−1 corresponding to the yield and the energy efficiency of about 7% and 1% are found, respectively, in an optimum discharge condition in our case.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000659671000001 Publication Date 2021-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited Open Access OpenAccess
Notes Fonds De La Recherche Scientifique—FNRS, EOS O005118F ; The research is supported by the FNRS-FWO project ‘NITROPLASM’, EOS O005118F. O Samadi also acknowledges PhD student F Manaigo for cooperation in doing the additional measurements. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:179170 Serial 6798
Permanent link to this record
 

 
Author Zhang, Q.‐Z.; Zhang, L.; Yang, D.‐Z.; Schulze, J.; Wang, Y.‐N.; Bogaerts, A.
Title Positive and negative streamer propagation in volume dielectric barrier discharges with planar and porous electrodes Type A1 Journal article
Year 2021 Publication (down) Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym
Volume 18 Issue 4 Pages 2000234
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The spatiotemporal dynamics of volume and surface positive and negative streamers in a pintoplate volume dielectric barrier discharge is investigated in this study. The discharge characteristics are found to be completely different for positive and negative streamers. First, the spatial propagation of a positive streamer is found to rely on electron avalanches caused by photo-electrons in front of the streamer head, whereas this is not the case for negative streamers. Second, our simulations reveal an interesting phenomenon of floating positive surface discharges, which develop when a positive streamer reaches a dielectric wall and which explain the experimentally observed branching characteristics. Third, we report for the first time, the interactions between a positive streamer and dielectric pores, in which both the pore diameter and depth affect the evolution of a positive streamer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000617876700001 Publication Date 2021-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited Open Access OpenAccess
Notes Dalian University of Technology, DUT19RC(3)045 ; National Natural Science Foundation of China, 12020101005 ; Deutsche Forschungsgemeinschaft, SFB 1316 project A5 ; Universiteit Antwerpen, TOP‐BOF ; The authors acknowledge financial support from the TOP-BOF project of the University of Antwerp. This study was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Funding by the German Research Foundation (DFG) in the frame of the Collaborative Research Center SFB 1316, project A5, National Natural Science Foundation of China (No. 12020101005), and the Scientific Research Foundation from Dalian University of Technology (DUT19RC(3)045) is also acknowledged. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:176565 Serial 6744
Permanent link to this record
 

 
Author Liang, Y.-S.; Xue, C.; Zhang, Y.-R.; Wang, Y.-N.
Title Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas Type A1 Journal article
Year 2021 Publication (down) Physics Of Plasmas Abbreviated Journal Phys Plasmas
Volume 28 Issue 1 Pages 013510
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a self-consistent fluid model is developed focusing on the plasma parameters in capacitively coupled 20% N 2-80% Ar discharges. Measurements of ion density are performed with the help of a floating double probe, and the emission intensities from Ar(4p) and N 2 ( B ) transitions are detected by an optical emission spectroscopy to estimate their relative densities. The consistency between the numerical and experimental results confirms the reliability of the simulation. Then the plasma characteristics, specifically the reaction mechanisms of active species, are analyzed under various voltages. The increasing voltage leads to a monotonous increase in species density, whereas a less homogeneous radial distribution is observed at a higher voltage. Due to the high concentration of Ar gas, Ar + becomes the main ion, followed by the N 2 +</mml:msubsup> ion. Besides the electron impact ionization of neutrals, the charge transfer processes of Ar +/ N 2 and N 2 +</mml:msubsup>/Ar are found to have an impact on the ionic species. The results indicate that adopting the lower charge transfer reaction rate coefficients weakens the Ar + ion density and yields a higher N 2 +</mml:msubsup> ion density. However, the effect on the species spatial distributions and other species densities is limited. As for the excited-state species, the electron impact excitation of background gases remains overwhelming in the formation of Ar(4p), N 2 ( B ), and N 2 ( a ' ), whereas the <mml:msub> N 2 ( A ) molecules are mainly formed by the decay of <mml:msub> N 2 ( B ). In addition, the dissociation of <mml:msub> N 2 collided by excited-state Ar atoms dominates the N generation, which are mostly depleted to produce N + ions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000629931300002 Publication Date 2021-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.115
Call Number UA @ admin @ c:irua:177669 Serial 6767
Permanent link to this record
 

 
Author Xiaoyan, S.; Zhang, Y.-R.; Wang, Y.-N.; He, J.-X.
Title Fluid simulation of the superimposed dual-frequency source effect in inductively coupled discharges Type A1 Journal article
Year 2021 Publication (down) Physics Of Plasmas Abbreviated Journal Phys Plasmas
Volume 28 Issue 11 Pages 113504-113510
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Superimposition of dual frequencies (DFs) is one of the methods used for controlling plasma distribution in an inductively coupled plasma (ICP) source. The effects of a superimposed DF on the argon plasma characteristics have been investigated using a two-dimensional self-consistent fluid model. When both currents are fixed at 6A, the plasma density drops with decrease in one of the source frequencies due to less efficient heating and the plasma uniformity improves significantly. Moreover, for ICP operated with superimposed DFs (i.e., 4.52MHz/13.56MHz and 2.26MHz/13.56MHz), the current source exhibits the same period as the low frequency (LF) component, and the plasma density is higher than that obtained at a single frequency (i.e., 4.52 and 2.26MHz) with the same total current of 12A. However, at superimposed current frequencies of 6.78MHz/13.56MHz, the plasma density is lower than that obtained at a single frequency of 6.78MHz due to the weaker negative azimuthal electric field between two positive maxima during one period of 6.78MHz. When the superimposed DF ICP operates at 2.26 and 13.56MHz, the rapid oscillations of the induced electric field become weaker during one period of 2.26MHz as the current ratio of 2.26MHz/13.56MHz rises from 24A/7 A to 30A/1 A, and the plasma density drops with the current ratio due to weakened electron heating. The uniformity of plasma increases due to sufficient diffusion under the low-density condition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000760326100004 Publication Date 2021-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record
Impact Factor 2.115 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.115
Call Number UA @ admin @ c:irua:187245 Serial 7974
Permanent link to this record
 

 
Author Tiwari, S.; Vanherck, J.; Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B.
Title Computing Curie temperature of two-dimensional ferromagnets in the presence of exchange anisotropy Type A1 Journal article
Year 2021 Publication (down) Physical review research Abbreviated Journal
Volume 3 Issue 4 Pages 043024
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We compare three first-principles methods of calculating the Curie temperature in two-dimensional (2D) ferromagnetic materials (FM), modeled using the Heisenberg model, and propose a simple formula for estimating the Curie temperature with high accuracy that works for all common 2D lattice types. First, we study the effect of exchange anisotropy on the Curie temperature calculated using the Monte Carlo (MC), the Green's function, and the renormalized spin-wave (RNSW) methods. We find that the Green's function method overestimates the Curie temperature in high-anisotropy regimes compared to the MC method, whereas the RNSW method underestimates the Curie temperature compared to the MC and the Green's function methods. Next, we propose a closed-form formula for calculating the Curie temperature of 2D FMs, which provides an estimate of the Curie temperature that is greatly improved over the mean-field expression for magnetic material screening. We apply the closed-form formula to predict the Curie temperature 2D magnets screened from the C2DB database and discover several high Curie temperature FMs, with Fe2F2 and MoI2 emerging as the most promising 2D ferromagnets. Finally, by comparing to experimental results for CrI3, CrCl3, and CrBr3, we conclude that for small effective anisotropies, the Green's-function-based equations are preferable, while for larger anisotropies, MC-based results are more predictive.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000707506500001 Publication Date 2021-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:182522 Serial 6975
Permanent link to this record
 

 
Author Aucar Boidi, N.; Fernández García, H.; Nunez-Fernandez, Y.; Hallberg, K.
Title In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction Type A1 Journal article
Year 2021 Publication (down) Physical review research Abbreviated Journal
Volume 3 Issue 4 Pages 043213
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000736651500002 Publication Date 2021-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:184836 Serial 8073
Permanent link to this record
 

 
Author Shi, W.; Pandey, T.; Lindsay, L.; Woods, L.M.
Title Vibrational properties and thermal transport in quaternary chalcogenides : the case of Te-based compositions Type A1 Journal article
Year 2021 Publication (down) Physical review materials Abbreviated Journal
Volume 5 Issue 4 Pages 045401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Vibrational thermal properties of CuZn2InTe4, AgZn2InTe4, and Cu2CdSnTe4, derived from binary II-VI zinc-blendes, are reported based on first-principles calculations. While the chalcogenide atoms in these materials have the same lattice positions, the cation atom arrangements vary, resulting in different crystal symmetries and subsequent properties. The compositional differences have important effects on the vibrational thermal characteristics of the studied materials, which demonstrate that low-frequency optical phonons hybridize with acoustic phonons and lead to enhanced phonon-phonon scattering and low lattice thermal conductivities. The phonon density of states, mode Gruneisen parameters, and phonon scattering rates are also calculated, enabling deeper insight into the microscopic thermal conduction processes in these materials. Compositional variations drive differences among the three materials considered here; nonetheless, their structural similarities and generally low thermal conductivities (0.5-4 W/mK at room temperature) suggest that other similar II-VI zinc-blende derived materials will also exhibit similarly low values, as also corroborated by experimental data. This, combined with the versatility in designing a variety of motifs on the overall structure, makes quaternary chalcogenides interesting for thermal management and energy conversion applications that require low thermal conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000655931400005 Publication Date 2021-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179140 Serial 7045
Permanent link to this record
 

 
Author Petrović, A. p.; Raju, M.; Tee, X. y.; Louat, A.; Maggio-Aprile, I.; Menezes, R. m.; Wyszyński, M. j.; Duong, N. k.; Reznikov, M.; Renner, C.; Milošević, M.V.; Panagopoulos, C.
Title Skyrmion-(Anti)Vortex Coupling in a Chiral Magnet-Superconductor Heterostructure Type A1 Journal article
Year 2021 Publication (down) Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 126 Issue 11 Pages 117205
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ~50nm is sufficient to nucleate antivortices in a 25nm Nb film, with unique signatures in the magnetization, critical current and flux dynamics, corroborated via simulations. We also detect a thermally-tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path towards controllable topological hybrid materials, unattainable to date.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000652825200011 Publication Date 2021-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 20 Open Access OpenAccess
Notes National Research Foundation Singapore, NRFNRFI2015-04 ; Ministry of Education – Singapore, MOE2018-T3-1-002 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 182652 ; Fonds Wetenschappelijk Onderzoek; Universiteit Antwerpen; Flemish Government; European Cooperation in Science and Technology, CA16218 ; CalcUA Flemish Supercomputer Center; Approved Most recent IF: 8.462
Call Number CMT @ cmt @c:irua:177505 Serial 6754
Permanent link to this record
 

 
Author van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d.
Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
Year 2021 Publication (down) Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 127 Issue 12 Pages 127202
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704665000010 Publication Date 2021-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 17 Open Access OpenAccess
Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462
Call Number EMAT @ emat @c:irua:182595 Serial 6824
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Covaci, L.; Milošević, M.V.; Peeters, F.M.; Chaves, A.
Title Zitterbewegung of moiré excitons in twisted MoS₂/WSe₂ heterobilayers Type A1 Journal article
Year 2021 Publication (down) Physical review letters Abbreviated Journal
Volume 127 Issue 10 Pages 106801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The moire pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moire exciton. In the case of MoS2/WSe2 heterobilayers, the moire trapping potential has honeycomb symmetry and, consequently, the moire exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moire exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moire excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000692200800020 Publication Date 2021-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181599 Serial 6896
Permanent link to this record
 

 
Author Wang, Q.; Lin, S.; Liu, X.; Xu, W.; Xiao, Y.; Liang, C.; Ding, L.; Peeters, F.M.
Title Photoluminescence and electronic transition behaviors of single-stranded DNA Type A1 Journal article
Year 2021 Publication (down) Physical Review E Abbreviated Journal Phys Rev E
Volume 104 Issue 3 Pages 034412
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Due to the potential application of DNA for biophysics and optoelectronics, the electronic energy states and transitions of this genetic material have attracted a great deal of attention recently. However, the fluorescence and corresponding physical process of DNA under optical excitation with photon energies below ultraviolet are still not fully clear. In this work, we experimentally investigate the photoluminescence (PL) properties of single-stranded DNA (ssDNA) samples under near-ultraviolet (NUV) and visible excitations (270 similar to 440 nm). Based on the dependence of the PL peak wavelength (lem) upon the excitation wavelength (lex), the PL behaviors of ssDNA can be approximately classified into two categories. In the relatively short excitation wavelength regime, lem is nearly constant due to exciton-like transitions associated with delocalized excitonic states and excimer states. In the relatively long excitation wavelength range, a linear relation of lem = Alex + B with A 0 or A < 0 can be observed, which comes from electronic transitions related to coupled vibrational-electronic levels. Moreover, the transition channels in different excitation wavelength regimes and the effects of strand length and base type can be analyzed on the basis of these results. These important findings not only can give a general description of the electronic energy states and transitional behaviors of ssDNA samples under NUV and visible excitations, but also can be the basis for the application of DNA in nanoelectronics and optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000703562300002 Publication Date 2021-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.366 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.366
Call Number UA @ admin @ c:irua:182517 Serial 7009
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Critical behavior of the ferromagnets CrI₃, CrBr₃, and CrGeTe₃ and the antiferromagnet FeCl₂ : a detailed first-principles study Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 1 Pages 014432
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We calculate the Curie temperature of layered ferromagnets, chromium tri-iodide (CrI3), chromium tri-bromide (CrBr3), chromium germanium tri-telluride (CrGeTe3), and the Ned temperature of a layered antiferromagnet iron di-chloride (FeCl2), using first-principles density functional theory calculations and Monte Carlo simulations. We develop a computational method to model the magnetic interactions in layered magnetic materials and calculate their critical temperature. We provide a unified method to obtain the magnetic exchange parameters (J) for an effective Heisenberg Hamiltonian from first principles, taking into account both the magnetic ansiotropy as well as the out-of-plane interactions. We obtain the magnetic phase change behavior, in particular the critical temperature, from the susceptibility and the specific-heat, calculated using the three-dimensional Monte Carlo (METROPOLIS) algorithm. The calculated Curie temperatures for ferromagnetic materials (CrI3, CrBr3, and CrGeTe3), match well with experimental values. We show that the interlayer interaction in bulk CrI3 with R (3) over bar stacking is significantly stronger than the C2/m stacking, in line with experimental observations. We show that the strong interlayer interaction in R (3) over bar CrI3 results in a competition between the in-plane and the out-of-plane magnetic easy axes. Finally, we calculate the Ned temperature of FeCl2 to be 47 +/- 8 K and show that the magnetic phase transition in FeCl2 occurs in two steps with a high-temperature intralayer ferromagnetic phase transition and a low-temperature interlayer antiferromagnetic phase transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000609012000002 Publication Date 2021-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes ; The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency Grant No. HDTRA1-18-1-0018. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:176081 Serial 6686
Permanent link to this record
 

 
Author Ceyhan, E.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Electronic and magnetic properties of single-layer FeCl₂ with defects Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 1 Pages 014106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The formation of lattice defects and their effect on the electronic properties of single-layer FeCl2 are investigated by means of first-principles calculations. Among the vacancy defects, namely mono-, di-, and three-Cl vacancies and mono-Fe vacancy, the formation of mono-Cl vacancy is the most preferable. Comparison of two different antisite defects reveals that the formation of the Fe-antisite defect is energetically preferable to the Cl-antisite defect. While a single Cl vacancy leads to a 1 mu(B) decrease in the total magnetic moment of the host lattice, each Fe vacant site reduces the magnetic moment by 4 mu(B). However, adsorption of an excess Cl atom on the surface changes the electronic structure to a ferromagnetic metal or to a ferromagnetic semiconductor depending on the adsorption site without changing the ferromagnetic state of the host lattice. Both Cl-antisite and Fe-antisite defected domains change the magnetic moment of the host lattice by -1 mu(B) and +3 mu(B), respectively. The electronic ground state of defected structures reveals that (i) single-layer FeCl2 exhibits half-metallicity under the formation of vacancy and Cl-antisite defects; (ii) ferromagnetic metallicity is obtained when a single Cl atom is adsorbed on upper-Cl and Fe sites, respectively; and (iii) ferromagnetic semiconducting behavior is found when a Cl atom is adsorbed on a lower-Cl site or a Fe-antisite defect is formed. Simulated scanning electron microscope images show that atomic-scale identification of defect types is possible from their electronic charge density. Further investigation of the periodically Fe-defected structures reveals that the formation of the single-layer FeCl3 phase, which is a dynamically stable antiferromagnetic semiconductor, is possible. Our comprehensive analysis on defects in single-layer FeCl2 will complement forthcoming experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000606969400002 Publication Date 2021-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access Not_Open_Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and by Flemish Supercomputer Center (VSC). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:176039 Serial 6689
Permanent link to this record
 

 
Author Jiang, J.; Wang, Y.-L.; Milošević, M.V.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H.
Title Reversible ratchet effects in a narrow superconducting ring Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 1 Pages 014502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the ratchet effect in a narrow pinning-free superconductive ring based on time-dependent Ginzburg-Landau (TDGL) equations. Voltage responses to external dc and ac currents at various magnetic fields are studied. Due to asymmetric barriers for flux penetration and flux exit in the ring-shaped superconductor, the critical current above which the flux-flow state is reached, as well as the critical current for the transition to the normal state, are different for the two directions of applied current. These effects cooperatively cause ratchet signal reversal at high magnetic fields, which has not been reported to date in a pinning-free system. The ratchet signal found here is larger than those induced by asymmetric pinning potentials. Our results also demonstrate the feasibility of using mesoscopic superconductors to employ a superconducting diode effect in versatile superconducting devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000604821500003 Publication Date 2021-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access OpenAccess
Notes ; We are grateful to G. Berdiyorov for useful suggestions and comments. Q.-H.C. thanks Beiyi Zhu for helpful discussions during the early stage of this work. This work is supported in part by the National Key Research and Development Program of China, Grants No. 2017YFA0303002 (Q.-H.C. and J.J.), and No. 2018YFA0209002 (Y.-L.W.), and the National Natural Science Foundation of China Grants No. 11834005, No. 11674285, No. 61771235, and No. 61727805. Z.-L.X. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering and the National Science Foundation under Grant No. DMR-1901843. F.M.P. and M.V.M. acknowledge support by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:174984 Serial 6697
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Jacobs, A.; Van Duppen, B.; Peeters, F.M.
Title Confinement and edge effects on atomic collapse in graphene nanoribbons Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 3 Pages 035426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer graphene due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find that bound states gradually transform into atomic collapse states with increasing impurity charge. This is very different in zigzag nanoribbons where multiple quasi-one-dimensional bound states are found that originates from the zero-energy zigzag edge states. They are a consequence of the flat band and the electron distribution of these bound states exhibits two peaks. The lowest-energy edge state transforms from a bound state into an atomic collapse resonance and shows a distinct relocalization from the edge to the impurity position with increasing impurity charge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000610779200008 Publication Date 2021-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:176585 Serial 6719
Permanent link to this record
 

 
Author Bacaksiz, C.; Šabani, D.; Menezes, R.M.; Milošević, M.V.
Title Distinctive magnetic properties of CrI3 and CrBr3 monolayers caused by spin-orbit coupling Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 12 Pages 125418
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract After the discovery of magnetism in monolayer CrI3, the magnetic properties of different 2D materials from the chromium-trihalide family are intuitively assumed to be similar, yielding magnetic anisotropy from the spin-orbit coupling on halide ligands. Here we reveal significant differences between the CrI3 and CrBr3 magnetic monolayers in their magnetic anisotropy, resulting Curie temperature, hysteresis in external magnetic field, and evolution of magnetism with strain, all predominantly attributed to distinctly different interplay of atomic contributions to spin-orbit coupling in two materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000646179300003 Publication Date 2021-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek; Universiteit Antwerpen; Approved Most recent IF: 3.836
Call Number CMT @ cmt @c:irua:177506 Serial 6756
Permanent link to this record
 

 
Author Cunha, S.M.; de Costa, D.R.; Pereira Jr, J.M.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M.
Title Band-gap formation and morphing in alpha-T-3 superlattices Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue 11 Pages 115409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electrons in alpha-T-3 lattices behave as condensed-matter analogies of integer-spin Dirac fermions. The three atoms making up the unit cell bestow the energy spectrum with an additional energy band that is completely flat, providing unique electronic properties. The interatomic hopping term, alpha, is known to strongly affect the electronic spectrum of the two-dimensional (2D) lattice, allowing it to continuously morph from graphenelike responses to the behavior of fermions in a dice lattice. For pristine lattice structures the energy bands are gapless, but small deviations in the atomic equivalence of the three sublattices will introduce gaps in the spectrum. It is unknown how these affect transport and electronic properties such as the energy spectrum of superlattice minibands. Here we investigate the dependency of these properties on the parameter a accounting for different symmetry-breaking terms, and we show how it affects band-gap formation. Furthermore, we find that superlattices can force band gaps to close and shift in energy. Our results demonstrate that alpha-T-3 superlattices provide a versatile material for 2D band-gap engineering purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000696091600003 Publication Date 2021-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:181544 Serial 6972
Permanent link to this record
 

 
Author Vanderveken, F.; Mulkers, J.; Leliaert, J.; Van Waeyenberge, B.; Sorée, B.; Zografos, O.; Ciubotaru, F.; Adelmann, C.
Title Confined magnetoelastic waves in thin waveguides Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 5 Pages 054439
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The characteristics of confined magnetoelastic waves in nanoscale ferromagnetic magnetostrictive waveguides have been investigated by a combination of analytical and numerical calculations. The presence of both magnetostriction and inverse magnetostriction leads to the coupling between confined spin waves and elastic Lamb waves. Numerical simulations of the coupled system have been used to extract the dispersion relations of the magnetoelastic waves as well as their mode profiles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000627548800003 Publication Date 2021-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:177607 Serial 6976
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Milošević, M.V.; Peeters, F.M.
Title Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 23 Pages 235406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We examine from first principles the flexoelectric properties of phosphorene nanoribbons under mechanical bending along armchair and zigzag directions. In both cases we find that the radial polarization depends linearly on the strain gradient. The flexoelectricity along the armchair direction is over 40% larger than along the zigzag direction. The obtained flexoelectric coefficients of phosphorene are four orders of magnitude larger than those of graphene and comparable to transition metal dichalcogenides. Analysis of charge density shows that the flexoelectricity mainly arises from the pz orbitals of phosphorus atoms. The electron mobilities in bent phosphorene can be enhanced by over 60% along the armchair direction, which is significantly higher than previous reports of mobility tuned by uniaxial strain. Our results indicate phosphorene is a candidate for a two-dimensional material applicable in flexible-electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000657129800006 Publication Date 2021-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:179109 Serial 6996
Permanent link to this record
 

 
Author Miranda, L.P.; Milovanović, S.P.; Filho, R.N.C.; Peeters, F.M.
Title Hall and bend resistance of a phosphorene Hall bar Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue 3 Pages 035401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dependence of the Hall and bend resistances on a perpendicular magnetic field and on vacancy defects in a four-terminal phosphorene single layer Hall bar is investigated. A tight-binding model in combination with the Landauer-Buttiker formalism is used to calculate the energy spectrum, the lead-to-lead transmissions, and the Hall and bend resistances of the system. It is shown that the terminals with zigzag edge orientation are responsible for the absence of quantized plateaus in the Hall resistance and peaks in the longitudinal resistance. A negative bend resistance in the ballistic regime is found due to the presence of high- and low-energy transport modes in the armchair and zigzag terminals, respectively. The system density of states, with single vacancy defects, shows that the presence of in-gap states is proportional to the number of vacancies. Quantized plateaus in the Hall resistance are only formed in a sufficiently clean system. The effects of different kinds of vacancies where the plateaus are destroyed and a diffusive regime appears in the bend resistance are investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000669002000003 Publication Date 2021-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:179704 Serial 6997
Permanent link to this record
 

 
Author Varjovi, M.J.; Yagmurcukardes, M.; Peeters, F.M.; Durgun, E.
Title Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 19 Pages 195438
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Structural symmetry breaking in two-dimensional materials can lead to superior physical properties and introduce an additional degree of piezoelectricity. In the present paper, we propose three structural phases (1H, 1T, and 1T') of Janus WXO (X = S, Se, and Te) monolayers and investigate their vibrational, thermal, elastic, piezoelectric, and electronic properties by using first-principles methods. Phonon spectra analysis reveals that while the 1H phase is dynamically stable, the 1T phase exhibits imaginary frequencies and transforms to the distorted 1T' phase. Ab initio molecular dynamics simulations confirm that 1H- and 1T'-WXO monolayers are thermally stable even at high temperatures without any significant structural deformations. Different from binary systems, additional Raman active modes appear upon the formation of Janus monolayers. Although the mechanical properties of 1H-WXO are found to be isotropic, they are orientation dependent for 1T'-WXO. It is also shown that 1H-WXO monolayers are indirect band-gap semiconductors and the band gap narrows down the chalcogen group. Except 1T'-WSO, 1T'-WXO monolayers have a narrow band gap correlated with the Peierls distortion. The effect of spin-orbit coupling on the band structure is also examined for both phases and the alteration in the band gap is estimated. The versatile mechanical and electronic properties of Janus WXO monolayers together with their large piezoelectric response imply that these systems are interesting for several nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000655902600004 Publication Date 2021-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 48 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:179050 Serial 7000
Permanent link to this record
 

 
Author Motta, M.; Burger, L.; Jiang, L.; Acosta, J.D.G.; Jelić, Ž.L.; Colauto, F.; Ortiz, W.A.; Johansen, T.H.; Milošević, M.V.; Cirillo, C.; Attanasio, C.; Xue, C.; Silhanek, A., V.; Vanderheyden, B.
Title Metamorphosis of discontinuity lines and rectification of magnetic flux avalanches in the presence of noncentrosymmetric pinning forces Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 22 Pages 224514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Considering a noncentrosymmetric pinning texture composed of a square array of triangular holes, the magnetic flux penetration and expulsion are investigated experimentally and theoretically. A direct visualization of the magnetic landscape obtained using a magneto-optical technique on a Nb film is complemented by a multiscale numerical modeling. This combined approach allows the magnetic flux dynamics to be identified from the single flux quantum limit up to the macroscopic electromagnetic response. Within the theoretical framework provided by time-dependent Ginzburg-Landau simulations, an estimation of the in-plane current anisotropy is obtained and its dependence with the radius of the curvature of hole vertices is addressed. These simulations show that current crowding plays an important role in channeling the flux motion, favoring hole-to-hole flux hopping rather than promoting interstitial flux displacement in between the holes. The resulting anisotropy of the critical current density gives rise to a distinct pattern of discontinuity lines for increasing and decreasing applied magnetic fields, in sharp contrast to the invariable patterns reported for centrosymmetric pinning potentials. This observation is partially accounted for by the rectification effect, as demonstrated by finite-element modeling. At low temperatures, where magnetic field penetration is dominated by thermomagnetic instabilities, highly directional magnetic flux avalanches with a fingerlike shape are observed to propagate along the easy axis of the pinning potential. This morphology is reproduced by numerical simulations. Our findings demonstrate that anisotropic pinning landscapes and, in particular, ratchet potentials produce subtle modifications to the critical state field profile that are reflected in the distribution of discontinuity lines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000687246200001 Publication Date 2021-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:181714 Serial 7002
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Mogulkoc, Y.; Akgenc, B.; Mogulkoc, A.; Peeters, F.M.
Title Prediction of monoclinic single-layer Janus Ga₂ Te X (X = S and Se) : strong in-plane anisotropy Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue 4 Pages 045425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory (DFT) based first-principles calculations, electronic, vibrational, piezo-electric, and optical properties of monoclinic Janus single-layer Ga2TeX (X = S or Se) are investigated. The dynamical, mechanical, and thermal stability of the proposed Janus single layers are verified by means of phonon bands, stiffness tensor, and quantum molecular dynamics simulations. The calculated vibrational spectrum reveals the either pure or coupled optical phonon branches arising from Ga-Te and Ga-X atoms. In addition to the in-plane anisotropy, single-layer Janus Ga2TeX exhibits additional out-of-plane asymmetry, which leads to important consequences for its electronic and optical properties. Electronic band dispersions indicate the direct band-gap semiconducting nature of the constructed Janus structures with energy band gaps falling into visible spectrum. Moreover, while orientation-dependent linear-elastic properties of Janus single layers indicate their strong anisotropy, the calculated in-plane stiffness values reveal the ultrasoft nature of the structures. In addition, predicted piezoelectric coefficients show that while there is a strong in-plane anisotropy between piezoelectric constants along armchair (AC) and zigzag (ZZ) directions, there exists a tiny polarization along the out-of-plane direction as a result of the formation of Janus structure. The optical response to electromagnetic radiation has been also analyzed through density functional theory by considering the independent-particle approximation. Finally, the optical spectra of Janus Ga2TeX structures is investigated and it showed a shift from the ultraviolet region to the visible region. The fact that the spectrum is between these regions will allow it to be used in solar energy and many nanoelectronics applications. The predicted monoclinic single-layer Janus Ga2TeX are relevant for promising applications in optoelectronics, optical dichroism, and anisotropic nanoelasticity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000678811100007 Publication Date 2021-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:180404 Serial 7013
Permanent link to this record
 

 
Author Mijin, S.D.; Baum, A.; Bekaert, J.; Solajic, A.; Pesic, J.; Liu, Y.; He, G.; Milošević, M.V.; Petrovic, C.; Popovic, Z., V; Hackl, R.; Lazarevic, N.
Title Probing charge density wave phases and the Mott transition in 1T-TaS₂I by inelastic light scattering Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 24 Pages 245133
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a polarization-resolved, high-resolution Raman scattering study of the three consecutive charge density wave (CDW) regimes in 1T-TaS2 single crystals, supported by ab initio calculations. Our analysis of the spectra within the low-temperature commensurate (C-CDW) regime shows P (3) over bar symmetry of the system, thus excluding the previously proposed triclinic stacking of the “star-of-David” structure, and promoting trigonal or hexagonal stacking instead. The spectra of the high-temperature incommensurate (IC-CDW) phase directly project the phonon density of states due to the breaking of the translational invariance, supplemented by sizable electron-phonon coupling. Between 200 and 352 K, our Raman spectra show contributions from both the IC-CDW and the C-CDW phases, indicating their coexistence in the so-called nearly commensurate (NC-CDW) phase. The temperature dependence of the symmetry-resolved Raman conductivity indicates the stepwise reduction of the density of states in the CDW phases, followed by a Mott transition within the C-CDW phase. We determine the size of the Mott gap to be Omega(gap) approximate to 170-190 meV, and track its temperature dependence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000664450500002 Publication Date 2021-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:179664 Serial 7015
Permanent link to this record
 

 
Author van Duijn, F.; Osca, J.; Sorée, B.
Title Skyrmion elongation, duplication, and rotation by spin-transfer torque under spatially varying spin current Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue 9 Pages 094426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of the spatially varying spin current on a skyrmion is numerically investigated. It is shown that an inhomogeneous current density induces an elongation of the skyrmion. This elongation can be controlled using current pulses of different strength and duration. Long current pulses lead to a splitting that forms two replicas of the initial skyrmion while for short pulses the elongated skyrmion relaxes back to its initial circular state through rotation in the MHz-GHz frequency range. The frequency is dependent on the strength of the damping coefficient.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704236000002 Publication Date 2021-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:182467 Serial 7018
Permanent link to this record
 

 
Author Man, L.F.; Xu, W.; Xiao, Y.M.; Wen, H.; Ding, L.; Van Duppen, B.; Peeters, F.M.
Title Terahertz magneto-optical properties of graphene hydrodynamic electron liquid Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue 12 Pages 125420
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin et al., Science 351, 1055 (2016) and J. Crossno et al., Science 351, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length l(B) = root h/eB is comparable to the mean-free path l(ee) for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when l(B) similar to l(ee), the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes omega(+/-) are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704419300004 Publication Date 2021-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:182518 Serial 7029
Permanent link to this record
 

 
Author Demiroglu, I.; Sevik, C.
Title Extraordinary negative thermal expansion of two-dimensional nitrides : a comparative ab initio study of quasiharmonic approximation and molecular dynamics simulations Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 8 Pages 085430
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Thermal expansion behavior of two-dimensional (2D) nitrides and graphene were studied by ab initio molecular dynamics (MD) simulations as well as quasiharmonic approximation (QHA). Anharmonicity of the acoustic phonon modes are related to the unusual negative thermal expansion (NTE) behavior of the nitrides. Our results also hint that direct ab initio MD simulations are a more elaborate method to investigate thermal expansion behavior of 2D materials than the QHA. Nevertheless, giant NTE coefficients are found for h-GaN and h-AlN within the covered temperature range 100-600 K regardless of the chosen computational method. This unusual NTE of 2D nitrides is reasoned with the out-of-plane oscillations related to the rippling behavior of the monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000620346100007 Publication Date 2021-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:176671 Serial 7956
Permanent link to this record
 

 
Author Chaves, A.; Sousa, G.O.; Khaliji, K.; da Costa, D.R.; Farias, G.A.; Low, T.
Title Signatures of subband excitons in few-layer black phosphorus Type A1 Journal article
Year 2021 Publication (down) Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 16 Pages 165428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experimental measurements of light absorption in few-layer black phosphorus (BP) revealed a series of high and sharp peaks, interspersed by pairs of lower and broader features. Here, we propose a theoretical model for these excitonic states in few-layer BP within a continuum approach for the in-plane degrees of freedom and a tight-binding approximation that accounts for interlayer couplings. This yields excitonic transitions between different combinations of the subbands created by the coupled BP layers, which leads to a series of high and low oscillator strength excitonic states, consistent with the experimentally observed bright and dark exciton peaks, respectively. The main characteristics of such subband exciton states, as well as the possibility to control their energies and oscillator strengths via applied electric and magnetic fields, are discussed, towards a full understanding of the excitonic spectrum of few-layer BP and its tunability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000647175200002 Publication Date 2021-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:178384 Serial 8523
Permanent link to this record
 

 
Author Yin, L.; Juneja, R.; Lindsay, L.; Pandey, T.; Parker, D.S.
Title Semihard iron-based permanent-magnet materials Type A1 Journal article
Year 2021 Publication (down) Physical Review Applied Abbreviated Journal Phys Rev Appl
Volume 15 Issue 2 Pages 024012
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Permanent magnets generally require a favorable, but difficult-to-achieve combination of high magnetization, Curie point, and magnetic anisotropy. Thus there have been few, if any, viable permanent magnets developed since the 1982 discovery of Nd2Fe14B [M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and S. Hirosawa, J. Appl. Phys. 57, 4094 (1985)]. Here we point out, both by direct first-principles calculations on the iron carbides and silicides Fe5C2, Fe5SiC, and Fe7C3 as well as a discussion of recent experimental findings, that there are numerous rare-earth-free iron-rich potential permanent-magnet materials with sufficient intrinsic magnetic properties to reasonably achieve room-temperature energy products of 20-25 MG Oe. This is substantially better than the performance of the best available rare-earth-free magnets based on ferrite, as well as shape-anisotropy-employing alnico. These magnets could plausibly fill, at low cost, the present performance “gap” [J. M. D. Coey, Scr. Mater. 67, 524 (2012)] between the best rare-earth-free magnets and rare-earth magnets such as Nd2Fe14B and Sm-Co.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000614707800002 Publication Date 2021-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.808 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.808
Call Number UA @ admin @ c:irua:176624 Serial 6734
Permanent link to this record
 

 
Author Sethu, K.K.V.; Ghosh, S.; Couet, S.; Swerts, J.; Sorée, B.; De Boeck, J.; Kar, G.S.; Garello, K.
Title Optimization of tungsten beta-phase window for spin-orbit-torque magnetic random-access memory Type A1 Journal article
Year 2021 Publication (down) Physical Review Applied Abbreviated Journal Phys Rev Appl
Volume 16 Issue 6 Pages 064009
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Switching induced by spin-orbit torque (SOT) is being vigorously explored, as it allows the control of magnetization using an in-plane current, which enables a three-terminal magnetic-tunnel-junction geometry with isolated read and write paths. This significantly improves the device endurance and the read stability, and allows reliable subnanosecond switching. Tungsten in the beta phase, beta-W, has the largest reported antidamping SOT charge-to-spin conversion ratio (theta(AD) approximate to -60%) for heavy metals. However, beta-W has a limitation when one is aiming for reliable technology integration: the beta phase is limited to a thickness of a few nanometers and enters the alpha phase above 4 nm in our samples when industry-relevant deposition tools are used. Here, we report our approach to extending the range of beta-W, while simultaneously improving the SOT efficiency by introducing N and O doping of W. Resistivity and XRD measurements confirm the extension of the beta phase from 4 nm to more than 10 nm, and transport characterization shows an effective SOT efficiency larger than -44.4% (reaching approximately -60% for the bulk contribution). In addition, we demonstrate the possibility of controlling and enhancing the perpendicular magnetic anisotropy of a storage layer (Co-Fe-B). Further, we integrate the optimized W(O, N) into SOT magnetic random-access memory (SOT-MRAM) devices and project that, for the same thickness of SOT material, the switching current decreases by 25% in optimized W(O, N) compared with our standard W. Our results open the path to using and further optimizing W for integration of SOT-MRAM technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000729005800002 Publication Date 2021-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.808 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.808
Call Number UA @ admin @ c:irua:184832 Serial 7007
Permanent link to this record