|
Record |
Links |
|
Author |
Zhang, Q.‐Z.; Zhang, L.; Yang, D.‐Z.; Schulze, J.; Wang, Y.‐N.; Bogaerts, A. |
|
|
Title |
Positive and negative streamer propagation in volume dielectric barrier discharges with planar and porous electrodes |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Plasma Processes And Polymers |
Abbreviated Journal |
Plasma Process Polym |
|
|
Volume |
18 |
Issue |
4 |
Pages |
2000234 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
The spatiotemporal dynamics of volume and surface positive and negative streamers in a pintoplate volume dielectric barrier discharge is investigated in this study. The discharge characteristics are found to be completely different for positive and negative streamers. First, the spatial propagation of a positive streamer is found to rely on electron avalanches caused by photo-electrons in front of the streamer head, whereas this is not the case for negative streamers. Second, our simulations reveal an interesting phenomenon of floating positive surface discharges, which develop when a positive streamer reaches a dielectric wall and which explain the experimentally observed branching characteristics. Third, we report for the first time, the interactions between a positive streamer and dielectric pores, in which both the pore diameter and depth affect the evolution of a positive streamer. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000617876700001 |
Publication Date |
2021-02-17 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1612-8850 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.846 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
Dalian University of Technology, DUT19RC(3)045 ; National Natural Science Foundation of China, 12020101005 ; Deutsche Forschungsgemeinschaft, SFB 1316 project A5 ; Universiteit Antwerpen, TOP‐BOF ; The authors acknowledge financial support from the TOP-BOF project of the University of Antwerp. This study was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Funding by the German Research Foundation (DFG) in the frame of the Collaborative Research Center SFB 1316, project A5, National Natural Science Foundation of China (No. 12020101005), and the Scientific Research Foundation from Dalian University of Technology (DUT19RC(3)045) is also acknowledged. |
Approved |
Most recent IF: 2.846 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:176565 |
Serial |
6744 |
|
Permanent link to this record |