toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, Q.-Z.; Wang, W.Z.; Thille, C.; Bogaerts, A. pdf  url
doi  openurl
  Title H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma Type A1 Journal article
  Year 2020 Publication (down) Plasma Chemistry And Plasma Processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 40 Issue 5 Pages 1163-1187  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied hydrogen sulfide (H2S) decomposition into hydrogen (H2) and sulfur (S2) in a gliding arc plasmatron (GAP) and microwave (MW) plasma by a combination of 0D and 2D models. The conversion, energy efficiency, and plasma distribution are examined for different discharge conditions, and validated with available experiments from literature. Furthermore, a comparison is made between GAP and MW plasma. The GAP operates at atmospheric pressure, while the MW plasma experiments to which comparison is made were performed at reduced pressure. Indeed, the MW discharge region becomes very much contracted near atmospheric pressure, at the conditions under study, as revealed by our 2D model. The models predict that thermal reactions play the most important role in H2S decomposition in both plasma types. The GAP has a higher energy efficiency but lower conversion than the MW plasma at their typical conditions. When compared at the same conversion, the GAP exhibits a higher energy efficiency and lower energy cost than the MW plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543012200001 Publication Date 2020-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access  
  Notes This work was supported by the Scientific Research Foundation from Dalian University of Technology, DUT19RC(3)045. We gratefully acknowledge T. Godfroid (Materia Nova) for sharing the experimental data about the MW plasma. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.6; 2020 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:172490 Serial 6409  
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A. pdf  url
doi  openurl
  Title SF₆ degradation in γ-Al₂O₃ packed DBD system : effects of hydration, reactive gases and plasma-induced surface charges Type A1 Journal article
  Year 2023 Publication (down) Plasma chemistry and plasma processing Abbreviated Journal  
  Volume 43 Issue Pages 635-656  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a gamma-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O-2 can occupy the active sites (Al-III site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000966639200001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number UA @ admin @ c:irua:196033 Serial 8516  
Permanent link to this record
 

 
Author Bogaerts, A. pdf  url
doi  openurl
  Title Special Issue on “Dielectric Barrier Discharges and their Applications” in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work Type A1 Journal Article
  Year 2023 Publication (down) Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process  
  Volume 43 Issue 6 Pages 1281-1285  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract n/a  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110371000001 Publication Date 2023-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.6 Times cited Open Access Not_Open_Access  
  Notes n/a Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:201387 Serial 8969  
Permanent link to this record
 

 
Author Lin, A.; Gromov, M.; Nikiforov, A.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces Type A1 Journal Article
  Year 2023 Publication (down) Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process  
  Volume 43 Issue 6 Pages 1587-1612  
  Keywords A1 Journal Article; Non-thermal plasma · Plasma medicine · Dielectric barrier discharge · Plasma diagnostics · Plasma surface interaction · In situ plasma monitoring; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract technologies have been expanding, and one of the most exciting and rapidly growing

applications is in biology and medicine. Most biomedical studies with DBD plasma systems are performed in vitro, which include cells grown on the surface of plastic well plates, or in vivo, which include animal research models (e.g. mice, pigs). Since many DBD systems use the biological target as the secondary electrode for direct plasma generation and treatment, they are sensitive to the surface properties of the target, and thus can be altered based on the in vitro or in vivo system used. This could consequently affect biological response from plasma treatment. Therefore, in this study, we investigated the DBD plasma behavior both in vitro (i.e. 96-well flat bottom plates, 96-well U-bottom plates, and 24-well flat bottom plates), and in vivo (i.e. mouse skin). Intensified charge coupled device (ICCD) imaging was performed and the plasma discharges were visually distinguishable between the different systems. The geometry of the wells did not affect DBD plasma generation for low application distances (≤ 2 mm), but differentially affected plasma uniformity on the bottom of the well at greater distances. Since DBD plasma treatment in vitro is rarely performed in dry wells for plasma medicine experiments, the effect of well wetness was also investigated. In all in vitro cases, the uniformity of the DBD plasma was affected when comparing wet versus dry wells, with the plasma in the wide-bottom wells appearing the most similar to plasma generated on mouse skin. Interestingly, based on quantification of ICCD images, the DBD plasma intensity per surface area demonstrated an exponential one-phase decay with increasing application distance, regardless of the in vitro or in vivo system. This trend is similar to that of the energy per pulse of plasma, which is used to determine the total plasma treatment energy for biological systems. Optical emission spectroscopy performed on the plasma revealed similar trends in radical species generation between the plastic well plates and mouse skin. Therefore, taken together, DBD plasma intensity per surface area may be a valuable parameter to be used as a simple method for in situ monitoring during biological treatment and active plasma treatment control, which can be applied for in vitro and in vivo systems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001072607700001 Publication Date 2023-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access Not_Open_Access  
  Notes This work was partially funded by the Research Foundation—Flanders (FWO) and supported by the following Grants: 12S9221N (A. L.), G044420N (A. L. and A. B.), and G033020N (A.B.). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on “Therapeutical applications of Cold Plasmas” (CA20114; PlasTHER). Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:200285 Serial 8970  
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Trenchev, G.; Wang, W. pdf  url
doi  openurl
  Title Modeling for a Better Understanding of Plasma-Based CO2 Conversion Type H1 Book Chapter
  Year 2018 Publication (down) Plasma Chemistry and Gas Conversion Abbreviated Journal  
  Volume Issue Pages  
  Keywords H1 Book Chapter; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This chapter discusses modeling efforts for plasma-based CO2 conversion, which are needed to obtain better insight in the underlying mechanisms, in order to improve this application. We will discuss two types of (complementary) modeling efforts that are most relevant, that is, (i) modeling of the detailed plasma chemistry by zero-dimensional (0D) chemical kinetic models and (ii) modeling of reactor design, by 2D or 3D fluid dynamics models. By showing some characteristic calculation results of both models, for CO2 splitting and in combination with a H-source, and for packed bed DBD and gliding arc plasma, we can illustrate the type of information they can provide.  
  Address  
  Corporate Author Thesis  
  Publisher IntechOpen Place of Publication Rijeka Editor Britun, N.; Silva, T.  
  Language Wos Publication Date 2018-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @ Bogaerts18c:irua:155915 Serial 5142  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Possible Mechanism of Glucose Uptake Enhanced by Cold Atmospheric Plasma: Atomic Scale Simulations Type A1 Journal article
  Year 2018 Publication (down) Plasma Abbreviated Journal  
  Volume 1 Issue 1 Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) has shown its potential in biomedical applications, such as wound healing, cancer treatment and bacterial disinfection. Recent experiments have provided evidence that CAP can also enhance the intracellular uptake of glucose molecules which is important in diabetes therapy. In this respect, it is essential to understand the underlying mechanisms of intracellular glucose uptake induced by CAP, which is still unclear. Hence, in this study we try to elucidate the possible mechanism of glucose uptake by cells by performing computer simulations. Specifically, we study the transport of glucose molecules through native and oxidized membranes. Our simulation results show that the free energy barrier for the permeation of glucose molecules across the membrane decreases upon increasing the degree of oxidized lipids in the membrane. This indicates that the glucose permeation rate into cells increases when the CAP oxidation level in the cell membrane is increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2018-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2571-6182 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @ plasma1010011c:irua:152176 Serial 4990  
Permanent link to this record
 

 
Author Gorbanev, Y.; Golda, J.; Gathen, V.S.; Bogaerts, A url  doi
openurl 
  Title Applications of the COST Plasma Jet: More than a Reference Standard Type A1 Journal article
  Year 2019 Publication (down) Plasma Abbreviated Journal Plasma  
  Volume 2 Issue 3 Pages 316-327  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and chemical properties are well studied, and diagnostics procedures are developed and benchmarked using this jet. In recent years, it has been used for various research purposes. Here, we present a brief overview of the reported applications of the COST plasma jet. Additionally, we discuss the chemistry of the plasma-liquid systems with this plasma jet, and the properties that make it an indispensable system for plasma research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2571-6182 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes We would like to thank Deborah O’Connell (York Plasma Institute, Department of Physics, University of York, United Kingdom) and Angela Privat-Maldonado (PLASMANT, University of Antwerp) for useful discussions. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:161628 Serial 5287  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
  Year 2010 Publication (down) Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 17 Issue 11 Pages 113512-113512,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000285486500105 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.115; 2010 IF: 2.320  
  Call Number UA @ lucian @ c:irua:84763 Serial 429  
Permanent link to this record
 

 
Author Si, X.-J.; Zhao, S.-X.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma Type A1 Journal article
  Year 2011 Publication (down) Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 18 Issue 3 Pages 033504-033504,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000289151900073 Publication Date 2011-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.115; 2011 IF: 2.147  
  Call Number UA @ lucian @ c:irua:87876 Serial 1233  
Permanent link to this record
 

 
Author Cai, H.-bo; Yu, W.; Zhu, S.-ping; Zheng, C.-yang; Cao, L.-hua; Li, B.; Chen, Z.Y.; Bogaerts, A. doi  openurl
  Title Short-pulse laser absorption in very steep plasma density gradients Type A1 Journal article
  Year 2006 Publication (down) Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 13 Issue Pages 094504,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000240877800057 Publication Date 2006-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.115; 2006 IF: 2.258  
  Call Number UA @ lucian @ c:irua:59375 Serial 2995  
Permanent link to this record
 

 
Author Liu, Y.H.; Chen, Z.Y.; Huang, F.; Yu, M.Y.; Wang, L.; Bogaerts, A. doi  openurl
  Title Simulation of disk- and band-like voids in dusty plasma systems Type A1 Journal article
  Year 2006 Publication (down) Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 13 Issue Pages 052110,1-6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000237943000011 Publication Date 2006-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.115; 2006 IF: 2.258  
  Call Number UA @ lucian @ c:irua:57858 Serial 3011  
Permanent link to this record
 

 
Author Bogaerts, R.; de Keyser, A.; van Bockstal, L.; van der Burgt, M.; van Esch, A.; Provoost, R.; Silverans, R.; Herlach, F.; Swinnen, B.; van de Stadt, A.F.W.; Koenraad, P.M.; Wolter, J.H.; Karavolas, V.C.; Peeters, F.M.; van de Graaf, W.; Borghs, G. openurl 
  Title 2D semiconductors at the Leuven pulsed field facility Type A1 Journal article
  Year 1997 Publication (down) Physicalia magazine Abbreviated Journal  
  Volume 19 Issue Pages 229-239  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Gent Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0770-0520 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19257 Serial 7  
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.; Han, Z.J.; Kumar, S.; van Duin, A.C.T.; Bogaerts, A. url  doi
openurl 
  Title Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment Type A1 Journal article
  Year 2013 Publication (down) Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 110 Issue 6 Pages 065501-65505  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000314687300022 Publication Date 2013-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 50 Open Access  
  Notes Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:105306 Serial 616  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Effect of small amounts of hydrogen added to argon glow discharges: hybrid Monte-Carlo-fluid model Type A1 Journal article
  Year 2002 Publication (down) Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages 056402  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid Monte Carlofluid modeling network is developed for an argon-hydrogen mixture, to predict the effect of small amounts of hydrogen added to a dc argon glow discharge. The species considered in the model include the Ar gas atoms, electrons, Ar+ ions and fast Ar atoms, ArH+, H+, H+2 and H+3 ions, and H atoms and H2 molecules, as well as Ar metastable atoms, sputtered Cu atoms, and the corresponding Cu+ ions. Sixty-five reactions between these species are incorporated in the model. The effect of hydrogen on various calculation results is investigated, such as the species densities, the relative role of different production and loss processes for the various species, the cathode sputtering rate and contributions by different bombarding species, and the dissociation degree of H2 and the ionization degree of Ar and Cu. The calculation results are presented and discussed for 1% H2 addition, and comparison is also made with a pure argon discharge and with only 0.1% H2 addition.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000176552500086 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 33 Open Access  
  Notes Approved Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:40183 Serial 835  
Permanent link to this record
 

 
Author Okhrimovskyy, A.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Electron anisotropic scattering in gases: a formula for Monte Carlo simulations Type A1 Journal article
  Year 2002 Publication (down) Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages 037402  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The purpose of this Brief Report is to point out the mistake in a formula for anisotropic electron scattering, previously published in Phys. Rev. A 41, 1112 (1990), which is widely used in Monte Carlo models of gas discharges. Anisotropic electron scattering is investigated based on the screened Coulomb potential between electrons and neutral atoms. The approach is also applied for electron scattering by nonpolar neutral molecules. Differential cross sections for electron scattering by Ar, N2, and CH4 are constructed on the basis of momentum and integrated cross sections. The formula derived in this paper is useful for Monte Carlo simulations of gas discharges.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000174549000088 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 57 Open Access  
  Notes Approved Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:40179 Serial 909  
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R.; Goedheer, W.J. url  doi
openurl 
  Title Local and fast relaxation phenomena after laser-induced photodetachment in a strongly electronegative rf discharge Type A1 Journal article
  Year 2002 Publication (down) Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages 016408  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000173407500073 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:37255 Serial 1823  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W. url  doi
openurl 
  Title Detailed modeling of hydrocarbon nanoparticle nucleation in acetylene discharges Type A1 Journal article
  Year 2006 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 73 Issue 2 Pages 026405,1-16  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The initial stage of nanoparticle formation and growth in radiofrequency acetylene (C2H2) plasmas is investigated by means of a self-consistent one-dimensional fluid model. A detailed chemical kinetic scheme, containing electron impact, ion-neutral, and neutral-neutral reactions, has been developed in order to predict the underlying dust growth mechanisms and the most important dust precursors. The model considers 41 different species (neutrals, radicals, ions, and electrons) describing hydrocarbons (CnHm) containing up to 12 carbon atoms. Possible routes for particle growth are discussed. Both positive and negative ion reaction pathways are considered, as consecutive anion- and cation-molecule reactions seem to lead to a fast build up of the carbon skeleton.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000235667700086 Publication Date 2006-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 89 Open Access  
  Notes Approved Most recent IF: 2.366; 2006 IF: 2.438  
  Call Number UA @ lucian @ c:irua:56337 Serial 666  
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons Type A1 Journal article
  Year 2005 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 72 Issue Pages 056402,1-11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In dc magnetrons the electrons emitted from the cathode may return there due to the applied magnetic field. When that happens, they can be recaptured or reflected back into the discharge, depending on the value of the reflection coefficient (RC). A 2d3v (two-dimensional in coordinate and three-dimensional in velocity space) particle-in-cellMonte Carlo model, including an external circuit, is developed to determine the role of the electron recapture in the discharge processes. The detailed discharge structure as a function of RC for two pressures (4 and 25mtorr) is studied. The importance of electron recapture is clearly manifested, especially at low pressures. The results indicate that the discharge characteristics are dramatically changed with varying RC between 0 and 1. Thus, the electron recapture at the cathode appears to be a significant mechanism in magnetron discharges and RC a very important parameter in their correct quantitative description that should be dealt with cautiously.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000233603200089 Publication Date 2005-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:54667 Serial 1621  
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Kinetic modeling of relaxation phenomena after photodetachment in a rf electronegative SiH4 discharge Type A1 Journal article
  Year 2001 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 63 Issue 2Part 2 Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The global relaxation process after pulsed laser induced photodetachment in a rf electronegative SIH4 discharge is studied by a self-consistent kinetic one-dimensional particle-in-cell-Monte Carlo model. Our results reveal a comprehensive physical picture of the relaxation process, including the main plasma variables, after a perturbation up to the full recovery of the steady state. A strong influence of the photodetachment on the discharge is found, which results from an increase of the electron density, leading to a weaker bulk field, and hence to a drop in the high energy tail of the electron energy distribution function (EEDF), a reduction of the reaction rates of electron impact attachment and ionization, and a subsequent decrease of the positive and negative ion densities. All the plasma quantities related to electrons recover synchronously. The recovery time of the ion densities is about 1-2 orders of magnitude longer than that of the electrons due to different recovery mechanisms. The modeled behavior of all the charged particles agrees very well with experimental results from the literature. In addition, our work clarifies some unclear processes assumed in the literature, such as the relaxation of the EEDF, the evolution of the electric field, and the recovery of negative ions.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000167022500057 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.366; 2001 IF: 2.235  
  Call Number UA @ lucian @ c:irua:34148 Serial 1757  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W. url  doi
openurl 
  Title Modeling of the formation and transport of nanoparticles in silane plasmas Type A1 Journal article
  Year 2004 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 70 Issue Pages 056407,1-8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The behavior of nanoparticles in a low-pressure silane discharge is studied with the use of a self-consistent one-dimensional fluid model. Nanoparticles of a given (prescribed) radius are formed in the discharge by the incorporation of a dust growth mechanism, i.e., by including a step in which large anions (typically Si12H−25), produced in successive chemical reactions of anions with silane molecules, are transformed into particles. Typically a few thousand anions are used for one nanoparticle. The resulting particle density and the charge on the particles are calculated with an iterative method. While the spatial distribution and the charge of the particles are influenced by the plasma, the presence of the nanoparticles will in turn influence the plasma properties. Several simulations with different particle radii are performed. The resulting density profile of the dust will greatly depend on the particle size, as it reacts to the shift of the balance of the different forces acting on the particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225970700092 Publication Date 2004-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:49432 Serial 2132  
Permanent link to this record
 

 
Author Liu, Y.H.; Chen, Z.Y.; Yu, M.Y.; Bogaerts, A. url  doi
openurl 
  Title Multiple void formation in plasmas containing multispecies charged grains Type A1 Journal article
  Year 2006 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 74 Issue Pages 056401,1-6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000242408800037 Publication Date 2006-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 21 Open Access  
  Notes Approved Most recent IF: 2.366; 2006 IF: 2.438  
  Call Number UA @ lucian @ c:irua:60424 Serial 2233  
Permanent link to this record
 

 
Author Georgieva, V.; Bogaerts, A. url  doi
openurl 
  Title Negative ion behavior in single- and dual-frequency plasma etching reactors: particle-in-cell/Monte Carlo collision study Type A1 Journal article
  Year 2006 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 73 Issue 3 Pages 036402,1-9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000236467700081 Publication Date 2006-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.366; 2006 IF: 2.438  
  Call Number UA @ lucian @ c:irua:57764 Serial 2290  
Permanent link to this record
 

 
Author Georgieva, V.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Numerical investigation of ion energy distribution functions in single and dual frequency capacitively coupled plasma reactors Type A1 Journal article
  Year 2004 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 69 Issue Pages 026406  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220255500058 Publication Date 2004-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 97 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:44025 Serial 2395  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Gijbels, R.; Goedheer, W. doi  openurl
  Title Numerical investigation of particle formation mechanisms in silane discharges Type A1 Journal article
  Year 2004 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 69 Issue Pages 056409,1-16  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000221813400085 Publication Date 2004-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 74 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:45497 Serial 2396  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W. url  doi
openurl 
  Title Role of the thermophoretic force on the transport of nanoparticles in dusty silane plasmas Type A1 Journal article
  Year 2005 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 066405,1-9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000230275000081 Publication Date 2005-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:52907 Serial 2927  
Permanent link to this record
 

 
Author Liu, Y.H.; Chen, Z.Y.; Yu, M.Y.; Wang, L.; Bogaerts, A. url  doi
openurl 
  Title Structure of multispecies charged particles in a quadratic trap Type A1 Journal article
  Year 2006 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 73 Issue Pages 047402,1-4  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000237146800099 Publication Date 2006-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.366; 2006 IF: 2.438  
  Call Number UA @ lucian @ c:irua:57859 Serial 3312  
Permanent link to this record
 

 
Author Cao, L.-H.; Yu, W.; Xu, H.; Zheng, C.-Y.; Liu, Z.-J.; Li, B.; Bogaerts, A. url  doi
openurl 
  Title Terahertz radiation from oscillating electrons in laser-induced wake fields Type A1 Journal article
  Year 2004 Publication (down) Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 70 Issue Pages 046408,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Strong terahertz (1THz=1012Hz) radiation can be generated by the electron oscillation in fs-laser-induced wake fields. The interaction of a fs-laser pulse with a low-density plasma layer is studied in detail using numerical simulations. The spatial distribution and temporal evolution of terahertz electron current developed in a low-density plasma layer are presented, which enables us to calculate the intensity distribution of THz radiation. It is shown that laser and plasma parameters, such as laser intensity, pulse width, and background plasma density, are of key importance to the process. The optimum condition for wake-field excitation and terahertz emission is discussed upon the simulation results. Radiation peaked at 6.4 THz, with 900 fs duration and 9% bandwidth, can be generated in a plasma of density 5×1017cm−3. It turns out that the maximum radiation intensity scales as n03a04 when wake field is resonantly excited, where n0 and a0 are, respectively, the plasma density and the normalized field amplitude of the laser pulse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225689600086 Publication Date 2004-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:49818 Serial 3509  
Permanent link to this record
 

 
Author Bogaerts, R.; Herlach, F.; de Keyser, A.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Brehmer, D.; Allen, S.J. doi  openurl
  Title Experimental determination of the Fermi surface of thin Sc1-xErxAs epitaxial layers in pulsed magnetic fields Type A1 Journal article
  Year 1996 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 53 Issue Pages 15951-15963  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996UT77000086 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 9 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15794 Serial 1137  
Permanent link to this record
 

 
Author Hayne, M.; Jones, C.L.; Bogaerts, R.; Riva, C.; Usher, A.; Peeters, F.M.; Herlach, F.; Moshchalkov, V.V.; Henini, M. doi  openurl
  Title Photoluminescence of negatively charged excitons in high magnetic fields Type A1 Journal article
  Year 1999 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 59 Issue Pages 2927-2931  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000078463100064 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 86 Open Access  
  Notes Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:24158 Serial 2614  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Modeling of metastable argon atoms in a direct current glow discharge Type A1 Journal article
  Year 1995 Publication (down) Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 52 Issue Pages 3743-3751  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1995TE17300053 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.808 Times cited 98 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:12263 Serial 2129  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: