toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Altantzis, T.; Wang, D.; Kadu, A.; van Blaaderen, A.; Bals, S.
  Title Optimized 3D Reconstruction of Large, Compact Assemblies of Metallic Nanoparticles Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 47 Pages 26240-26246
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract 3D characterization of assemblies of nanoparticles is of great importance to determine their structure-property connection. Such investigations become increasingly more challenging when the assemblies become larger and more compact. In this paper, we propose an optimized approach for electron tomography to minimize artefacts related to beam broadening in High Angle Annular Dark-Field Scanning Transmission Electron Microscopy mode. These artefacts are typically present at one side of the reconstructed 3D data set for thick nanoparticle assemblies. To overcome this problem, we propose a procedure in which two tomographic tilt series of the same sample are acquired. After acquiring the first series, the sample is flipped over 180o, and a second tilt series is acquired. By merging the two reconstructions, blurring in the reconstructed volume is minimized. Next, this approach is combined with an advanced three-dimensional reconstruction algorithm yielding quantitative structural information. Here, the approach is applied to a thick and compact assembly of spherical Au nanoparticles, but the methodology can we used to investigate a broad range of samples.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000752810100031 Publication Date 2021-12-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 4 Open Access OpenAccess
  Notes This work was supported by the European Research Council (grant No. 815128−REALNANO to S.B.). T.A. acknowledges the University of Antwerp Research fund (BOF). D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union’s Seventh Framework Program (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom).; sygmaSB Approved Most recent IF: 4.536
  Call Number EMAT @ emat @c:irua:185224 Serial 6904
Permanent link to this record
 

 
Author Akbali, B.; Yagmurcukardes, M.; Peeters, F.M.; Lin, H.-Y.; Lin, T.-Y.; Chen, W.-H.; Maher, S.; Chen, T.-Y.; Huang, C.-H.
  Title Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced Raman spectroscopy and density functional theory simulations Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 29 Pages 16289-16295
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We report here the efficacy of surface-enhanced Raman spectroscopy (SERS) measurements as a probe for molecular orientation. 4-Aminobenzoic acid (PABA) on a surface consisting of silver (Ag) nanoparticles (NPs) is investigated. We find that the orientation of the PABA molecule on the SERS substrate is estimated based on the relative change in the magnitude of the C-H stretching bands on the SERS substrate, and it is found that the molecule assumes a horizontal orientation on the Ag-NP surface. The strong molecule-metal interaction is determined by an abnormal enhanced SERS band appearing at 980 cm(-1), and the peak is assigned to an out-of-plane amine vibrational mode, which is supported by our ab initio calculations. DFT-based Raman activity calculations corroborate the SERS results, revealing that (i) the PABA molecule attaches to the surface of Ag-NPs with its alpha dimers rather than single-molecule binding and (ii) the molecule preserves its alpha dimers in an aqueous environment. Our results demonstrate that SERS can be used to gain deeper insights into the molecular orientation on metal nanoparticle surfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000680445800055 Publication Date 2021-07-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 9 Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:180455 Serial 6978
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Mortazavi, B.; Ziabari, A.A.; Khatibani, A.B.; Nguyen, C., V; Ghergherehchi, M.; Gogova, D.
  Title Point defects in a two-dimensional ZnSnN₂ nanosheet : a first-principles study on the electronic and magnetic properties Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 23 Pages 13067-13075
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The reduction of dimensionality is a very effective way to achieve appealing properties in two-dimensional materials (2DMs). First-principles calculations can greatly facilitate the prediction of 2DM properties and find possible approaches to enhance their performance. We employed first-principles calculations to gain insight into the impact of different types of point defects (vacancies and substitutional dopants) on the electronic and magnetic properties of a ZnSnN2 (ZSN) monolayer. We show that Zn, Sn, and N + Zn vacancy-defected structures are p-type conducting, while the defected ZSN with a N vacancy is n-type conducting. For substitutional dopants, we found that all doped structures are thermally and energetically stable. The most stable structure is found to be B-doping at the Zn site. The highest work function value (5.0 eV) has been obtained for Be substitution at the Sn site. Li-doping (at the Zn site) and Be-doping (at the Sn site) are p-type conducting, while B-doping (at the Zn site) is n-type conducting. We found that the considered ZSN monolayer-based structures with point defects are magnetic, except those with the N vacancy defects and Be-doped structures. The ab initio molecular dynamics simulations confirm that all substitutionally doped and defected structures are thermally stable. Thus, our results highlight the possibility of tuning the magnetism in ZnSnN2 monolayers through defect engineering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000664312500063 Publication Date 2021-06-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:179741 Serial 7012
Permanent link to this record
 

 
Author Canossa, S.; Ferrari, E.; Sippel, P.; Fischer, J.K.H.; Pfattner, R.; Frison, R.; Masino, M.; Mas-Torrent, M.; Lunkenheimer, P.; Rovira, C.; Girlando, A.
  Title Tetramethylbenzidine-TetrafluoroTCNQ (TMB-TCNQF(4)) : a narrow-gap semiconducting salt with room-temperature relaxor ferroelectric behavior Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 46 Pages 25816-25824
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract We present an extension and revision of the spectroscopic and structural data of the mixed-stack charge-transfer (CT) crystal 3,3 ',5,5 '-tetramethylbenzidine-tetrafluorotetracyano-quinodimethane (TMB-TCNQF4), associated with new electric and dielectric measurements. Refinement of synchrotron structural data at low temperature has led to revise the previously reported C2/m structure. The revised structure is P2(1)/m, with two dimerized stacks per unit cell, and is consistent with the low temperature vibrational data. However, polarized Raman data in the low-frequency region also indicate that by increasing temperature above 200 K, the structure presents an increasing degree of disorder, mainly along the stack axis. X-ray diffraction data at room temperature have confirmed that the correct structure is P2(1)/ m -no phase transitions -but did not allow substantiating the presence of disorder. On the other hand, dielectric measurements have evidenced a typical relaxor ferroelectric behavior already at room temperature, with a peak in the real part of dielectric constant epsilon'(T,v) around 200 K and 0.1 Hz. The relaxor behavior is explained in terms of the presence of spin solitons separating domains of opposite polarity that yield to ferroelectric nanodomains. TMB-TCNQF(4) is confirmed to be a narrow-gap band semiconductor (Ea similar to 0.3 eV) with a room-temperature conductivity of similar to 10(-4) Omega(-1) cm(-1).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000731170500008 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited Open Access Not_Open_Access
  Notes A.G. thanks Prof. Pascale Foury-Leylekian for very helpful discussions about the crystallographic issues. R.F. thanks Prof. Anthony Linden for his help in the X-ray diffraction data collection. J.K.H.F. and P.L. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Center TRR80 (Augsburg, Munich). R.P. and M.M.-T. acknowledge support from the Marie Curie Cofund, Beatriu de Pinós Fellowships (Grant nos. AGAUR 2017 BP 00064). This work was also supported by the Spanish Ministry project GENESIS PID2019-111682RBI00, the “Severo Ochoa” Programme for Centers of Excellence in R&D (FUNFUTURE, CEX2019-000917-S), and the Generalitat de Catalunya (2017-SGR-918). The Elettra Synchrotron (CNR Trieste) is acknowledged for granting the beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483). In Parma, the work has benefited from the equipment and support of the COMP-HUB Initiative, funded by the “Departments of Excellence” program of the Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:184866 Serial 7066
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
  Title Identification of a unique pyridinic FeN4Cx electrocatalyst for N₂ reduction : tailoring the coordination and carbon topologies Type A1 Journal article
  Year 2022 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 126 Issue 34 Pages 14460-14469
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Although the heterogeneity of pyrolyzed Fe???N???C materials is known and has been reported previously, the atomic structure of the active sites and their detailed reaction mechanisms are still unknown. Here, we identified two pyridinic Fe???N4-like centers with different local C coordinates, i.e., FeN4C8 and FeN4C10, and studied their electrocatalytic activity for the nitrogen reduction reaction (NRR) based on density functional theory (DFT) calculations. We also discovered the influence of the adsorption of NH2 as a functional ligand on catalyst performance on the NRR. We confirmed that the NRR selectivity of the studied catalysts is essentially governed either by the local C coordination or by the dynamic structure associated with the FeII/FeIII. Our investigations indicate that the proposed traditional pyridinic FeN4C10 has higher catalytic activity and selectivity for the NRR than the robust FeN4C8 catalyst, while it may have outstanding activity for promoting other (electro)catalytic reactions. <comment>Superscript/Subscript Available</comment
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000859545200001 Publication Date 2022-08-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.7
  Call Number UA @ admin @ c:irua:191469 Serial 7268
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C.
  Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 26 Pages 14409-14415
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000672734100027 Publication Date 2021-06-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:179850 Serial 7719
Permanent link to this record
 

 
Author Van de Sompel, P.; Khalilov, U.; Neyts, E.C.
  Title Contrasting H-etching to OH-etching in plasma-assisted nucleation of carbon nanotubes Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 14 Pages 7849-7855
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract To gain full control over the growth of carbon nanotubes (CNTs) using plasma-enhanced chemical vapor deposition (PECVD), a thorough understanding of the underlying plasma-catalyst mechanisms is required. Oxygen-containing species are often used as or added to the growth precursor gas, but these species also yield various radicals and ions, which may simultaneously etch the CNT during the growth. At present, the effect of these reactive species on the growth onset has not yet been thoroughly investigated. We here report on the etching mechanism of incipient CNT structures from OH and O radicals as derived from combined (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations. Our results indicate that the oxygen-containing radicals initiate a dissociation process. In particular, we show how the oxygen species weaken the interaction between the CNT and the nanocluster. As a result of this weakened interaction, the CNT closes off and dissociates from the cluster in the form of a fullerene. Beyond the specific systems studied in this work, these results are generically important in the context of PECVD-based growth of CNTs using oxygen-containing precursors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000641307100032 Publication Date 2021-04-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record
  Impact Factor 4.536 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:178393 Serial 7729
Permanent link to this record
 

 
Author Nematollahi, P.; Ma, H.; Schneider, W.F.; Neyts, E.C.
  Title DFT and microkinetic comparison of ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 34 Pages 18673-18683
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Immobilization of single metal atoms on a solid host opens numerous possibilities for catalyst designs. If that host is a two-dimensional sheet, sheet curvature becomes a design parameter potentially complementary to host and metal composition. Here, we use a combination of density functional theory calculations and microkinetic modeling to compare the mechanisms and kinetics of formic acid decomposition and formation, chosen for their relevance as a potential hydrogen storage medium, over single Ru atoms anchored to pyridinic nitrogen in a planar graphene flake (RuN4-G) and curved carbon nanotube (RuN4-CNT). Activation barriers are lowered and the predicted turnover frequencies are increased over RuN4-CNT relative to RuN4-CNT. The results highlight the potential of curvature control as a means to achieve high performance and robust catalysts.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000693413400013 Publication Date 2021-08-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:181538 Serial 7805
Permanent link to this record
 

 
Author Gjerding, M.N.; Cavalcante, L.S.R.; Chaves, A.; Thygesen, K.S.
  Title Efficient Ab initio modeling of dielectric screening in 2D van der Waals materials : including phonons, substrates, and doping Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 124 Issue 21 Pages 11609-11616
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The quantum electrostatic heterostructure (QEH) model allows for efficient computation of the dielectric screening properties of layered van der Waals (vdW)-bonded heterostructures in terms of the dielectric functions of the individual two-dimensional (2D) layers. Here, we extend the QEH model by including (1) contributions to the dielectric function from infrared active phonons in the 2D layers, (2) screening from homogeneous bulk substrates, and (3) intraband screening from free carriers in doped 2D semiconductor layers. We demonstrate the potential of the extended QEH model by calculating the dispersion of coupled phonons in multilayer stacks of hexagonal boron-nitride (hBN), the strong hybridization of plasmons and optical phonons in graphene/hBN heterostructures, the effect of substrate screening on the exciton series of monolayer MoS2, and the properties of hyperbolic plasmons in a doped phosphorene sheet. The new QEH code is distributed as a Python package with a simple command line interface and a comprehensive library of dielectric building blocks for the most common 2D materials, providing an efficient open platform for dielectric modeling of realistic vdW heterostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000614615900022 Publication Date 2020-05-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited Open Access
  Notes Approved Most recent IF: 3.7; 2020 IF: 4.536
  Call Number UA @ admin @ c:irua:176187 Serial 7852
Permanent link to this record
 

 
Author Korkmaz, Y.A.; Bulutay, C.; Sevik, C.
  Title k · p parametrization and linear and circular dichroism in strained monolayer (Janus) transition metal dichalcogenides from first-principles Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 125 Issue 13 Pages 7439-7450
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Semiconductor monolayer transition metal dichalcogenides (TMDs) have brought a new paradigm by introducing optically addressable valley degree of freedom. Concomitantly, their high flexibility constitutes a unique platform that links optics to mechanics via valleytronics. With the intention to expedite the research in this direction, we investigated ten TMDs, namely MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, MoSSe, MoSeTe, WSSe, and WSeTe, which particularly includes their so-called janus types (JTMDs). First, we obtained their electronic band structures using regular and hybrid density functional theory (DFT) calculations in the presence of the spin-orbit coupling and biaxial or uniaxial strain. Our DFT results indicated that against the expectations based on their reported piezoelectric behavior, JTMDs typically interpolated between the standard band properties of the constituent TMDs without producing a novel feature. Next, by fitting to our DFT data we generated both spinless and spinful k center dot p parameter sets which are quite accurate over the K valley where the optical activity occurs. As an important application of this parametrization, we considered the circular and linear dichroism under strain. Among the studied (J)TMDs, WTe2 stood out with its largest linear dichroism under uniaxial strain because of its narrower band gap and large K valley uniaxial deformation potential. This led us to suggest WTe2 monolayer membranes for optical polarization-based strain measurements, or conversely, as strain tunable optical polarizers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000639044400045 Publication Date 2021-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.536
  Call Number UA @ admin @ c:irua:178264 Serial 8136
Permanent link to this record
 

 
Author Bal, K.M.; Bogaerts, A.; Neyts, E.C.
  Title Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 11 Issue 2 Pages 401-406
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We present an approach to incorporate the effect of vibrational nonequilibrium in molecular dynamics (MD) simulations. A perturbed canonical ensemble, in which selected modes are excited to higher temperature while all others remain equilibrated at low temperature, is simulated by applying a specifically tailored bias potential. Our method can be readily applied to any (classical or quantum mechanical) MD setup at virtually no additional computational cost and allows the study of reactions of vibrationally excited molecules in nonequilibrium environments such as plasmas. In combination with enhanced sampling methods, the vibrational efficacy and mode selectivity of vibrationally stimulated reactions can then be quantified in terms of chemically relevant observables, such as reaction rates and apparent free energy barriers. We first validate our method for the prototypical hydrogen exchange reaction and then show how it can capture the effect of vibrational excitation on a symmetric SN2 reaction and radical addition on CO2.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000508473400008 Publication Date 2020-01-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited Open Access
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Departement Economie, Wetenschap en Innovatie van de Vlaamse Overheid; K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation − Flanders), Grant 12ZI420N, and through a TOP-BOF research project of the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government− department EWI. Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number PLASMANT @ plasmant @c:irua:165587 Serial 5442
Permanent link to this record
 

 
Author González-Rubio, G.; Milagres de Oliveira, T.; Albrecht, W.; Díaz-Núñez, P.; Castro-Palacio, J.C.; Prada, A.; González, R.I.; Scarabelli, L.; Bañares, L.; Rivera, A.; Liz-Marzán, L.M.; Peña-Rodríguez, O.; Bals, S.; Guerrero-Martínez, A.
  Title Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 11 Issue 11 Pages 670-677
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The irradiation of spherical gold nanoparticles (AuNPs) with nanosecond laser pulses induces shape transformations yielding nanocrystals with an inner cavity. The concentration of the stabilizing surfactant, the use of moderate pulse fluences, and the size of the irradiated AuNPs determine the efficiency of the process and the nature of the void. Hollow nanocrystals are obtained when molecules from the surrounding medium (e.g., water and organic matter derived from the surfactant) are trapped during laser pulse irradiation. These experimental observations suggest the existence of a subtle balance between the heating and cooling processes experienced by the nanocrystals, which induce their expansion and subsequent recrystallization keeping exogenous matter inside. The described approach provides valuable insight into the mechanism of interaction of pulsed nanosecond laser with AuNPs, along with interesting prospects for the development of hollow plasmonic nanoparticles with potential applications related to gas and liquid storage at the nanoscale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000512223400012 Publication Date 2020-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited 15 Open Access OpenAccess
  Notes This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00, PGC2018-096444-B-I00, ENE2015-70300-C3-3, and MAT2017-86659-R), the EUROfusion Consortium (Grant ENR-IFE19.CCFE-01) and the Madrid Regional Government (Grants P2018/NMT-4389 and P2018/EMT-4437). This project has received funding from the European Commission (grant 731019, EUSMI & grant 823717, ESTEEM3). The publication is based also upon work from COST Action TUMIEE (CA17126). The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by the Centro de Supercomputacion y Visualizacion de Madrid (CeSViMa). L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant MDM-2017-0720). This project has also received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant 797153, SOPMEN). A.P. and R.I.G. acknowledge the support of FONDECYT under Grants 3190123 and 11180557 and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number EMAT @ emat @c:irua:166504 Serial 6334
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M.
  Title Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 11 Issue 17 Pages 7363-7370
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000569375400061 Publication Date 2020-08-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited 35 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number UA @ admin @ c:irua:171996 Serial 6546
Permanent link to this record
 

 
Author Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z.
  Title Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 11 Issue 9 Pages 3339-3344
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000535177500024 Publication Date 2020-05-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited 24 Open Access OpenAccess
  Notes Universiteit Gent, GOA 01G01019 ; Fonds Wetenschappelijk Onderzoek, 17006602 FWO17/PDO/184 ; H2020 European Research Council, 714876 Phocona 815128 Realnano ; SIM-Flanders, SBO-QDOCCO ; Z.H. and S.B. acknowledge support by SIM-Flanders (SBO-QDOCCO). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602). Z.H. and I.M. acknowledge support by Ghent University (GOA n◦ 01G01019). J.L. acknowledges FWO-vlaanderen for a fellowship (SB PhD fellow at FWO). Sh.S acknowledges FWO postdoctoral funding (FWO17/PDO/184). This project has further received funding from the European Research Counsil under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator grant no. 815128 REALNANO and starting grant no. 714876 PHOCONA).; sygma Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number EMAT @ emat @c:irua:173994 Serial 6657
Permanent link to this record
 

 
Author Gerrits, N.
  Title Accurate simulations of the reaction of H₂ on a curved Pt crystal through machine learning Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 12 Issue 51 Pages 12157-12164
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Theoretical studies on molecule-metal surface reactions have so far been limited to small surface unit cells due to computational costs. Here, for the first time molecular dynamics simulations on very large surface unit cells at the level of density functional theory are performed, allowing a direct comparison to experiments performed on a curved crystal. Specifically, the reaction of D-2 on a curved Pt crystal is investigated with a neural network potential (NNP). The developed NNP is also accurate for surface unit cells considerably larger than those that have been included in the training data, allowing dynamical simulations on very large surface unit cells that otherwise would have been intractable. Important and complex aspects of the reaction mechanism are discovered such as diffusion and a shadow effect of the step. Furthermore, conclusions from simulations on smaller surface unit cells cannot always be transfered to larger surface unit cells, limiting the applicability of theoretical studies of smaller surface unit cells to heterogeneous catalysts with small defect densities.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000734045900001 Publication Date 2021-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.353 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 9.353
  Call Number UA @ admin @ c:irua:184717 Serial 7413
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Rozova, M.G.; Pavljuk, B.P.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G.
  Title Synthesis and crystal structure of a new complex oxyfluoride La0.813Sr0.187Cu(o,F)3-\delta Type A1 Journal article
  Year 2000 Publication (up) Journal of solid state cemistry Abbreviated Journal J Solid State Chem
  Volume 149 Issue Pages 189-196
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000085229200027 Publication Date 2002-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 8 Open Access
  Notes Approved Most recent IF: 2.299; 2000 IF: 1.527
  Call Number UA @ lucian @ c:irua:29280 Serial 3422
Permanent link to this record
 

 
Author He, Z.B.; Deng, G.; Tian, H.; Xu, Q.; Van Tendeloo, G.
  Title 90° Rotation of orbital stripes in bilayer manganite PrCa2Mn2O7 studied by in situ transmission electron microscopy Type A1 Journal article
  Year 2013 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 200 Issue Pages 287-293
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We present an in situ transmission electron microscopy study on the half-doped bilayer manganite PrCa2Mn2O7 to reveal the rotation process of the orbital stripes. Between the reported initial and final ordering phases, we identified an intermediate state with two sets of satellite spots to bridge the 90° rotation of the orbital stripes. Furthermore, we determined that the rotation of the orbital stripes does not always occur. Some restricted conditions for the orbital rotation to occur were found and reasons are discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000317158000043 Publication Date 2013-02-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 5 Open Access
  Notes Countatoms Approved Most recent IF: 2.299; 2013 IF: 2.200
  Call Number UA @ lucian @ c:irua:106183 Serial 20
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Shpanchenko, R.V.; Oleinikov, P.N.; Antipov, E.V.
  Title Anion ordering in fluorinated La2CuO4 Type A1 Journal article
  Year 1999 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 142 Issue Pages 311-322
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000078597400024 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 20 Open Access
  Notes Approved Most recent IF: 2.299; 1999 IF: 1.547
  Call Number UA @ lucian @ c:irua:29277 Serial 121
Permanent link to this record
 

 
Author Yang, T.; Perkisas, T.; Hadermann, J.; Croft, M.; Ignatov, A.; Greenblatt, M.
  Title B-site ordered perovskite LaSrMnNbO6 : synthesis, structure and antiferromagnetism Type A1 Journal article
  Year 2010 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 183 Issue 11 Pages 2689-2694
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract LaSrMnNbO6 has been synthesized by high temperature solid state reaction under 1% H2/Ar dynamic flow. The structure is determined by Rietveld refinement of the powder X-ray diffraction data. It crystallizes in the monoclinic space group P21/n with the unit cell parameters: a=5.69187(12), b=5.74732(10), c=8.07018(15) Å and β=90.0504(29)°, which were also confirmed by electron diffraction. The Mn2+ and Nb5+ ions, whose valence states are confirmed by X-ray absorption near-edge spectroscopy, are almost completely ordered over the B-site (<1% inversion) of the perovskite structure due to the large differences of both cationic size (0.19 Å) and charge. The octahedral framework displays significant tilting distortion according to Glazers tilt system a−b−c+. Upon heating, LaSrMnNbO6 decomposes at 690 °C under O2 flow or at 775 °C in air. The magnetic susceptibility data indicate the presence of long-range antiferromagnetic ordering at TN=8 K; the experimentally observed effective paramagnetic moment, μeff=5.76 μB for high spin Mn2+ (3d5, S=5/2) is in good agreement with the calculated value (μcalcd=5.92 μB).
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000284179800028 Publication Date 2010-09-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 13 Open Access
  Notes Esteem 026019 Approved Most recent IF: 2.299; 2010 IF: 2.261
  Call Number UA @ lucian @ c:irua:85805 Serial 212
Permanent link to this record
 

 
Author Van Tendeloo, G.; De Meulenaere, P.; Letouzé, F.; Martin, C.; Hervieu, M.; Raveau, B.
  Title Cation ordering in [(Tl, M)O] layers of “1202”-based cuprates : similarity to ordering in fcc-based alloys Type A1 Journal article
  Year 1997 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 132 Issue Pages 113-122
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract ''1201'' Tl-based substituted cuprates of the type (Tl1-xMx) Sr2CuO5 have been synthesized for M = Nb, Ta, or W. These materials do not superconduct due to a statistical distribution of some of the M for Cu. The remarkable feature of these materials is the ordering observed between Tl and M in the (Tl1-xMx-epsilon)O plane. The type of ordering depends on the composition and shows remarkable similarities with the ordering in Ni-Mo or other so-called 1 1/2 0 type fcc-based alloys or with the ordering in rocksalt oxides TiOx. The short-range order, for M = W, can be readily interpreted in terms of a mixing of nano-clusters with two different compositions. These observations of two-dimensional ordering confirm recent ideas about ordering in three-dimensional fcc-based alloys.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1997XY68900015 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 2 Open Access
  Notes Approved Most recent IF: 2.299; 1997 IF: 1.486
  Call Number UA @ lucian @ c:irua:21448 Serial 299
Permanent link to this record
 

 
Author Abakumov, A.M.; d' Hondt, H.; Rossell, M.D.; Tsirlin, A.A.; Gutnikova, O.; Filimonov, D.S.; Schnelle, W.; Rosner, H.; Hadermann, J.; Van Tendeloo, G.; Antipov, E.V.
  Title Coupled anion and cation ordering in Sr3RFe4O10.5 (R=Y, Ho, Dy) anion-deficientperovskites Type A1 Journal article
  Year 2010 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 183 Issue 12 Pages 2845-2854
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The Sr3RFe4O10.5 (R=Y, Ho, Dy) anion-deficient perovskites were prepared using a solid-state reaction in evacuated sealed silica tubes. Transmission electron microscopy and 57Fe Mössbauer spectroscopy evidenced a complete A-cations and oxygen vacancies ordering. The structure model was further refined by ab initio structure relaxation, based on density functional theory calculations. The compounds crystallize in a tetragonal a≈2√2ap≈11.3 Å, с≈4сp≈16 Å unit cell (ap: parameter of the perovskite subcell) with the P42/mnm space group. Oxygen vacancies reside in the (FeO5/4□3/4) layers, comprising corner-sharing FeO4 tetrahedra and FeO5 tetragonal pyramids, which are sandwiched between the layers of the FeO6 octahedra. Smaller R atoms occupy the 9-fold coordinated position, whereas the 10-fold coordinated positions are occupied by larger Sr atoms. The Fe sublattice is ordered aniferromagnetically up to at least 500 K, while the rare-earth sublattice remains disordered down to 2 K.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000285431100014 Publication Date 2010-10-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 8 Open Access
  Notes Approved Most recent IF: 2.299; 2010 IF: 2.261
  Call Number UA @ lucian @ c:irua:88071 Serial 533
Permanent link to this record
 

 
Author Tarakina, N.V.; Nikulina, E.A.; Hadermann, J.; Kellerman, D.G.; Tyutunnik, A.P.; Berger, I.F.; Zubkov, V.G.; Van Tendeloo, G.
  Title Crystal structure and magnetic properties of complex oxides Mg4-xNixO9, 0\leq x\leq4 Type A1 Journal article
  Year 2007 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 180 Issue 11 Pages 3180-3187
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In the Mg4−xNixNb2O9 (0x4) system two ranges of solid solution have been found. One of the solid solutions has a corundum-related structure type (space group ); the second one adopts the II-Ni4Nb2O9 structure type (space group Pbcn). The unit cell constants and atomic positions have been determined and refined using neutron powder diffraction data. Electron diffraction and high-resolution transmission electron microscopy (HRTEM) from MgNi3Nb2O9 crystals identify the presence of planar defects and the intergrowth of several (structurally related) phases. The magnetic susceptibility of Mg3NiNb2O9, measured in the temperature range T=2300 K, shows no indications of magnetic ordering at low temperatures, while for MgNi3Nb2O9 there is a magnetic ordering at temperatures below 45.5 K.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000260636200025 Publication Date 2007-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 3 Open Access
  Notes Belgium Science Policy Approved Most recent IF: 2.299; 2007 IF: 2.149
  Call Number UA @ lucian @ c:irua:72944 Serial 559
Permanent link to this record
 

 
Author Chernaya, V.V.; Tsirlin, A.A.; Shpanchenko, R.V.; Antipov, E.V.; Gippius, A.A.; Morozova, E.N.; Dyakov, V.; Hadermann, J.; Kaul, E.E.; Geibel, C.
  Title Crystal structure and properties of the new vanadyl(IV)phosphates Na2MVO(PO4)2 M=Ca and Sr Type A1 Journal article
  Year 2004 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 177 Issue Pages 2875-2880
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000223145500033 Publication Date 2004-08-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 6 Open Access
  Notes Approved Most recent IF: 2.299; 2004 IF: 1.815
  Call Number UA @ lucian @ c:irua:47317 Serial 565
Permanent link to this record
 

 
Author Abakumov, A.M.; Van Tendeloo, G.; Scheglov, A.A.; Shpanchenko, R.V.; Antipov, E.V.
  Title The crystal structure of Ba8Ta6NiO24: cation ordering in hexagonal perovskites Type A1 Journal article
  Year 1996 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 125 Issue Pages 102-107
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1996VB31300015 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.133 Times cited 38 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:16868 Serial 569
Permanent link to this record
 

 
Author Abakumov, A.M.; Shpanchenko, R.V.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G.
  Title The crystal structure of Ca3ReO6 Type A1 Journal article
  Year 1997 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 131 Issue Pages 305-309
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1997XQ33000014 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 10 Open Access
  Notes Approved Most recent IF: 2.299; 1997 IF: 1.486
  Call Number UA @ lucian @ c:irua:21442 Serial 571
Permanent link to this record
 

 
Author Sullivan, E.; Hadermann, J.; Greaves, C.
  Title Crystallographic and magnetic characterisation of the brownmillerite Sr2Co2O5 Type A1 Journal article
  Year 2011 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 184 Issue 3 Pages 649-654
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Sr2Co2O5 with the perovskite-related brownmillerite structure has been synthesised via quenching, with the orthorhombic unit cell parameters a=5.4639(3) Å, b=15.6486(8) Å and c=5.5667(3) Å based on refinement of neutron powder diffraction data collected at 4 K. Electron microscopy revealed LRLR-intralayer ordering of chain orientations, which require a doubling of the unit cell along the c-parameter, consistent with the assignment of the space group Pcmb. However, on the length scale pertinent to NPD, no long-range order is observed and the disordered space group Imma appears more appropriate. The magnetic structure corresponds to G-type order with a moment of 3.00(4) μB directed along [1 0 0].
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000288587800026 Publication Date 2011-01-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 19 Open Access
  Notes Approved Most recent IF: 2.299; 2011 IF: 2.159
  Call Number UA @ lucian @ c:irua:89650 Serial 584
Permanent link to this record
 

 
Author Nistor, L.C.; Van Tendeloo, G.; Amelinckx, S.
  Title Defects and phase transformation in monclinic natural hollandite: BaxMn8O16 Type A1 Journal article
  Year 1994 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 109 Issue Pages 152-165
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1994MY48800024 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.133 Times cited 13 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:10023 Serial 626
Permanent link to this record
 

 
Author Nistor, L.C.; Van Tendeloo, G.; Amelinckx, S.
  Title Defects and phase transition in monoclinic natural hollandite : BaxMn8O16 Type A1 Journal article
  Year 1994 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 109 Issue 1 Pages 152-165
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1994MY48800024 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.133 Times cited 13 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:99918 Serial 627
Permanent link to this record
 

 
Author Norén, L.; Ting, V.; Withers, R.L.; Van Tendeloo, G.
  Title An electron and X-ray diffraction investigation of Ni1+xTe2 and Ni1+xSe2CdI2/NiAs type solid solution phases Type A1 Journal article
  Year 2001 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 161 Issue 2 Pages 266-273
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000172466400012 Publication Date 2002-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 14 Open Access
  Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
  Call Number UA @ lucian @ c:irua:54712 Serial 908
Permanent link to this record
 

 
Author Volkov, V.V.; van Landuyt, J.; Amelinckx, S.; Pervov, V.S.; Makhonina, E.V.
  Title Electron microscopic and X-ray structural analysis of the layered crystals TaReSe4: structure, defect structure, and microstructure, including rotation twins Type A1 Journal article
  Year 1998 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 135 Issue Pages 235-255
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000072900200008 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.299; 1998 IF: 1.432
  Call Number UA @ lucian @ c:irua:29672 Serial 938
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: