|   | 
Details
   web
Records
Author Liu, R.; Hao, Y.; Wang, T.; Wang, L.; Bogaerts, A.; Guo, H.; Yi, Y.
Title Hybrid plasma-thermal system for methane conversion to ethylene and hydrogen Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 463 Issue Pages 142442
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract By combining dielectric barrier discharge plasma and external heating, we exploit a two-stage hybrid plasmathermal

system (HPTS), i.e., a plasma stage followed by a thermal stage, for direct non-oxidative coupling of

CH4 to C2H4 and H2, yielding a CH4 conversion of ca. 17 %. In the two-stage HPTS, the plasma first converts CH4

into C2H6 and C3H8, which in the thermal stage leads to a high C2H4 selectivity of ca. 63 % by pyrolysis, with H2

selectivity of ca. 64 %.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953890500001 Publication Date 2023-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This work was supported by the National Natural Science Foundation of China [22272015, 21503032], the Fundamental Research Funds for the Central Universities of China [DUT21JC40]. Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:195888 Serial 7253
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A.
Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 462 Issue Pages 142217
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000962382600001 Publication Date 2023-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7259
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A.
Title Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume Issue Pages 142953-29
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000986051300001 Publication Date 2023-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:195603 Serial 7264
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A.
Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
Year 2024 Publication (down) Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 481 Issue Pages 148684
Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168999200001 Publication Date 2024-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access
Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993
Permanent link to this record
 

 
Author De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A.
Title Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis Type A1 Journal Article
Year 2024 Publication (down) Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 488 Issue Pages 150838
Keywords A1 Journal Article; Gas conversion Dry reforming of methane Ammonia Microdischarges Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record
Impact Factor 15.1 Times cited Open Access
Notes This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:205154 Serial 9115
Permanent link to this record
 

 
Author Maerivoet, S.; Tsonev, I.; Slaets, J.; Reniers, F.; Bogaerts, A.
Title Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2 Type A1 Journal Article
Year 2024 Publication (down) Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 492 Issue Pages 152006
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract To support experimental research into gas conversion by warm plasmas, models should be developed to explain the experimental observations. These models need to describe all physical and chemical plasma properties in a coupled way. In this paper, we present a modelling approach to solve the complete set of assumed relevant equations, including gas flow, heat balance and species transport, coupled with a rather extensive chemistry set, consisting of 21 species, obtained by reduction of a more detailed chemistry set, consisting of 41 species. We apply this model to study the combined CO2 and CH4 conversion in the presence of O2, in a direct current atmospheric pressure glow discharge. Our model can predict the experimental trends, and can explain why higher O2 fractions result in higher CH4 conversion, namely due to the higher gas temperature, rather than just by additional chemical reactions. Indeed, our model predicts that when more O2 is added, the energy required to reach any set temperature (i.e., the enthalpy) drops, allowing the system to reach higher temperatures with similar amounts of energy. This is in turn related to the higher H2O fraction and lower H2 fraction formed in the plasma, as demonstrated by our model. Altogether, our new self-consistent model can capture the main physics and chemistry occurring in this warm plasma, which is an important step towards predictive modelling for plasma-based gas conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links
Impact Factor 15.1 Times cited Open Access
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID G0I1822N; EOS ID 40007511) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182–SCOPE ERC Synergy project, and grant agreement No. 101081162–PREPARE ERC Proof of Concept project). computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @ Serial 9132
Permanent link to this record
 

 
Author Torfs, E.; Vajs, J.; Bidart de Macedo, M.; Cools, F.; Vanhoutte, B.; Gorbanev, Y.; Bogaerts, A.; Verschaeve, L.; Caljon, G.; Maes, L.; Delputte, P.; Cos, P.; Komrlj, J.; Cappoen, D.
Title Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds Type A1 Journal article
Year 2017 Publication (down) Chemical biology and drug design Abbreviated Journal Chem Biol Drug Des
Volume Issue Pages 1-10
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The diverse pharmacological properties of the diaryltriazenes have sparked the interest to investigate their potential to be repurposed as antitubercular drug candidates. In an attempt to improve the antitubercular activity of a previously constructed diaryltriazene library, eight new halogenated nitroaromatic triazenides were synthesized and underwent biological evaluation. The potency of the series was confirmed against the Mycobacterium tuberculosis lab strain H37Ra, and for the most potent derivative, we observed a minimal inhibitory concentration of 0.85 μm. The potency of the triazenide derivatives against M. tuberculosis H37Ra was found to be highly dependent on the nature of the halogenated phenyl substituent and less dependent on cationic species used for the preparation of the salts. Although the inhibitory concentration against J774A.1 macrophages was observed at 3.08 μm, the cellular toxicity was not mediated by the generation of nitroxide intermediate as confirmed by electron paramagnetic resonance spectroscopy, whereas no in vitro mutagenicity could be observed for the new halogenated nitroaromatic triazenides when a trifluoromethyl substituent was present on both the aryl moieties.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000422952300027 Publication Date 2017-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1747-0277; 1747-0285; 1397-002x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.396 Times cited 5 Open Access OpenAccess
Notes Approved Most recent IF: 2.396
Call Number UA @ lucian @ c:irua:147182 Serial 4794
Permanent link to this record
 

 
Author Kelly, S.; Verheyen, C.; Cowley, A.; Bogaerts, A.
Title Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma Type A1 Journal article
Year 2022 Publication (down) Chem Abbreviated Journal Chem
Volume 8 Issue 10 Pages 2797-2816
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We explorethepotentialofmicrowave(MW)-plasma-based in situ

utilizationoftheMartianatmospherewithafocusonthenovelpos-

sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant

plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-

ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource

UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-

verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation

facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.

PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and

1.25g/h,respectively,arerecordedwithcorrespondingenergy

costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2

productionratesare 30 timeshigherthanthosedemonstrated

by MOXIE,whiletheNOx production raterepresentsan 7% fixa-

tionoftheN2 fraction presentintheMartian atmosphere.MW-

plasma-basedconversionthereforeshowsgreatpotentialasan in

situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-

neouslyfixesN2 and producesO2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000875346600005 Publication Date 2022-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2451-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 23.5 Times cited Open Access OpenAccess
Notes the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. Approved Most recent IF: 23.5
Call Number PLASMANT @ plasmant @c:irua:192174 Serial 7243
Permanent link to this record
 

 
Author Deben, C.; Cardenas De La Hoz, E.; Le Compte, M.; Van Schil, P.; Hendriks, J.M.H.; Lauwers, P.; Yogeswaran, S.K.; Lardon, F.; Pauwels, P.; van Laere, S.; Bogaerts, A.; Smits, E.; Vanlanduit, S.; Lin, A.
Title OrBITS : label-free and time-lapse monitoring of patient derived organoids for advanced drug screening Type A1 Journal article
Year 2022 Publication (down) Cellular Oncology (2211-3428) Abbreviated Journal Cell Oncol
Volume Issue Pages 1-16
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)
Abstract Background Patient-derived organoids are invaluable for fundamental and translational cancer research and holds great promise for personalized medicine. However, the shortage of available analysis methods, which are often single-time point, severely impede the potential and routine use of organoids for basic research, clinical practise, and pharmaceutical and industrial applications. Methods Here, we developed a high-throughput compatible and automated live-cell image analysis software that allows for kinetic monitoring of organoids, named Organoid Brightfield Identification-based Therapy Screening (OrBITS), by combining computer vision with a convolutional network machine learning approach. The OrBITS deep learning analysis approach was validated against current standard assays for kinetic imaging and automated analysis of organoids. A drug screen of standard-of-care lung and pancreatic cancer treatments was also performed with the OrBITS platform and compared to the gold standard, CellTiter-Glo 3D assay. Finally, the optimal parameters and drug response metrics were identified to improve patient stratification. Results OrBITS allowed for the detection and tracking of organoids in routine extracellular matrix domes, advanced Gri3D (R)-96 well plates, and high-throughput 384-well microplates, solely based on brightfield imaging. The obtained organoid Count, Mean Area, and Total Area had a strong correlation with the nuclear staining, Hoechst, following pairwise comparison over a broad range of sizes. By incorporating a fluorescent cell death marker, infra-well normalization for organoid death could be achieved, which was tested with a 10-point titration of cisplatin and validated against the current gold standard ATP-assay, CellTiter-Glo 3D. Using this approach with OrBITS, screening of chemotherapeutics and targeted therapies revealed further insight into the mechanistic action of the drugs, a feature not achievable with the CellTiter-Glo 3D assay. Finally, we advise the use of the growth rate-based normalised drug response metric to improve accuracy and consistency of organoid drug response quantification. Conclusion Our findings validate that OrBITS, as a scalable, automated live-cell image analysis software, would facilitate the use of patient-derived organoids for drug development and therapy screening. The developed wet-lab workflow and software also has broad application potential, from providing a launching point for further brightfield-based assay development to be used for fundamental research, to guiding clinical decisions for personalized medicine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000898426100001 Publication Date 2022-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3428; 2211-3436 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.6
Call Number UA @ admin @ c:irua:192698 Serial 7272
Permanent link to this record
 

 
Author Bengtson, C.; Bogaerts, A.
Title On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways Type A1 Journal article
Year 2020 Publication (down) Cells Abbreviated Journal Cells
Volume 9 Issue 10 Pages 2330
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584186700001 Publication Date 2020-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:173632 Serial 6429
Permanent link to this record
 

 
Author Van Loenhout, J.; Freire Boullosa, L.; Quatannens, D.; De Waele, J.; Merlin, C.; Lambrechts, H.; Lau, H.W.; Hermans, C.; Lin, A.; Lardon, F.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C.
Title Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma Type A1 Journal Article;oxidative stress
Year 2021 Publication (down) Cells Abbreviated Journal Cells
Volume 10 Issue 11 Pages 2936
Keywords A1 Journal Article;oxidative stress; auranofin; cold atmospheric plasma; glioblastoma; cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000807134000001 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Olivia Hendrickx Research Fund, 21OCL06 ; University of Antwerp, FFB160231 ; The authors would express their gratitude to Hans de Reu for technical assistance with flow cytometry. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:182915 Serial 6826
Permanent link to this record
 

 
Author Gao, M.; Zhang, Y.; Wang, H.; Guo, B.; Zhang, Q.; Bogaerts, A.
Title Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges Type A1 Journal article
Year 2018 Publication (down) Catalysts Abbreviated Journal Catalysts
Volume 8 Issue 6 Pages 248
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N2 and O2 compositions. Our results reveal that both a change of the driving voltage and gas mixture can induce mode transition. Upon increasing voltage, a mode transition from hybrid (volume+surface) discharge to pure surface discharge occurs, because the charged species can escape much more easily to the beads and charge the bead surface due to the strong electric field at high driving voltage. This significant surface charging will further enhance the tangential component of the electric field along the dielectric bead surface, yielding surface ionization waves (SIWs). The SIWs will give rise to a high concentration of reactive species on the surface, and thus possibly enhance the surface activity of the beads, which might be of interest for plasma catalysis. Indeed, electron impact excitation and ionization mainly take place near the bead surface. In addition, the propagation speed of SIWs becomes faster with increasing N2 content in the gas mixture, and slower with increasing O2 content, due to the loss of electrons by attachment to O2

molecules. Indeed, the negative O-2 ion density produced by electron impact attachment is much higher than the electron and positive O+2 ion density. The different ionization rates between N2 and O2 gases will create different amounts of electrons and ions on the dielectric bead surface, which might also have effects in plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436128600027 Publication Date 2018-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 7 Open Access OpenAccess
Notes The authors are very grateful to Wei Jiang for the useful discussions on the particle-incell/ Monte-Carlo collision model. Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:152171 Serial 4991
Permanent link to this record
 

 
Author Liu, M.; Yi, Y.; Wang, L.; Guo, H.; Bogaerts, A
Title Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
Year 2019 Publication (down) Catalysts Abbreviated Journal Catalysts
Volume 9 Issue 3 Pages 275
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Due to the increasing emission of carbon dioxide (CO2), greenhouse effects are becoming more and more severe, causing global climate change. The conversion and utilization of CO2 is one of the possible solutions to reduce CO2 concentrations. This can be accomplished, among other methods, by direct hydrogenation of CO2, producing value-added products. In this review, the progress of mainly the last five years in direct hydrogenation of CO2 to value-added chemicals (e.g., CO, CH4, CH3OH, DME, olefins, and higher hydrocarbons) by heterogeneous catalysis and plasma catalysis is summarized, and research priorities for CO2 hydrogenation are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465012800055 Publication Date 2019-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited Open Access OpenAccess
Notes Fundamental Research Funds for the Central Universities of China , DUT18JC42 32249 ; National Natural Science Foundation of China , 21503032 ; PetroChina Innovation Foundation , 2018D-5007-0501 ; Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158094 Serial 5162
Permanent link to this record
 

 
Author Bogaerts, A.
Title Editorial Catalysts: Special Issue on Plasma Catalysis Type Editorial
Year 2019 Publication (down) Catalysts Abbreviated Journal Catalysts
Volume 9 Issue 2 Pages 196
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, and CH4 conversion into higher hydrocarbons or oxygenates [...]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460702200090 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159153 Serial 5166
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V.
Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
Year 2019 Publication (down) Catalysts Abbreviated Journal Catalysts
Volume 9 Issue 1 Pages 51
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459732000051 Publication Date 2019-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 3.082
Call Number UA @ admin @ c:irua:158666 Serial 5268
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Meynen, V.; Cool, P.; Bogaerts, A.
Title The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion Type A1 Journal article
Year 2020 Publication (down) Catalysts Abbreviated Journal Catalysts
Volume 10 Issue 5 Pages 530
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This work proposes to use core-shell structured spheres to evaluate whether it allows to individually optimize bulk and surface effects of a packing material, in order to optimize conversion and energy efficiency. Different core-shell materials have been prepared by spray coating, using dense spheres (as core) and powders (as shell) of SiO2, Al2O3, and BaTiO3. The materials are investigated for their performance in CO2 dissociation and compared against a benchmark consisting of a packed-bed reactor with the pure dense spheres, as well as an empty reactor. The results in terms of CO2 conversion and energy efficiency show various interactions between the core and shell material, depending on their combination. Al2O3 was found as the best core material under the applied conditions here, followed by BaTiO3 and SiO2, in agreement with their behaviour for the pure spheres. Applying a thin shell layer on the cores showed equal performance between the different shell materials. Increasing the layer thickness shifts this behaviour, and strong combination effects were observed depending on the specific material. Therefore, this method of core-shell spheres has the potential to allow tuning of the packing properties more closely to the application by designing an optimal combination of core and shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000546007000092 Publication Date 2020-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes Interreg, Project EnOp ; Fonds Wetenschappelijk Onderzoek, G.0254.14N ; Universiteit Antwerpen, Project SynCO2Chem ; We want to thank Jasper Lefevre (VITO) for assistance in the development of the coating suspension for the core-shell spheres. Approved Most recent IF: 3.9; 2020 IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:169222 Serial 6364
Permanent link to this record
 

 
Author Li, S.; Ahmed, R.; Yi, Y.; Bogaerts, A.
Title Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
Year 2021 Publication (down) Catalysts Abbreviated Journal Catalysts
Volume 11 Issue 5 Pages 590
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Direct oxidation of methane to methanol (DOMTM) is attractive for the increasing industrial demand of feedstock. In this review, the latest advances in heterogeneous catalysis and plasma catalysis for DOMTM are summarized, with the aim to pinpoint the differences between both, and to provide some insights into their reaction mechanisms, as well as the implications for future development of highly selective catalysts for DOMTM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000653609900001 Publication Date 2021-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited Open Access OpenAccess
Notes Fundamental Research Funds for the Central Universities of China, DUT18JC42 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; TOP-BOF research project of the Research Council of the University of Antwerp, 32249 ; This research was funded by the Fundamental Research Funds for the Central Universities of China (DUT18JC42), the National Natural Science Foundation of China (21503032) PetroChina Innovation Foundation (2018D-5007-0501) and the TOP-BOF research project of the Research Council of the University of Antwerp (grant ID 32249). This research was supported by the China Scholarship Council (CSC). The authors warmly acknowledge CSC for their support. Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:177851 Serial 6753
Permanent link to this record
 

 
Author Gorbanev, Y.; Engelmann, Y.; van’t Veer, K.; Vlasov, E.; Ndayirinde, C.; Yi, Y.; Bals, S.; Bogaerts, A.
Title Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms Type A1 Journal article
Year 2021 Publication (down) Catalysts Abbreviated Journal Catalysts
Volume 11 Issue 10 Pages 1230
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract N2 fixation into NH3 is one of the main processes in the chemical industry. Plasma catalysis is among the environmentally friendly alternatives to the industrial energy-intensive Haber-Bosch process. However, many questions remain open, such as the applicability of the conventional catalytic knowledge to plasma. In this work, we studied the performance of Al2O3-supported Fe, Ru, Co and Cu catalysts in plasma-catalytic NH3 synthesis in a DBD reactor. We investigated the effects of different active metals, and different ratios of the feed gas components, on the concentration and production rate of NH3, and the energy consumption of the plasma system. The results show that the trend of the metal activity (common for thermal catalysis) does not appear in the case of plasma catalysis: here, all metals exhibited similar performance. These findings are in good agreement with our recently published microkinetic model. This highlights the virtual independence of NH3 production on the metal catalyst material, thus validating the model and indicating the potential contribution of radical adsorption and Eley-Rideal reactions to the plasma-catalytic mechanism of NH3 synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000715656300001 Publication Date 2021-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 19 Open Access OpenAccess
Notes Catalisti, Moonshot P2C ; Research Foundation – Flanders, GoF9618n ; European Research Council, 810182 SCOPE 815128 REALNANO ; sygmaSB Approved Most recent IF: 3.082
Call Number EMAT @ emat @c:irua:183279 Serial 6815
Permanent link to this record
 

 
Author Lamonier, J.-F.; Bogaerts, A.
Title Feature Papers to Celebrate “Environmental Catalysis”—Trends & Outlook Type Editorial
Year 2022 Publication (down) Catalysts Abbreviated Journal Catalysts
Volume 12 Issue 7 Pages 720
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This Special Issue collects three reviews, eight articles, and two communications related to the design of catalysts for environmental applications, such as the transformation of several pollutants into harmless or valuable products [...]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831734700001 Publication Date 2022-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9
Call Number PLASMANT @ plasmant @c:irua:189202 Serial 7074
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Huygh, S.; Bal, K.M.; Neyts, E.C.
Title Temperature influence on the reactivity of plasma species on a nickel catalyst surface : an atomic scale study Type A1 Journal article
Year 2013 Publication (down) Catalysis today Abbreviated Journal Catal Today
Volume 211 Issue Pages 131-136
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years, the potential use of hydrogen as a clean energy source has gained considerable attention. Especially H2 formation by Ni-catalyzed reforming of methane at elevated temperatures is an attractive process. However, a more fundamental knowledge at the atomic level is needed for a full comprehension of the reactions at the catalyst surface. In this contribution, we therefore investigate the H2 formation after CHx impacts on a Ni(1 1 1) surface in the temperature range 4001600 K, by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. While some H2 formation is already observed at the lower temperatures, substantial H2 formation is only obtained at elevated temperatures of 1400 K and above. At 1600 K, the H2 molecules are even the most frequently formed species. In direct correlation with the increasing dehydrogenation at elevated temperatures, an increased surface-to-subsurface C-diffusivity is observed as well. This study highlights the major importance of the temperature on the H2 formation.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000320697800020 Publication Date 2013-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 27 Open Access
Notes Approved Most recent IF: 4.636; 2013 IF: 3.309
Call Number UA @ lucian @ c:irua:108675 Serial 3500
Permanent link to this record
 

 
Author Bogaerts, A.; Zhang, Q.-Z.; Zhang, Y.-R.; Van Laer, K.; Wang, W.
Title Burning questions of plasma catalysis: Answers by modeling Type A1 Journal article
Year 2019 Publication (down) Catalysis today Abbreviated Journal Catal Today
Volume 337 Issue Pages 3-14
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is promising for various environmental, energy and chemical synthesis applications, but the underlying mechanisms are far from understood. Modeling can help to obtain a better insight in these mechanisms. Some burning questions relate to the plasma behavior inside packed bed reactors and whether plasma can penetrate into catalyst pores. In this paper, we try to provide answers to these questions, by means of both fluid modeling and particle-in-cell/Monte Carlo collision simulations. We present a short overview of recent findings obtained in our group by means of modeling, i.e., the enhanced electric field near the contact points and the streamer propagation through the packing in packed bed reactors, as well as the plasma behavior in catalyst pores, to determine the minimum pore size in which plasma streamers can penetrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482179500002 Publication Date 2019-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.636 Times cited 7 Open Access
Notes University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc”; “CryoEtch” within Horizon2020, 657304 702604 ;We would like to thank H.-H. Kim for performing experiments to validate the modeling of streamer propagation in packed bed reactors. We acknowledge financial support from the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc” and “CryoEtch” within Horizon2020 (Grant Nos. 657304 and 702604). Approved Most recent IF: 4.636
Call Number PLASMANT @ plasmant @c:irua:161775 Serial 5356
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G.; Hessel, V.; Rebrov, E.
Title Challenges in unconventional catalysis Type A1 Journal article
Year 2023 Publication (down) Catalysis today Abbreviated Journal
Volume 420 Issue Pages 114180
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Catalysis science and technology increased efforts recently to progress beyond conventional “thermal” catalysis and face the challenges of net-zero emissions and electrification of production. Nevertheless, a better gaps and opportunities analysis is necessary. This review analyses four emerging areas of unconventional or less- conventional catalysis which share the common aspect of using directly renewable energy sources: (i) plasma catalysis, (ii) catalysis for flow chemistry and process intensification, (iii) application of electromagnetic (EM) fields to modulate catalytic activity and (iv) nanoscale generation at the catalyst interface of a strong local EM by plasmonic effect. Plasma catalysis has demonstrated synergistic effects, where the outcome is higher than the sum of both processes alone. Still, the underlying mechanisms are complex, and synergy is not always obtained. There is a crucial need for a better understanding to (i) design catalysts tailored to the plasma environment, (ii) design plasma reactors with optimal transport of plasma species to the catalyst surface, and (iii) tune the plasma conditions so they work in optimal synergy with the catalyst. Microfluidic reactors (flow chemistry) is another emerging sector leading to the intensification of catalytic syntheses, particularly in organic chemistry. New unconventional catalysts must be designed to exploit in full the novel possibilities. With a focus on (a) continuous-flow photocatalysis, (b) electrochemical flow catalysis, (c) microwave flow catalysis and (d) ultra­ sound flow activation, a series of examples are discussed, with also indications on scale-up and process indus­ trialisation. The third area discussed regards the effect on catalytic performances of applying oriented EM fields spanning several orders of magnitude. Under well-defined conditions, gas breakdown and, in some cases, plasma formation generates activated gas phase species. The EM field-driven chemical conversion processes depend further on structured electric/magnetic catalysts, which shape the EM field in strength and direction. Different effects influencing chemical conversion have been reported, including reduced activation energy, surface charging, hot spot generation, and selective local heating. The last topic discussed is complementary to the third, focusing on the possibility of tuning the photo- and electro-catalytic properties by creating a strong localised electrical field with a plasmonic effect. The novel possibilities of hot carriers generated by the plasmonic effect are also discussed. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001004623300001 Publication Date 2023-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes The EU ERC Synergy SCOPE project supported this work (project ID 810182) “ Surface-COnfined fast-modulated Plasma for process and Energy intensification in small molecules conversion”. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world. Approved Most recent IF: 5.3; 2023 IF: 4.636
Call Number PLASMANT @ plasmant @c:irua:196446 Serial 7380
Permanent link to this record
 

 
Author Ndayirinde, C.; Gorbanev, Y.; Ciocarlan, R.-G.; De Meyer, R.; Smets, A.; Vlasov, E.; Bals, S.; Cool, P.; Bogaerts, A.
Title Plasma-catalytic ammonia synthesis : packed catalysts act as plasma modifiers Type A1 Journal article
Year 2023 Publication (down) Catalysis today Abbreviated Journal
Volume 419 Issue Pages 114156-12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied the plasma-catalytic production of NH3 from H2 and N2 in a dielectric barrier discharge plasma reactor using five different Co-based catalysts supported on Al2O3, namely Co/Al2O3, CoCe/Al2O3, CoLa/Al2O3, CoCeLa/Al2O3 and CoCeMg/Al2O3. The catalysts were characterized via several techniques, including SEM-EDX, and their performance was compared. The best performing catalyst was found to be CoLa/Al2O3, but the dif-ferences in NH3 concentration, energy consumption and production rate between the different catalysts were limited under the same conditions (i.e. feed gas, flow rate and ratio, and applied power). At the same time, the plasma properties, such as the plasma power and current profile, varied significantly depending on the catalyst. Taken together, these findings suggest that in the production of NH3 by plasma catalysis, our catalysts act as plasma modifiers, i.e., they change the discharge properties and hence the gas phase plasma chemistry. Importantly, this effect dominates over the direct catalytic effect (as e.g. in thermal catalysis) defined by the chemistry on the catalyst surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000987221300001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 3 Open Access OpenAccess
Notes This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the Methusalem project of the University of Antwerp. We also gratefully acknowledge the NH3-TPD analysis performed by Sander Bossier. Approved Most recent IF: 5.3; 2023 IF: 4.636
Call Number UA @ admin @ c:irua:197268 Serial 8917
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F.
Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
Year 2022 Publication (down) Catalysis Science & Technology Abbreviated Journal Catal Sci Technol
Volume 12 Issue 22 Pages 6676-6686
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865542600001 Publication Date 2022-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5
Call Number UA @ admin @ c:irua:191389 Serial 7185
Permanent link to this record
 

 
Author Neyts, E.; Maeyens, A.; Pourtois, G.; Bogaerts, A.
Title A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation Type A1 Journal article
Year 2011 Publication (down) Carbon Abbreviated Journal Carbon
Volume 49 Issue 3 Pages 1013-1017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using self-consistent KohnSham density-functional theory molecular dynamics simulations, we demonstrate the theoretical possibility to synthesize NiC60, the incarfullerene Ni@C60 and the heterofullerene C59Ni in an ion implantation setup. The corresponding formation mechanisms of all three complexes are elucidated as a function of the ion implantation energy and impact location, suggesting possible routes for selectively synthesizing these complexes.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000286683500032 Publication Date 2010-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 13 Open Access
Notes Approved Most recent IF: 6.337; 2011 IF: 5.378
Call Number UA @ lucian @ c:irua:85139 Serial 639
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Formation of endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes by simulated ion implantation Type A1 Journal article
Year 2009 Publication (down) Carbon Abbreviated Journal Carbon
Volume 47 Issue 4 Pages 1028-1033
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The interaction of thermal and hyperthermal Ni ions with gas-phase C60 fullerene was investigated at two temperatures with classical molecular dynamics simulations using a recently developed interatomic many-body potential. The interaction between Ni and C60 is characterized in terms of the NiC60 binding sites, complex formation, and the collision and temperature induced deformation of the C60 cage structure. The simulations show how ion implantation theoretically allows the synthesis of both endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000264252900012 Publication Date 2008-12-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 15 Open Access
Notes Approved Most recent IF: 6.337; 2009 IF: 4.504
Call Number UA @ lucian @ c:irua:76434 Serial 1260
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Ion irradiation for improved graphene network formation in carbon nanotube growth Type A1 Journal article
Year 2014 Publication (down) Carbon Abbreviated Journal Carbon
Volume 77 Issue Pages 790-795
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ion irradiation of carbon nanotubes very often leads to defect formation. However, we have recently shown that Ar ion irradiation in a limited energy window of 1025 eV may enhance the initial cap nucleation process, when the carbon network is in contact with the metal nanocatalyst. Here, we employ reactive molecular dynamics simulations to demonstrate that ion irradiation in a higher energy window of 1035 eV may also heal network defects after the nucleation stage through a non-metal-mediated mechanism, when the carbon network is no longer in contact with the metal nanocatalyst. The results demonstrate the possibility of beneficially utilizing ions in e.g. plasma-enhanced chemical vapour deposition of carbon nanotubes.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000340689400083 Publication Date 2014-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 7 Open Access
Notes Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:118062 Serial 1745
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes Type A1 Journal article
Year 2017 Publication (down) Carbon Abbreviated Journal Carbon
Volume 118 Issue 118 Pages 452-457
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Selective etching allows for obtaining carbon nanotubes with a specific chirality. While plasma-assisted etching has already been used to separate metallic tubes from their semiconducting counterparts, little is known about the nanoscale mechanisms of the etching process. We combine (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations to study H-etching of CNTs. In particular, during the hydrogenation and subsequent etching of both the carbon cap and the tube, they sequentially transform to different carbon nanostructures, including carbon nanosheet, nanowall, and polyyne chains, before they are completely removed from the surface of a substrate-bound Ni-nanocluster.We also found that onset of the etching process is different in the cases of the cap and the tube, although the overall etching scenario is similar in both cases. The entire hydrogenation/etching process for both cases is analysed in detail, comparing with available theoretical and experimental evidences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401120800053 Publication Date 2017-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 2 Open Access OpenAccess
Notes U. K. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @ c:irua:141915 Serial 4531
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Gorbanev, Y.; Dewilde, S.; Smits, E.; Bogaerts, A.
Title Reduction of Human Glioblastoma Spheroids Using Cold Atmospheric Plasma: The Combined Effect of Short- and Long-Lived Reactive Species Type A1 Journal article
Year 2018 Publication (down) Cancers Abbreviated Journal Cancers
Volume 10 Issue 11 Pages 394
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a promising technology against multiple types of cancer. However, the current findings on the effect of CAP on two-dimensional glioblastoma cultures do not consider the role of the tumour microenvironment. The aim of this study was to determine the ability of CAP to reduce and control glioblastoma spheroid tumours in vitro . Three-dimensional glioblastoma spheroid tumours (U87-Red, U251-Red) were consecutively treated directly and indirectly with a CAP using dry He, He + 5% H 2 O or He + 20% H 2 O. The cytotoxicity and spheroid shrinkage were monitored using live imaging. The reactive oxygen and nitrogen species produced in phosphate buffered saline (PBS) were measured by electron paramagnetic resonance (EPR) and colourimetry. Cell migration was also assessed. Our results demonstrate that consecutive CAP treatments (He + 20% H 2 O) substantially shrank U87-Red spheroids and to a lesser degree, U251-Red spheroids. The cytotoxic effect was due to the short- and long-lived species delivered by CAP: they inhibited spheroid growth, reduced cell migration and decreased proliferation in CAP-treated spheroids. Direct treatments were more effective than indirect treatments, suggesting the importance of CAP-generated, short-lived species for the growth inhibition and cell cytotoxicity of solid glioblastoma tumours. We concluded that CAP treatment can effectively reduce glioblastoma tumour size and restrict cell migration, thus demonstrating the potential of CAP therapies for glioblastoma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451307700001 Publication Date 2018-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes The authors thank Paul Cos (Department of Pharmaceutical Sciences, University of Antwerp) for providing EPR equipment and Christophe Hermans for his help with the immunohistochemical experiments. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:154871 Serial 5065
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Hammerschmid, D.; Privat-Maldonado, A.; Dewilde, S.; Bogaerts, A.
Title Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy Type A1 Journal article
Year 2019 Publication (down) Cancers Abbreviated Journal Cancers
Volume 11 Issue 8 Pages 1109
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Melittin (MEL), a small peptide component of bee venom, has been reported to exhibit anti-cancer effects in vitro and in vivo. However, its clinical applicability is disputed because of its non-specific cytotoxicity and haemolytic activity in high treatment doses. Plasma-treated phosphate buffered saline solution (PT-PBS), a solution rich in reactive oxygen and nitrogen species (RONS) can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. Thus, PT-PBS could be used in combination with MEL to facilitate its access into cancer cells and to reduce the required therapeutic dose. The aim of our study is to determine the reduction of the effective dose of MEL required to eliminate cancer cells by its combination with PT-PBS. For this purpose, we have optimised the MEL threshold concentration and tested the combined treatment of MEL and PT-PBS on A375 melanoma and MCF7 breast cancer cells, using in vitro, in ovo and in silico approaches. We investigated the cytotoxic effect of MEL and PT-PBS alone and in combination to reveal their synergistic cytological effects. To support the in vitro and in ovo experiments, we showed by computer simulations that plasma-induced oxidation of the phospholipid bilayer leads to a decrease of the free energy barrier for translocation of MEL in comparison with the non-oxidized bilayer, which also suggests a synergistic effect of MEL with plasma induced oxidation. Overall, our findings suggest that MEL in combination with PT-PBS can be a promising combinational therapy to circumvent the non-specific toxicity of MEL, which may help for clinical applicability in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000484438000069 Publication Date 2019-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO), grant number 12J5617N. We are thankful to Maksudbek Yusupov for his valuable discussions, and to the Center for Oncological Research (CORE), for providing the facilities for the experimental work. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the University Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:161630 Serial 5286
Permanent link to this record