toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V pdf  doi
openurl 
  Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
  Year 2021 Publication (down) Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 11 Pages 4213-4223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761500021 Publication Date 2021-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:177697 Serial 6790  
Permanent link to this record
 

 
Author Korneychik, O.E.; Batuk, M.; Abakumov, A.M.; Hadermann, J.; Rozova, M.G.; Sheptyakov, D.V.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V. pdf  doi
openurl 
  Title Pb2.85Ba2.15Fe4SnO13 : a new member of the AnBnO3n-2 anion-deficient perovskite-based homologous series Type A1 Journal article
  Year 2011 Publication (down) Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 184 Issue 12 Pages 3150-3157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb2.85Ba2.15Fe4SnO13, a new n=5 member of the anion-deficient perovskite based AnBnO3n−2 (A=Pb, Ba, B=Fe, Sn) homologous series, was synthesized by the solid state method. The crystal structure of Pb2.85Ba2.15Fe4SnO13 was investigated using a combination of neutron powder diffraction, electron diffraction, high angle annular dark field scanning transmission electron microscopy and Mössbauer spectroscopy. It crystallizes in the Ammm space group with unit cell parameters a=5.7990(1) Å, b=4.04293(7) Å and c=26.9561(5) Å. The Pb2.85Ba2.15Fe4SnO13 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110](1̄01)p crystallographic shear (CS) planes. The corner-sharing FeO6 octahedra at the CS planes are transformed into edge-sharing FeO5 distorted tetragonal pyramids. The octahedral positions in the perovskite blocks between the CS planes are jointly taken up by Fe and Sn, with a preference of Sn towards the position at the center of the perovskite block. The chains of FeO5 pyramids and (Fe,Sn)O6 octahedra of the perovskite blocks delimit six-sided tunnels at the CS planes occupied by double chains of Pb atoms. The compound is antiferromagnetically ordered below TN=368±15 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000297662500003 Publication Date 2011-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.299; 2011 IF: 2.159  
  Call Number UA @ lucian @ c:irua:94013 Serial 3550  
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title Pb5Fe3TiO11Cl : a rare example of Ti(IV) in a square pyramidal oxygen coordination Type A1 Journal article
  Year 2014 Publication (down) Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 215 Issue Pages 245-252  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new oxychloride Pb5Fe3TiO11Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb5Fe3TiO11Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb5Fe3TiO11Cl is a new n=4 member of the oxychloride perovskite-based homologous series An+1BnO3n−1Cl. The structure is built of truncated Pb3Fe3TiO11 quadruple perovskite blocks separated by CsCl-type Pb2Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O6 octahedra sandwiched between two layers of (Fe,Ti)O5 square pyramids. The Ti4+ cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti4+ in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb5Fe3TiO11Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μB and 3.86(5) μB on the octahedral and square-pyramidal sites, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000336891300037 Publication Date 2014-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 4 Open Access  
  Notes Fwo G.0184.09n. Approved Most recent IF: 2.299; 2014 IF: 2.133  
  Call Number UA @ lucian @ c:irua:117066 Serial 3551  
Permanent link to this record
 

 
Author Ben Hafsia, A.; Hendrickx, M.; Batuk, M.; Khitouni, M.; Hadermann, J.; Greneche, J.-M.; Rammeh, N. pdf  doi
openurl 
  Title Crystal structure study of manganese and titanium substituted BaLaFe2O6-δ Type A1 Journal article
  Year 2017 Publication (down) Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 251 Issue 251 Pages 186-193  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Barium lanthanum ferrite and four Mn/Ti substituted materials were synthesized by the sol-gel method. The crystal structure of the materials was studied by a combination of X-ray powder diffraction, electron diffraction, scanning transmission electron microscopy and 57Fe Mössbauer spectrometry. BaLaFe2O6-δ has a cubic perovskite structure and Ba0.7La1.3FeMnO6-δ is distorted perovskite with the R-3c symmetry, both from electron diffraction and X-ray powder diffraction. However, according to transmission electron microscopy, the crystals of BaLaFeTiO6-δ, BaLaFeTi0.5Mn0.5O6-δ, and BaLaFe0.5Ti0.5MnO6-δ consist of nanodomains with different symmetries (Pm3m next to R-3c due to octahedral tilts), whereas the bulk X-ray powder diffraction patterns for these compounds correspond to the simple cubic structure. 57Fe Mössbauer spectrometry confirms that all materials contain high spin state Fe3+ ions which are strongly influenced by the chemical disorder

resulting from various cationic environments.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402581200024 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited Open Access Not_Open_Access  
  Notes This study has been supported by the Tunisian Ministry of Higher Education and Scientific Research and by the University of Antwerp BOF Grant 33024 funding scheme. Approved Most recent IF: 2.299  
  Call Number EMAT @ emat @ c:irua:143988 Serial 4582  
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V. pdf  doi
openurl 
  Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
  Year 2018 Publication (down) Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400001 Publication Date 2017-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access  
  Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:149283 Serial 4936  
Permanent link to this record
 

 
Author Volykhov, A.A.; Sanchez-Barriga, J.; Batuk, M.; Callaert, C.; Hadermann, J.; Sirotina, A.P.; Neudachina, V.S.; Belova, A.I.; Vladimirova, N.V.; Tamm, M.E.; Khmelevsky, N.O.; Escudero, C.; Perez-Dieste, V.; Knop-Gericke, A.; Yashina, L.V. pdf  doi
openurl 
  Title Can surface reactivity of mixed crystals be predicted from their counterparts? A case study of (Bi1-xSbx)2Te3 topological insulators Type A1 Journal article
  Year 2018 Publication (down) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 33 Pages 8941-8949  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The behavior of ternary mixed crystals or solid solutions and its correlation with the properties of their binary constituents is of fundamental interest. Due to their unique potential for application in future information technology, mixed crystals of topological insulators with the spin-locked, gapless states on their surfaces attract huge attention of physicists, chemists and material scientists. (Bi1-xSbx)(2)Te-3 solid solutions are among the best candidates for spintronic applications since the bulk carrier concentration can be tuned by varying x to obtain truly bulk-insulating samples, where the topological surface states largely contribute to the transport and the realization of the surface quantum Hall effect. As this ternary compound will be evidently used in the form of thin-film devices its chemical stability is an important practical issue. Based on the atomic resolution HAADF-TEM and EDX data together with the XPS results obtained both ex situ and in situ, we propose an atomistic picture of the mixed crystal reactivity compared to that of its binary constituents. We find that the surface reactivity is determined by the probability of oxygen attack on the Te-Sb bonds, which is directly proportional to the number of Te atoms bonded to at least one Sb atom. The oxidation mechanism includes formation of an amorphous antimony oxide at the very surface due to Sb diffusion from the first two quintuple layers, electron tunneling from the Fermi level of the crystal to oxygen, oxygen ion diffusion to the crystal, and finally, slow Te oxidation to the +4 oxidation state. The oxide layer thickness is limited by the electron transport, and the overall process resembles the Cabrera-Mott mechanism in metals. These observations are critical not only for current understanding of the chemical reactivity of complex crystals, but also to improve the performance of future spintronic devices based on topological materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443279300007 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 3 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support within the bilateral program "Russian-German Laboratory at BESSY II''. We thank Helmholtz-Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and ISISS. Support of ALBA staff during measurements at the CIRCE beamline is gratefully acknowledged. We thank Dr Ivan Bobrikov for support in the XRD measurements and Daria Tsukanova for the participation in crystal preparation and XPS measurements. A. Volykhov thanks RSF (grant 18-73-00248) for financial support. A. I. Belova acknowledges support from the G-RISC Centre of Excellence. The work was supported by Helmholtz Gemeinschaft (Grant No. HRJRG-408) and RFBR (grant 14-03-31518). J. H. and C. C. acknowledge support from the University of Antwerp through the BOF grant 31445. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:153647 Serial 5080  
Permanent link to this record
 

 
Author Tan, X.; McCabe, E.E.; Orlandi, F.; Manuel, P.; Batuk, M.; Hadermann, J.; Deng, Z.; Jin, C.; Nowik, I.; Herber, R.; Segre, C.U.; Liu, S.; Croft, M.; Kang, C.-J.; Lapidus, S.; Frank, C.E.; Padmanabhan, H.; Gopalan, V.; Wu, M.; Li, M.-R.; Kotliar, G.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title MnFe0.5Ru0.5O3 : an above-room-temperature antiferromagnetic semiconductor Type A1 Journal article
  Year 2019 Publication (down) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 7 Issue 3 Pages 509-522  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (alpha-Fe2O3) structure type with space group R (3) over barc, in which all metal ions are disordered. The centrosymmetric nature of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical second harmonic generation, X-ray absorption near edge spectroscopy, and Mossbauer spectroscopy. X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and Ru to be 2+/3+, 3+, and similar to 4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a semiconductor. Magnetic measurements and magnetic structure refinements indicated that MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted away from the c axis. Fe-57 Mossbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic hyperfine splitting. First principles calculations are provided to understand the electronic structure more thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum Mn2BB'O-6 derivatives is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458780300004 Publication Date 2018-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 1 Open Access Not_Open_Access  
  Notes ; M. G. thanks the NSF-DMR-1507252 grant of the United States. X. T. was supported by the “Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy'' under DOE Grant No. DE-FOA-0001276. G. K. and C. J. K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. EEM is grateful to the Leverhulme Trust (RPG-2017-362). M. R. Li and M. X. Wu are supported by the ”One Thousand Youth Talents'' Program of China. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research used the ISS, 8-ID and TES, 8-BM beamlines at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Without the valuable aid/support of the NSLS-II staff scientists Eli Stavitski, Klaus Attenkofer, and Paul Northrup this phase of the work could not have been performed. The work at IOPCAS was supported by NSF & MOST of China through research projects. H. R. and V. G. acknowledge NSF-MRSEC Center for Nanoscale Science at Penn State through the grant number DMR-1420620. The authors would like to thank Ms Jean Hanley at Lamont-Doherty Earth Observatory in Columbia University for making the high-pressure assemblies. The authors acknowledge the science and technology facility council (STFC) UK for the provision of neutron beam time. The authors would like to thank Daniel Nye for help on the Rigaku SmartLab X-ray diffractometer instrument in the Materials Characterization Laboratory at the ISIS Neutron and Muon Source. ; Approved Most recent IF: 5.256  
  Call Number UA @ admin @ c:irua:157564 Serial 5264  
Permanent link to this record
 

 
Author Batuk, M.; Vandemeulebroucke, D.; Ceretti, M.; Paulus, W.; Hadermann, J. url  doi
openurl 
  Title Topotactic redox cycling in SrFeO2.5+δ explored by 3D electron diffraction in different gas atmospheres Type A1 Journal article
  Year 2022 Publication (down) Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract For oxygen conducting materials applied in solid oxide fuel cells and chemical-looping processes, the understanding of the oxygen diffusion mechanism and the materials’ crystal structure at different stages of the redox reactions is a key parameter to control their performance. In this paper we report the first ever in situ 3D ED experiment in a gas environment and with it uncover the structure evolution of SrFeO2.5 as notably different from that reported from in situ X-ray and in situ neutron powder diffraction studies in gas environments. Using in situ 3D ED on submicron sized single crystals obtained from a high quality monodomain SrFeO2.5 single crystal , we observe the transformation under O2 flow of SrFeO2.5 with an intra- and interlayer ordering of the left and right twisted (FeO4) tetrahedral chains (space group Pcmb) into consecutively SrFeO2.75 with space group Cmmm (at 350°C, 33% O2) and SrFeO3-δ with space group Pm3 ̅m (at 400°C, 100% O2). Upon reduction in H2 flow, the crystals return to the brownmillerite structure with intralayer order, but without regaining the interlayer order of the pristine crystals. Therefore, redox cycling of SrFeO2.5 crystals in O2 and H2 introduces stacking faults into the structure, resulting in an I2/m(0βγ)0s symmetry with variable β.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891928400001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited Open Access OpenAccess  
  Notes Financial support is acknowledged from the FWO-Hercules fund I003218N ‘Infrastructure for imaging nanoscale processes in gas/vapor or liquid environments’, from the University of Antwerp through grant BOF TOP 38689. This work was supported by the European Commission Horizon 2020 NanED grant number 956099. Financial support from the French National Research Agency (ANR) through the project “Structural induced Electronic Complexity controlled by low temperature Topotactic Reaction” (SECTOR No. ANR-14-CE36- 0006-01) is gratefully acknowledged. Approved Most recent IF: 11.9  
  Call Number EMAT @ emat @c:irua:192325 Serial 7229  
Permanent link to this record
 

 
Author Zhang, F.; Chevalier, J.; Olagnon, C.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Grain-boundary engineering for aging and slow-crack-growth resistant zirconia Type A1 Journal article
  Year 2017 Publication (down) Journal of dental research Abbreviated Journal J Dent Res  
  Volume 96 Issue 7 Pages 774-779  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La2O3) and aluminum oxide (Al2O3) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La2O3 and Al2O3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication St. Louis, Mo. Editor  
  Language Wos 000403934500010 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.755 Times cited 3 Open Access Not_Open_Access  
  Notes ; This research was supported by the Research Fund of KU Leuven under project 0T/ 10/052 and the Research Foundation-Flanders (FWO-Vlaanderen) under grant G.0431.10N. We thank J.W. Seo for TEM and sample preparations. F. Zhang thanks the Research Fund of KU Leuven for her postdoctoral fellowship (PDM/15/153) and the JECS-Trust for the travel grant (No. 201599) to perform double-torsion testing in the MATEIS lab of INSA, Lyon, France. Jerome Chevalier would like to dedicate this paper to Maria Cattani Lorente, who recently passed away under tragic conditions. She was deeply involved in the study of dental zirconia and we will miss her. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. ; Approved Most recent IF: 4.755  
  Call Number UA @ lucian @ c:irua:144161 Serial 4660  
Permanent link to this record
 

 
Author Bez, R.; Zehani, K.; Batuk, M.; Van Tendeloo, G.; Mliki, N.; Bessais, L. doi  openurl
  Title Structure and magnetic properties of Sm(Fe,Si)(9)C/alpha-Fe nanocomposite magnets Type A1 Journal article
  Year 2017 Publication (down) Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 695 Issue 695 Pages 810-817  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract SmFe8.75 Si-0.25 C/alpha-Fe nanocomposites have been successfully synthesized using high energy milling, followed by annealing at 750 degrees C. The crystal structure of these compounds was characterized by the Rietveld method using powder X-ray diffraction data. By increasing the concentration of Sm, we observed a decrease in the amount of alpha-Fe phase. The morphology of the samples was determined by scanning and transmission electron microscopy. The average grain size is about 20 nm. The magnetic properties were investigated at room temperature and at 10 K. A ferromagnetic behavior was observed in all samples at both temperatures. An increase of the soft magnetic phase alpha-Fe induced an increase in the magnetization and a decrease in coercivity. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000391817600098 Publication Date 2016-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work is main supported by the CNRS and the “Ministere de l'Enseignement Superieur, de la Recherche Scientifique” (LR99ES17) (Tunisia), PHC-Utique (Project 11/G 1301) and PHC-Maghreb (Project 15MAG07). The authors acknowledge the French SIE doctoral school of the University Paris Est for its support. ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:140380 Serial 4448  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Morozov, V.A.; Meert, K.W.; Smet, P.F.; Poelman, D.; Abakumov, A.M.; Hadermann, J. pdf  url
doi  openurl
  Title Effect of cation vacancies on the crystal structure and luminescent properties of Ca(0.85-1.5x)Gd(x)Eu(0.1)_(0.05+0.5x)WO(4) (0<x<0.567) scheelite-based red phosphors Type A1 Journal article
  Year 2017 Publication (down) Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 706 Issue 706 Pages 358-369  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Ca0.85-1.5xGdxEu0.1_0.05-0.5xWO4 (0 < x < 0.567) series of cation-deficient scheelites is investigated to unveil the influence of the cation vacancies on the crystal structure and luminescent properties. The concentration of the vacancies is varied by the heterovalent substitution of Gd3+ for Ca2+, keeping the concentration of the Eu3+ luminescent centers constant in all compounds of the series. The crystal structure of the materials is studied using a combination of transmission electron microscopy and synchrotron X-ray powder diffraction. At low vacancy concentration (x = 0.1, 0.2), cations and cation vacancies are randomly distributed in the structure, and the materials preserve the I41/a symmetry of the parent scheelite structure [x = 0.1: a = 5.25151(1) Å, c = 11.39479(2) Å; x = 0.2: a = 5.25042(1) Å, c = 11.41335(2) Å]. At higher concentration, the cation-vacancy ordering gives rise to incommensurately modulated structures. The x = 0.3 structure has a (3 + 2)D tetragonal symmetry [superspace group I41/a(a,b,0)00(-b,a,0)00, a = 5.24700(1) Å, c = 11.45514(3) Å, q1 = 0.51637(14)a* + 0.80761(13)b*, q2 = -0.80761a* + 0.51637b*]. At x = 0.4, the scheelite basic cell undergoes a monoclinic distortion with the formation of the (3 + 1)D structure [superspace group I2/b(a,b,0)00, a = 5.23757(1) Å, b = 5.25035(1) Å, c = 11.45750(2) Å, g = 90.5120(2) o, q = 0.54206(8)a* + 0.79330(8)b*]. In both structures, the antiphase Ca and (Gd,Eu) occupancy modulations indicate that the ordering between the A cations and vacancies also induces partial Ca/(Gd,Eu) cation ordering. Further increase of the Gd3þ content up to x = 0.567 leads to the formation of a monoclinic phase (space group C2/c) with the Eu2/3WO4-type structure. Despite the difference in the cation-vacancy ordering patterns, all materials in the series demonstrate very similar quantum efficiency and luminescence decay lifetimes. However, the difference in the local coordination environment of the A cation species noticeably affects the line width and the multiplet splitting of the 4f6-4f6 transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397997300045 Publication Date 2017-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 2 Open Access OpenAccess  
  Notes This research was supported by FWO (Flanders Research Foundation, project G039211N). V.A.M. is grateful for financial support of the Russian Foundation for Basic Research (Grant 15-03-07741).We are grateful to the ESRF for granting the beamtime at the ID22 beamline and to Andy Fitch for the support during the experiment. Approved Most recent IF: 3.133  
  Call Number EMAT @ emat @ c:irua:142367 Serial 4581  
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Seftel, E.M.; Gavrila, R.; Suchea, M.; Batuk, M.; Mertens, M.; Hadermann, J.; Cool, P. pdf  url
doi  openurl
  Title Spinel nanoparticles on stick-like Freudenbergite nanocomposites as effective smart-removal photocatalysts for the degradation of organic pollutants under visible light Type A1 Journal article
  Year 2020 Publication (down) Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 820 Issue Pages 153403  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract A series of mixed nanocomposite materials was synthetized, containing a Ferrite phase type Zn1-xNixFe2O4 and a Freudenbergite phase type Na2Fe2Ti6O16, where x = 0; 0.2; 0.4; 0.6; 0.8; 1. The choice for this combination is based on the good adsorption properties of Freudenbergite for dye molecules, and the small bandgap energy of Ferrite spinel, allowing activation of the catalysts under visible light irradiation. A two steps synthesis protocol was used to obtain the smart-removal nanocomposites. Firstly, the spinel structure was obtained via the co-precipitation route followed by the addition of the Ti-source and formation of the Freudenbergite system. The role of cations on the formation mechanism and an interesting interchange of cations between spinel and Freudenbergite structures was clarified by a TEM study. Part of the Ti4+ penetrated the spinel structure and, at the same time, part of the Fe3+ formed the Freudenbergite system. The photocatalytic activity was studied under visible light, reaching for the best catalysts a 67% and 40% mineralization degree for methylene blue and rhodamine 6G respectively, after 6 h of irradiation. In the same conditions, the well-known commercial P25 (Degussa) managed to mineralize only 12% and 3% of methylene blue and rhodamine 6G, respectively. Due to the remarkable magnetic properties of Ferrites, a convenient recovery and reuse of the catalysts is possible after the photocatalytic tests. Based on the excellent catalytic performance of the nanocomposites under visible light and their ease of separation out of the solution after the catalytic reaction, the newly developed composite catalysts are considered very effective for wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507854700130 Publication Date 2019-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes The authors acknowledge the FWO-Flanders (project nr. G038215N) for financial support. Approved Most recent IF: 6.2; 2020 IF: 3.133  
  Call Number EMAT @ emat @c:irua:166447 Serial 6342  
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 4 Pages 2171-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000332144100039 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:113507 Serial 198  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Tsirlin, A.A.; McCammon, C.M.; Dubrovinsky, L.; Hadermann, J. pdf  doi
openurl 
  Title Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites Type A1 Journal article
  Year 2013 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 17 Pages 10009-10020  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites are investigated using the (Pb1−zSrz)1−xFe1+xO3−y perovskites as a model system. The orientation of the CS planes in the system varies unevenly with z. A comparison of the structures with different CS planes revels that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000326129000037 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 11 Open Access  
  Notes Fwo Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:111394 Serial 822  
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Homologous series of layered perovskites An+1BnO3n-1Cl : crystal and magnetic structure of a new oxychloride Pb4BiFe4O11Cl Type A1 Journal article
  Year 2013 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 4 Pages 2208-2218  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The nuclear and magnetic structure of a novel oxychloride Pb4BiFe4O11Cl has been studied over the temperature range 1.5700 K using a combination of transmission electron microscopy and synchrotron and neutron powder diffraction [space group P4/mbm, a = 5.5311(1) Å, c = 19.586(1) Å, T = 300 K]. Pb4BiFe4O11Cl is built of truncated (Pb,Bi)3Fe4O11 quadruple perovskite blocks separated by CsCl-type (Pb,Bi)2Cl slabs. The perovskite blocks consist of two layers of FeO6 octahedra located between two layers of FeO5 tetragonal pyramids. The FeO6 octahedra rotate about the c axis, resulting in a √2ap × √2ap × c superstructure. Below TN = 595(17) K, Pb4BiFe4O11Cl adopts a G-type antiferromagnetic structure with the iron magnetic moments confined to the ab plane. The ordered magnetic moments at 1.5 K are 3.93(3) and 3.62(4) μB on the octahedral and square-pyramidal iron sites, respectively. Pb4BiFe4O11Cl can be considered a member of the perovskite-based An+1BnO3n1Cl homologous series (A = Pb/Bi; B = Fe) with n = 4. The formation of a subsequent member of the series with n = 5 is also demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000315255200067 Publication Date 2013-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:106185 Serial 1486  
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Batuk, M.; d' Hondt, H.; Tyablikov, O.A.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V. pdf  doi
openurl 
  Title Slicing the Perovskite structure with crystallographic shear planes : the AnBnO3n-2 homologous series Type A1 Journal article
  Year 2010 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 49 Issue 20 Pages 9508-9516  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new AnBnO3n−2 homologous series of anion-deficient perovskites has been evidenced by preparation of the members with n = 5 (Pb2.9Ba2.1Fe4TiO13) and n = 6 (Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16) in a single phase form. The crystal structures of these compounds were determined using a combination of transmission electron microscopy and X-ray and neutron powder diffraction (S.G. Ammm, a = 5.74313(7), b = 3.98402(4), c = 26.8378(4) Å, RI = 0.035, RP = 0.042 for Pb2.9Ba2.1Fe4TiO13 and S.G. Imma, a = 5.7199(1), b = 3.97066(7), c = 32.5245(8) Å, RI = 0.032, RP = 0.037 for Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16). The crystal structures of the AnBnO3n−2 homologues are formed by slicing the perovskite structure with (01)p crystallographic shear (CS) planes. The shear planes remove a layer of oxygen atoms and displace the perovskite blocks with respect to each other by the 1/2[110]p vector. The CS planes introduce edge-sharing connections of the transition metal−oxygen polyhedra at the interface between the perovskite blocks. This results in intrinsically frustrated magnetic couplings between the perovskite blocks due to a competition of the exchange interactions between the edge- and the corner-sharing metal−oxygen polyhedra. Despite the magnetic frustration, neutron powder diffraction and Mssbauer spectroscopy reveal that Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 are antiferromagnetically ordered below TN = 407 and 343 K, respectively. The Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 compounds are in a paraelectric state in the 5−300 K temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000282783400051 Publication Date 2010-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 23 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.857; 2010 IF: 4.326  
  Call Number UA @ lucian @ c:irua:84963 Serial 3041  
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, M.; Tsirlin, A.A.; Tyablikov, O.A.; Sheptyakov, D.V.; Filimonov, D.S.; Pokholok, K.V.; Zhidal, V.S.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.; pdf  doi
openurl 
  Title Structural and magnetic phase transitions in the AnBnO3n-2 anion-deficient perovskites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 Type A1 Journal article
  Year 2013 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 14 Pages 7834-7843  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 belong to the perovskite-based AnBnO3n2 homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell ap as ap√2 × ap × nap√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(1̅01)p crystallographic shear (CS) planes. The CS operation results in (1̅01)p-shaped perovskite blocks with a thickness of (n 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb1.5Ba2.5Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned FeFe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 AnFenO3n2 (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623632 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000322087100006 Publication Date 2013-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 10 Open Access  
  Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:109213 Serial 3196  
Permanent link to this record
 

 
Author Cassidy, S.J.; Batuk, M.; Batuk, D.; Hadermann, J.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J. pdf  doi
openurl 
  Title Complex Microstructure and Magnetism in Polymorphic CaFeSeO Type A1 Journal article
  Year 2016 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 10714-10726  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structural complexity of the antiferromagnetic oxide selenide CaFeSeO is described. The compound contains puckered FeSeO layers composed of FeSe2O2 tetrahedra sharing all their vertexes. Two polymorphs coexist that can be derived from an archetype BaZnSO structure by cooperative tilting of the FeSe2O2 tetrahedra. The polymorphs differ in the relative arrangement of the puckered layers of vertex-linked FeSe2O2 tetrahedra. In a noncentrosymmetric Cmc21 polymorph (a = 3.89684(2) A, b = 13.22054(8) A, c = 5.93625(2) A) the layers are related by the C-centering translation, while in a centrosymmetric Pmcn polymorph, with a similar cell metric (a = 3.89557(6) A, b = 13.2237(6) A, c = 5.9363(3) A), the layers are related by inversion. The compound shows long-range antiferromagnetic order below a Neel temperature of 159(1) K with both polymorphs showing antiferromagnetic coupling via Fe-O-Fe linkages and ferromagnetic coupling via Fe-Se-Fe linkages within the FeSeO layers. The magnetic susceptibility also shows evidence for weak ferromagnetism which is modeled in the refinements of the magnetic structure as arising from an uncompensated spin canting in the noncentrosymmetric polymorph. There is also a spin glass component to the magnetism which likely arises from the disordered regions of the structure evident in the transmission electron microscopy.  
  Address Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385785700085 Publication Date 2016-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes We acknowledge the financial support of the EPSRC (Grants EP/I017844/1 and EP/M020517/1), the Leverhulme Trust (RPG-2014-221), and the Diamond Light Source (studentship support for S. J. Cassidy). We thank the ESTEEM2 network for enabling the electron microscopy investigations and the ISIS facility and the Diamond Light Source Ltd. for the award of beam time. We thank Dr. P. Manuel for assistance on WISH, Dr. R. I. Smith for assistance on GEM and POLARIS, and Dr. C. Murray and Dr. A. Baker for assistance on I11. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:136823 Serial 4312  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Karakulina, O.M.; Batuk, M.; Cabioc’h, T.; Hadermann, J.; Delville, R.; Lambrinou, K.; Vleugels, J. pdf  url
doi  openurl
  Title Synthesis of MAX Phases in the Zr-Ti-Al-C System Type A1 Journal article
  Year 2017 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 56 Pages 3489-3498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350–1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard’s law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard’s law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397171100045 Publication Date 2017-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 26 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0431.10N.F ; Agentschap voor Innovatie door Wetenschap en Technologie, 131081 ; European Atomic Energy Community, 604862 ; SCK-CEN Academy for Nuclear Science and Technology; Hercules Foundation, Project/Award no: AKUL/1319 Project/Award no: ZW09-09 ; Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:141794 Serial 4491  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Tyablikov, O.A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3,O9n+11 Perovskite-Anatase lntergrowths Type A1 Journal article
  Year 2017 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 56 Pages 931-942  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Bi3n+1Ti7Fe3n-3,O9n+11 materials are built of (001)(p) plane parallel perovskite blocks with a thickness of n (Ti,Fe)O-6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge -sharing (Ti,Fe)O-6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3,O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mossbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in,a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of +/- a(p) along [100](p). The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3a(p), b = b(p), c = 2(n + 1)c(p) and a = 3a(p), b = b(p), c = 2(n + 1)c(p) – a(p), respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3,O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O-2 layers at the border of the perovskite blocks. The coupling is strong in the 1/ = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3,O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below T-N = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000392262400029 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes ; The work was supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:141471 Serial 4495  
Permanent link to this record
 

 
Author Jin, L.; Batuk, M.; Kirschner, F.K.K.; Lang, F.; Blundell, S.J.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Exsolution of SrO during the Topochemical Conversion of LaSr3CoRuO8to the Oxyhydride LaSr3CoRuO4H4 Type A1 Journal article
  Year 2019 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 58 Issue 21 Pages 14863-14870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaction of the n = 1 Ruddlesden-Popper oxide LaSr3CoRuO8 with CaH2 yields the oxyhydride phase LaSr3CoRuO4H4 via topochemical anion-exchange. Close inspection of X-ray and neutron powder diffraction data in combination with HAADF-STEM images reveals that nanoparticles of SrO are exsolved from the system during the reaction, with the change in cation stoichiometry accommodated by the inclusion of n > 1 (Co/Ru)nOn+1H2n ‘perovskite’ layers into the Ruddlesden-Popper stacking sequence. This novel pseudo-topochemical process offers a new route for the formation of n > 1 Ruddlesden-Popper structured materials. Magnetization data are consistent with a LaSr3Co1+Ru2+O4H4 (Co1+, d8, S = 1; Ru2+, d6, S = 0) oxidation/spin state combination. Neutron diffraction and μ+SR data show no evidence for long-range magnetic order down to 2 K, suggesting the diamagnetic Ru2+ centers impede the Co-Co magnetic exchange interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494894400062 Publication Date 2019-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 1 Open Access  
  Notes We thank P. Manuel for assistance collecting the neutron powder diffraction data. We thank The Leverhulme Trust grant award RPG-2014-366 “Topochemical reduction of 4d and 5d transition metal oxides” for supporting this work. Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Investigation by TEM was supported through the FWO grant G035619N. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:164625 Serial 5434  
Permanent link to this record
 

 
Author Xu, X.; Jones, M.A.; Cassidy, S.J.; Manuel, P.; Orlandi, F.; Batuk, M.; Hadermann, J.; Clarke, S.J. pdf  url
doi  openurl
  Title Magnetic Ordering in the Layered Cr(II) Oxide Arsenides Sr2CrO2Cr2As2and Ba2CrO2Cr2As2 Type A1 Journal article
  Year 2020 Publication (down) Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 59 Issue 21 Pages 15898-15912  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2CrO2Cr2As2 and Ba2CrO2Cr2As2 with Cr2+ ions in CrO2 sheets and in CrAs layers crystallize with the Sr2Mn3Sb2O2 structure (space group I4/mmm, Z = 2) and lattice parameters a = 4.00800(2) Å, c = 18.8214(1) Å (Sr2CrO2Cr2As2) and a = 4.05506(2) Å, c = 20.5637(1) Å (Ba2CrO2Cr2As2) at room temperature. Powder neutron diffraction reveals checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the arsenide layers below TN1Sr, of 600(10) K (Sr2CrO2Cr2As2) and TN1Ba 465(5) K (Ba2CrO2Cr2As2) with the moments initially directed perpendicular to the layers in both compounds. Checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the oxide layer below 230(5) K for Ba2CrO2Cr2As2 occurs with these moments also perpendicular to the layers, consistent with the orientation preferences of d4 moments in the two layers. In contrast, below 330(5) K in Sr2CrO2Cr2As2, the oxide layer Cr2+ moments are initially oriented in the CrO2 plane; but on further cooling, these moments rotate to become perpendicular to the CrO2 planes, while the moments in the arsenide layers rotate by 90° with the moments on the two sublattices remaining orthogonal throughout [behavior recently reported independently by Liu et al. [Liu et al. Phys. Rev. B 2018, 98, 134416]]. In Sr2CrO2Cr2As2, electron diffraction and high resolution powder X-ray diffraction data show no evidence for a structural distortion that would allow the two Cr2+ sublattices to couple, but high resolution neutron powder diffraction data suggest a small incommensurability between the magnetic structure and the crystal structure, which may account for the coupling of the two sublattices and the observed spin reorientation. The saturation values of the Cr2+ moments in the CrO2 layers (3.34(1) μB (for Sr2CrO2Cr2As2) and 3.30(1) μB (for Ba2CrO2Cr2As2)) are larger than those in the CrAs layers (2.68(1) μB for Sr2CrO2Cr2As2 and 2.298(8) μB for Ba2CrO2Cr2As2) reflecting greater covalency in the arsenide layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588738100035 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes We thank the UK EPSRC (EP/M020517/1 and EP/P018874/ 1) and the Leverhulme Trust (RPG-2014-221) for funding and the ISIS pulsed neutron and muon source (RB1610357 and RB1700075) and the Diamond Light Source Ltd. (EE13284 and EE18786) for the award of beam time. We thank Dr. A. Baker and Dr. C. Murray for support on I11. Approved Most recent IF: 4.6; 2020 IF: 4.857  
  Call Number EMAT @ emat @c:irua:176058 Serial 6704  
Permanent link to this record
 

 
Author Savina, A.A.; Saiutina, V.V.; Morozov, A.V.; Boev, A.O.; Aksyonov, D.A.; Dejoie, C.; Batuk, M.; Bals, S.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Chemistry, local molybdenum clustering, and electrochemistry in the Li2+xMo1-xO3 solid solutions Type A1 Journal article
  Year 2022 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 14 Pages 5637-5652  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A broad range of cationic nonstoichiometry has been demonstratedfor the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3(-0.037 <= x <= 0.124) solid solutions were synthesized via hydrogen reduction ofLi2MoO4in the temperature range of 650-1100 degrees C, withxdecreasing with theincrease of the reduction temperature. The solid solutions adopt a monoclinicallydistorted O3-type layered average structure and demonstrate a robust localordering of the Li cations and Mo3triangular clusters within the mixed Li/Mocationic layers. The local structure was scrutinized in detail by electron diffractionand aberration-corrected scanning transmission electron microcopy (STEM),resulting in an ordering model comprising a uniform distribution of the Mo3clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygenenvironment (Mo3O13groups) has been directly visualized using differential phase contrast STEM imaging. The established localstructure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangementand provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+extraction fromLi2+xMo1-xO3in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3solely originates from the cationic Moredox process, which proceeds via oxidation of the Mo3triangular clusters into bent Mo3chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltageplateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3chains into Mo2dimers and further into individual Mo6+cations  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000789034200023 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 3 Open Access Not_Open_Access  
  Notes The authors acknowledge Russian Science Foundation (grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, project number G0F1320N) for financial support. The authors are grateful to AICF of Skoltech for providing access to electron microscopy equipment. The authors are grateful to Prof. G. Van Tendeloo for discussing the results. Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:188631 Serial 7079  
Permanent link to this record
 

 
Author Sheath, B.C.; Xu, X.; Manuel, P.; Hadermann, J.; Batuk, M.; O'Sullivan, J.; Bonilla, R.S.; Clarke, S.J. url  doi
openurl 
  Title Structures and magnetic ordering in layered Cr oxide arsenides Sr₂CrO₂Cr₂OAs₂ and Sr₂CrO₃CrAs Type A1 Journal article
  Year 2022 Publication (down) Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 31 Pages 10-12385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO(2)As(4 )octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3](+) layers and Cr2+ ions in CrAs(4 )tetrahedra in [CrAs](-) layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs](-) layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3](+) layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr(2+ )moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Neel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000841943600001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190007 Serial 7215  
Permanent link to this record
 

 
Author Gamon, J.; Bassat, J.-M.; Villesuzanne, A.; Duttine, M.; Batuk, M.; Vandemeulebroucke, D.; Hadermann, J.; Alassani, F.; Weill, F.; Durand, E.; Demourgues, A. pdf  doi
openurl 
  Title Impact of anionic ordering on the iron site distribution and valence states in oxyfluoride Sr2FeO3+xF1-x(x=0.08, 0.2) with a layered Perovskite network Type A1 Journal article
  Year 2023 Publication (down) Inorganic chemistry Abbreviated Journal  
  Volume 62 Issue 27 Pages 10822-10832  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2FeO3+x F1-x (x = 0.08, 0.2), an n = 1 Ruddlesden-Popperphase, was synthesized from the oxidationof Sr2FeO3F in air at high temperature followinga fluorine for oxygen substitution and Fe3+ to Fe4+ oxidation. A structural investigation of both compounds was performedusing complementary and high-resolution techniques (Synchrotron X-rayand electron diffraction, Mo''ssbauer spectroscopy, HR-STEM)coupled to DFT calculation. This study reveals that oxidation leadsto a high degree of apical anion disorder coupled to antiphase boundaries. Sr2FeO3F, an oxyfluoride compoundwith an n = 1 Ruddlesden-Popper structure,was identifiedas a potential interesting mixed ionic and electronic conductor (MIEC).The phase can be synthesized under a range of different pO(2) atmospheres, leading to various degrees of fluorinefor oxygen substitution and Fe4+ content. A structuralinvestigation and thorough comparison of both argon- and air-synthesizedcompounds were performed by combining high-resolution X-ray and electrondiffraction, high-resolution scanning transmission electron microscopy,Mo''ssbauer spectroscopy, and DFT calculations. While the argon-synthesizedphase shows a well-behaved O/F ordered structure, this study revealedthat oxidation leads to averaged large-scale anionic disorder on theapical site. In the more oxidized Sr2FeO3.2F0.8 oxyfluoride, containing 20% of Fe4+, two differentFe positions can be identified with a 32%/68% occupancy (P4/nmm space group). This originates due to the presenceof antiphase boundaries between ordered domains within the grains.Relations between site distortion and valence states as well as stabilityof apical anionic sites (O vs F) are discussed. This study paves theway for further studies on both ionic and electronic transport propertiesof Sr2FeO3.2F0.8 and its use in MIEC-baseddevices, such as solid oxide fuel cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001018974700001 Publication Date 2023-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.857  
  Call Number UA @ admin @ c:irua:197789 Serial 8881  
Permanent link to this record
 

 
Author Ranjbar, S.; Hadipour, A.; Vermang, B.; Batuk, M.; Hadermann, J.; Garud, S.; Sahayaraj, S.; Meuris, M.; Brammertz, G.; da Cunha, A.F.; Poortmans, J. pdf  url
doi  openurl
  Title P-N Junction Passivation in Kesterite Solar Cells by Use of Solution-Processed TiO2 Layer Type A1 Journal article
  Year 2017 Publication (down) IEEE journal of photovoltaics Abbreviated Journal Ieee J Photovolt  
  Volume 7 Issue 7 Pages 1130-1135  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work, we used a solution-processed TiO2 layer between Cu2ZnSnSe4 and CdS buffer layer to reduce the recombination at the p–n junction. Introducing the TiO2 layer showed a positive impact on VOC but fill factor and efficiency decreased. Using a KCN treatment, we could create openings in the TiO2 layer, as confirmed by transmission electron microscopy measurements. Formation of these openings in the TiO2 layer led to the improvement of the short-circuit current, fill factor, and the efficiency of the modified solar cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404258900026 Publication Date 2017-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-3381 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.712 Times cited 2 Open Access OpenAccess  
  Notes This work was supported in part by the European Union’s Horizon 2020 research and innovation program under Grant 640868, in part by the Flemish government, Department Economy, Science and Innovation, in part by the FEDER funds through the COMPETE 2020 Programme, and in part by the National Funds through FCT – Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013. The work of S. Ranjbar was supported by the Portuguese Science and Technology Foundation through Ph.D. grant SFRH/BD/78409/2011. The work of B. Vermang was supported by the Flemish Research Foundation FWO (mandate 12O4215N). Approved Most recent IF: 3.712  
  Call Number EMAT @ emat @ c:irua:143986 Serial 4583  
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication (down) Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461540600001 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158540 Serial 5205  
Permanent link to this record
 

 
Author Chizhov, A.; Vasiliev, R.; Rumyantseva, M.; Krylov, I.; Drozdov, K.; Batuk, M.; Hadermann, J.; Abakumov, A.; Gaskov, A. url  doi
openurl 
  Title Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD Type A1 Journal article
  Year 2019 Publication (down) Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New hybrid materials-photosensitized nanocomposites containing nanocrystal heterostructures with spatial charge separation, show high response for practically important sub-ppm level NO2 detection at room temperature. Nanocomposites ZnO/CdSe, ZnO/(CdS@CdSe), and ZnO/(ZnSe@CdS) were obtained by the immobilization of nanocrystals-colloidal quantum dots (QDs), on the matrix of nanocrystalline ZnO. The formation of crystalline core-shell structure of QDs was confirmed by HAADF-STEM coupled with EELS mapping. Optical properties of photosensitizers have been investigated by optical absorption and luminescence spectroscopy combined with spectral dependences of photoconductivity, which proved different charge localization regimes. Photoelectrical and gas sensor properties of nanocomposites have been studied at room temperature under green light (max = 535 nm) illumination in the presence of 0.12-2 ppm NO2 in air. It has been demonstrated that sensitization with type II heterostructure ZnSe@CdS with staggered gap provides the rapid growth of effective photoresponse with the increase in the NO2 concentration in air and the highest sensor sensitivity toward NO2. We believe that the use of core-shell QDs with spatial charge separation opens new possibilities in the development of light-activated gas sensors working without thermal heating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487641600002 Publication Date 2019-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This work was financially supported by RFBR grant No. 1653-76001 (RFBR – ERA.Net FONSENS 096) and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 26520408). AC acknowledges support from the RFBR grant No. 18-33-01004. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163776 Serial 5390  
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication (down) Dental Materials Abbreviated Journal Dent Mater  
  Volume 32 Issue 32 Pages e327-e337  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract OBJECTIVE: The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. METHODS: Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha=0.05). RESULTS: Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. SIGNIFICANCE: Three different approaches were compared to improve the translucency of 3Y-TZP ceramics.  
  Address KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000389516400003 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.07 Times cited Open Access  
  Notes The authors acknowledge the Research Fund of KU Leu- ven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post- doctoral fellowship (PDM/15/153). We thank M. Peumans for the translucency measurements. Approved Most recent IF: 4.07  
  Call Number EMAT @ emat @ c:irua:136821 Serial 4313  
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication (down) Dental materials Abbreviated Journal Dent Mater  
  Volume 32 Issue 12 Pages E327-E337  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000389516400003 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.07 Times cited 47 Open Access  
  Notes Approved Most recent IF: 4.07  
  Call Number UA @ lucian @ c:irua:140246 Serial 4447  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: