toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Paolella, A.; Turner, S.; Bertoni, G.; Hovington, P.; Flacau, R.; Boyer, C.; Feng, Z.; Colombo, M.; Marras, S.; Prato, M.; Manna, L.; Guerfi, A.; Demopoulos, G.P.; Armand, M.; Zaghib, K.; url  doi
openurl 
  Title Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+ Type A1 Journal article
  Year 2016 Publication (down) Nano letters Abbreviated Journal Nano Lett  
  Volume 16 Issue 16 Pages 2692-2697  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000374274600084 Publication Date 2016-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 30 Open Access  
  Notes Approved Most recent IF: 12.712  
  Call Number UA @ lucian @ c:irua:133600 Serial 4134  
Permanent link to this record
 

 
Author Al-Jamal, K.T.; Bai, J.; Wang, J.T.W.; Protti, A.; Southern, P.; Bogart, L.; Heidari, H.; Li, X.; Cakebread, A.; Asker, D.; Al-Jamal, W.T.; Shah, A.; Bals, S.; Sosabowski, J.; Pankhurst, Q.A.; url  doi
openurl 
  Title Magnetic drug targeting : preclinical in vivo studies, mathematical modeling, and extrapolation to humans Type A1 Journal article
  Year 2016 Publication (down) Nano letters Abbreviated Journal Nano Lett  
  Volume 16 Issue 16 Pages 5652-5660  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A sound theoretical rationale for the design of a magnetic nanocarrier capable of magnetic capture in vivo after intravenous administration could help elucidate the parameters necessary for in vivo magnetic tumor targeting. In this work, we utilized our long-circulating polymeric magnetic nano carriers, encapsulating increasing amounts of superparamagnetic iron oxide nanoparticles (SPIONs) in a biocompatible oil carrier, to study the effects of SPION loading and of applied magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the nanocapsules (NCs) in accordance with the Nacev-Shapiro construct, and this was then used to extrapolate to the expected behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy, and improve mice survival compared to passive targeting at drug doses of ca. 5-8 mg, of DTX/kg. This is,, to our knowledge, the first study that truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000383412100050 Publication Date 2016-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 128 Open Access OpenAccess  
  Notes ; J.B. acknowledges funding from the King's-China Scholarship Council (CSC). Funding from the Biotechnology and Biological Sciences Research Council (BB/ J008656/1), Worldwide Cancer Research (12-1054), and EU FP7-ITN Marie-Curie Network programme RADDEL (290023) is acknowledged. Q.P. is grateful to A. Nacev (Weinberg Medical Physics, Rockville, MD) and to B. Shapiro (University of Maryland, College Park, MD) for their useful advice during the preparation of this manuscript. ; Approved Most recent IF: 12.712  
  Call Number UA @ lucian @ c:irua:137136 Serial 4391  
Permanent link to this record
 

 
Author Evans, J.E.; Friedrich, H.; pdf  doi
openurl 
  Title Advanced tomography techniques for inorganic, organic, and biological materials Type A1 Journal article
  Year 2016 Publication (down) MRS bulletin Abbreviated Journal Mrs Bull  
  Volume 41 Issue 41 Pages 516-521  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional (3D) tomography using electrons and x-rays has pushed and expanded our understanding of the micro-and nanoscale spatial organization of inorganic, organic, and biological materials. While a significant impact on the field of materials science has already been realized from tomography applications, new advanced methods are quickly expanding the versatility of this approach to better link structure, composition, and function of complex 3D assemblies across multiple scales. In this article, we highlight several frontiers where new developments in tomography are empowering new science across biology, chemistry, and physics. The five articles that appear in this issue of MRS Bulletin describe some of these latest developments in detail, including analytical electron tomography, atomic resolution electron tomography, advanced recording schemes in scanning transmission electron microscopy (STEM) tomography, cryo-STEM tomography of whole cells, and multiscale correlative tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos 000382508100011 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.199 Times cited 12 Open Access  
  Notes J.E.E. acknowledges support from the Department of Energy's Office of Biological and Environmental Research Mesoscale to Molecules Project #66382. Approved Most recent IF: 5.199  
  Call Number UA @ lucian @ c:irua:135689 Serial 4297  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; de Backer, A.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic resolution electron tomography Type A1 Journal article
  Year 2016 Publication (down) MRS bulletin Abbreviated Journal Mrs Bull  
  Volume 41 Issue 41 Pages 525-530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano) materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos 000382508100012 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.199 Times cited 19 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915, G.0374.13, and funding of postdoctoral grants to B.G. and A.D.B.). S.B. acknowledges the European Research Council, ERC Grant Number 335078-Colouratom. The research leading to these results received funding from the European Union Seventh Framework Program under Grant Agreements 312483 (ESTEEM2). The authors would like to thank the colleagues who have contributed to this work, including K.J. Batenburg, J. De Beenhouwer, R. Erni, M.D. Rossell, W. Van den Broek, L. Liz-Marzan, E. Carbo-Argibay, S. Gomez-Grana, P. Lievens, M. Van Bael, B. Partoens, B. Schoeters, and J. Sijbers. ; ecas_sara Approved Most recent IF: 5.199  
  Call Number UA @ lucian @ c:irua:135690 Serial 4299  
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D. pdf  doi
openurl 
  Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
  Year 2016 Publication (down) Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 22 Issue 22 Pages 1222-1232  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393853100011 Publication Date 2016-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 2 Open Access  
  Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891  
  Call Number EMAT @ emat @ c:irua:138980 Serial 4333  
Permanent link to this record
 

 
Author Huybrechts, W.; Mali, G.; Kuśtrowski, P.; Willhammar, T.; Mertens, M.; Bals, S.; Van Der Voort, P.; Cool, P. pdf  url
doi  openurl
  Title Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material Type A1 Journal article
  Year 2016 Publication (down) Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 236 Issue 236 Pages 244-249  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Periodic mesoporous organosilicas provide the best of two worlds: the strength and porosity of an inorganic framework combined with the infinite possibilities created by the organic bridging unit. In this work we focus on post-synthetical modification of benzene bridged PMO, in order to create bromobenzene PMO. In the past, this proved to be very challenging due to unwanted structural deterioration. However, now we have found a way to brominate this material whilst keeping the structure intact. In-depth structural analysis by solid state NMR and XPS shows both vast progress over previous attempts as well as potential for improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000385899600028 Publication Date 2016-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 7 Open Access OpenAccess  
  Notes ; The authors would like to thank financial support from the FWO-Flanders (project no G.0068.13). The authors further acknowledge financial support of the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: 3.615  
  Call Number UA @ lucian @ c:irua:135274 Serial 4228  
Permanent link to this record
 

 
Author Kurttepeli, M.; Locus, R.; Verboekend, D.; de Clippel, F.; Breynaert, E.; Martens, J.; Sels, B.; Bals, S. pdf  url
doi  openurl
  Title Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly Type A1 Journal article
  Year 2016 Publication (down) Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 234 Issue 234 Pages 186-195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The incorporation of aluminum into the silica columns of hierarchical mesoporous materials (HMMs) was studied. The HMMs were synthesized by a combination of hard and soft templating methods, forming mesoporous SBA-15-type silica columns inside the pores of anodic aluminum oxide membranes via evaporation induced self-assembly (EISA). By adding Al-isopropoxide to the EISA-mixture a full tetrahedral incorporation of Al and thus the creation of acid sites was achieved, which was proved by nuclear magnetic resonance spectroscopy. Electron microscopy showed that the use of Al-isopropoxide as an Al source for the HMMs led to a change in the mesopore ordering of silica material from circular hexagonal (donut-like) to columnar hexagonal and a 37% increase in specific surface (BET surface). These results were confirmed by a combination of nitrogen physisorption and small-angle X-ray scattering experiments and can be attributed to a swelling of the P123 micelles with isopropanol. The columnar mesopore ordering of silica is advantageous towards the pore accessibility and therefore preferential for many possible applications including catalysis and adsorption on the acid tetrahedral Al-sites. (C) 2016 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000383291400020 Publication Date 2016-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access OpenAccess  
  Notes ; The Belgian government (Belgian Science Policy Office, Belspo) is acknowledged for financing the Interuniversity Attraction Poles (IAP-PAI). S. B. acknowledges the financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). D. V. acknowledges the Flanders Research Foundation (FWO). ; ecas_Sara Approved Most recent IF: 3.615  
  Call Number UA @ lucian @ c:irua:137108 Serial 4404  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J.-L. url  doi
openurl 
  Title Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope Type A1 Journal article
  Year 2016 Publication (down) Micron Abbreviated Journal Micron  
  Volume 80 Issue 80 Pages 145-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000366770100018 Publication Date 2015-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 50 Open Access  
  Notes Approved Most recent IF: 1.98  
  Call Number UA @ lucian @ c:irua:136446 Serial 4401  
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K. pdf  doi
openurl 
  Title Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
  Year 2016 Publication (down) Microchemical journal Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 615-622  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600074 Publication Date 2015-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 22 Open Access  
  Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:131100 Serial 5514  
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Alfeld, M.; Noble, P.; van Loon, A.; Delaney, J.; Conover, D.; Zeibel, J.; Dik, J. pdf  doi
openurl 
  Title Rembrandt's 'Saul and David' (c. 1652) : use of multiple types of smalt evidenced by means of non-destructive imaging Type A1 Journal article
  Year 2016 Publication (down) Microchemical journal Abbreviated Journal Microchem J  
  Volume 126 Issue Pages 515-523  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The painting Saul and David, considered to date from c. 1652 and previously attributed to Rembrandt van Rijn and/or his studio, is a complex work of art that has been recently subjected to intensive investigation and conservation treatment. The goal of the research was to give insight into the painting's physical construction and condition in preparation for conservation treatment. It was also anticipated that analysis would shed light on authenticity questions and Rembrandt's role in the creation of the painting. The painting depicts the Old Testament figures of King Saul and David. At left is Saul, seated, holding a spear and wiping a tear from his eye with a curtain. David kneels before him at the right playing his harp. In the past, the large sections with the life-size figures were cut apart and later reassembled. A third piece of canvas was added to replace a missing piece of canvas above the head of David. As part of the investigation into the authenticity of the curtain area, a number of paint micro samples were examined with LM and SEM-EDX. Given that the earth, smalt and lake pigments used in the painting could not be imaged with traditional imaging techniques, the entire painting was also examined with state of the art non-destructive imaging techniques. Special attention was devoted to the presence of cobalt-containing materials, specifically the blue glass pigment smalt considered characteristic for the late Rembrandt. A combination of quantitative electron microprobe analysis and macroscopic X-ray fluorescence scanning revealed that three types of cobalt-containing materials are present in the painting. The first type is a cobalt drier that was found in the overpaint used to cover up the canvas inset and the joins that were added in the 19th century. The other two Co-containing materials are part of the original paint used by Rembrandt and comprise two varieties of smalt, a K-rich glass pigment that derives its gray-blue color by doping with Co-ions. Smalt paint with a higher Ni content (NiO:CoO ratio of around 1:4) was used to depict the blue stripes in Saul's colorful turban, while smalt with a lower Ni content was employed (NiO:CoO ratio of around 1:5) for the broad expanses of Saul's garments. The presence of two types of smalt not only supports the recent re-attribution of the painting to Rembrandt, but also that the picture was painted in two phases. Saul's dark red garment is painted in a rough, “loose” manner and the now discolored smalt-rich layer was found to have been partially removed during a past restoration treatment/s. In contrast, the blue-green smalt in the turban is much better preserved and provides a colorful accent. While the use of different types of smalt in a Rembrandt painting has been previously identified using quantitative EDX analysis of paint cross-sections, to the best of our knowledge this is the first time such a distinction has been observed in a 17th-century painting using non-destructive imaging techniques. In addition to the XRF-based non-invasive elemental mapping, hyperspectral imaging in the visual to near-infrared (VNIR) region was also carried out. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373647500063 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 18 Open Access  
  Notes ; This research is part of the ReVisualising late Rembrandt: Developing and Applying New Imaging Techniques research project, supported by the Science4Arts research program of the Netherlands Organisation for Scientific Research (NWO, The Hague, NL, ReVisRembrandt project) and the National Science Foundation (NSF, Washington DC, USA, award 1041827). We would like to thank colleagues of the Mauritshuis (The Hague, NL) and the Dutch Cultural Heritage Agency (RCE) in Rijswijk, NL for their support and assistance during the scanning of the Saul and David painting. The GOA project “SOLARPAINT” (University of Antwerp) and the Fund Baillet Latour (Brussels, B) are acknowledged for financial support to GvdS and KJ. We also like to acknowledge the help of Eliza Longhini and Stijn Legrand during some of the XRF scanning stages. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:133258 Serial 5813  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Cotte, M.; Sorace, L.; Vanmeert, F.; Brunetti, B.G.; Miliani, C. pdf  url
doi  openurl
  Title Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium Type A1 Journal article
  Year 2016 Publication (down) Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 272-282  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Environmental factors, such as light, humidity and temperature are triggering agents for the alteration of organic and/or inorganic constituents of oil paintings. The oxidation of the organic material is favored by increasing of relative humidity and temperature, whereas processes involving changes of the oxidation states of a number of inorganic pigments (e.g., vermilion, cadmium yellows, zinc yellows, chrome yellows) are mainly activated by light-exposure. In view of the optimization of the long-term conservation and restoration strategies of paintings it is of relevant interest to establish the consequences of thermal parameters (temperature and relative humidity) on the chemical/photochemical-reactivity and the nature of the alteration products of light sensitive-pigments in oil medium. To this aim here we propose a multi-method analytical approach based on the combination of diffuse reflectance UV-Vis, FTIR, synchrotron radiation (SR)-based micro X-ray fluorescence (mu-XRF)/micro-X-ray absorption neat edge structure ()CANES) and electron paramagnetic resonance (EPR) spectroscopies for studying the effects of different relative humidity conditions before and after light exposure on the reactivity of a series of lead chromate-based pigments [such as PbCrO4 center dot PbO (monoclinic), PbCrO4 (monoclinic) and PbCr0.2S0.8O4 (orthorhombic)] in an oil medium. The investigation of paint models was also compared to that of a late 19th century historical orthorhombic PbCr0.4S0.6O4 oil paint. Diffuse reflectance UV-Vis and FTIR spectroscopies were used to obtain information associated with chromatic changes and the formation of organo-metal degradation products at the paint surface. SR-based Cr K-edge mu-XANES/mu-XRF mapping analysis and EPR spectroscopy were employed in a complementary fashion to determine the amount, nature and distribution of Cr(III) and Cr(V)-based alteration compounds within the paints with micrometric spatial resolution. Under the employed thermal aging conditions, lead(II)-carboxylates and reduced Cr-compounds (in abundance of up to about 35% at the surface) have been identified in the lead chromate-based paints. The tendency of chromates to become reduced increased with increasing moisture levels and was favored for the orthorhombic PbCr0.2S0.8O4 compounds. The redox process gave rise to the formation of Cr(V)-species in relative amount much higher than that was formed in the equivalent paint which was exposed only to light. After light-exposure of the thermally aged paints, compounds ascribable to the oxidation of the organic binder were detected for all the types of pigments. Nevertheless, the previous thermal treatment increased the tendency toward photo-reduction of only the PbCr0.2S0.8O4 pigment. For this light-sensitive compound, the thickness variation of the reduced Cr-rich (ca. 70%) photo-alteration layer with moisture levels could be ascribed to a surface passivation phenomenon that had already occurred before photochemical aging. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600042 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:131099 Serial 5519  
Permanent link to this record
 

 
Author Ricciardi, P.; Legrand, S.; Bertolotti, G.; Janssens, K. doi  openurl
  Title Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges Type A1 Journal article
  Year 2016 Publication (down) Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 785-791  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Macro X-ray fluorescence scanning (MA-XRF) is gradually becoming an established technique for the non-invasive analytical investigation of painted surfaces. This paper discusses some of the benefits and limitations of employing MA-XRF for the study of manuscript illuminations. Art historical research on this type of artefacts that is based on scientific measurements is often limited by the fact that usually no sampling can take place. Hence there is a need for non-invasive analytical tools that make it possible to conduct systematic investigations. As a representative example of this type of objects, a 15th century Italian manuscript fragment from the collection of the Fitzwilliam Museum in Cambridge (UK) is investigated. The aims of the study were to gain insight into the materials and techniques employed by Renaissance illuminators and to help answer specific questions regarding the fragment's authorship and geographic origin. The complementarity and advantages of MA-XRF mapping versus site-specific analyses are discussed. For this purpose, MA-XRF data are evaluated and compared with the results of other analytical techniques. The interpretation of the elemental maps is discussed along with the challenges faced during the analysis. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600096 Publication Date 2015-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:144767 Serial 5698  
Permanent link to this record
 

 
Author Grunert, O.; Reheul, D.; Van Labeke, M.-C.; Perneel, M.; Hernandez-Sanabria, E.; Vlaeminck, S.E.; Boon, N. url  doi
openurl 
  Title Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture Type A1 Journal article
  Year 2016 Publication (down) Microbial Biotechnology Abbreviated Journal  
  Volume 9 Issue 3 Pages 389-399  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Vegetables and fruits are an important part of a healthy food diet, however, the eco-sustainability of the production of these can still be significantly improved. European farmers and consumers spend an estimated Euro15.5 billion per year on inorganic fertilizers and the production of N-fertilizers results in a high carbon footprint. We investigated if fertilizer type and medium constituents determine microbial nitrogen conversions in organic growing media and can be used as a next step towards a more sustainable horticulture. We demonstrated that growing media constituents showed differences in urea hydrolysis, ammonia and nitrite oxidation and in carbon dioxide respiration rate. Interestingly, mixing of the growing media constituents resulted in a stimulation of the function of the microorganisms. The use of organic fertilizer resulted in an increase in amoA gene copy number by factor 100 compared to inorganic fertilizers. Our results support our hypothesis that the activity of the functional microbial community with respect to nitrogen turnover in an organic growing medium can be improved by selecting and mixing the appropriate growing media components with each other. These findings contribute to the understanding of the functional microbial community in growing media and its potential role towards a more responsible horticulture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374662600009 Publication Date 2016-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:133617 Serial 8013  
Permanent link to this record
 

 
Author Mescia, L.; Bia, P.; Caratelli, D.; Chiapperino, M.A.; Stukach, O.; Gielis, J. url  doi
openurl 
  Title Electromagnetic mathematical modeling of 3D supershaped dielectric lens antennas Type A1 Journal article
  Year 2016 Publication (down) Mathematical problems in engineering: theory, methods, and applications Abbreviated Journal  
  Volume Issue Pages 8130160-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The electromagnetic analysis of a special class of 3D dielectric lens antennas is described in detail. This new class of lens antennas has a geometrical shape defined by the three-dimensional extension of Gielis formula. The analytical description of the lens shape allows the development of a dedicated semianalytical hybrid modeling approach based on geometrical tube tracing and physical optic. In order to increase the accuracy of the model, the multiple reflections occurring within the lens are also taken into account.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372246600001 Publication Date 2016-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1024-123x; 1563-5147 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:131516 Serial 7866  
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C. pdf  doi
openurl 
  Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
  Year 2016 Publication (down) Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 64 Issue 64 Pages 278-285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000376547700033 Publication Date 2016-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.164  
  Call Number UA @ lucian @ c:irua:134164 Serial 4251  
Permanent link to this record
 

 
Author De Dobbelaere, C.; Lourdes Calzada, M.; Bretos, I.; Jimenez, R.; Ricote, J.; Hadermann, J.; Hardy, A.; Van Bael, M.K. doi  openurl
  Title Gaining new insight into low-temperature aqueous photochemical solution deposited ferroelectric PbTiO3 films Type A1 Journal article
  Year 2016 Publication (down) Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 174 Issue Pages 28-40  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The nature of the low-temperature photochemical assisted formation process of ferroelectric lead titanate (PbTiO3) films is studied in the present work. Films are obtained by the deposition of an aqueous solution containing citric acid based (citrato) metal ion complexes with intrinsic UV activity. This UV activity is crucial for the aqueous photochemical solution deposition (aqueous PCSD) route being used. UV irradiation enhances the early decomposition of organics and results in improved electrical properties for the crystalline oxide film, even if the film is crystallized at low temperature. GATR-FTIR shows that UV irradiation promotes the decomposition of organic precursor components, resulting in homogeneous films if applied in the right temperature window during film processing. The organic content, morphology and crystallinity of the irradiated films, achieved at different processing atmospheres and temperatures, is studied and eventually correlated to the functional behavior of the obtained films. This is an important issue, as crystalline films obtained at low temperatures often lack ferroelectric responses. In this work, the film prepared in pure oxygen at the very low temperature of 400 degrees C and after an optimized UV treatment presents a significant remanent polarization value of P-r = 8.8 mu C cm(-2). This value is attributed to the better crystallinity, the larger grain size and the reduced porosity obtained thanks to the early film crystallization effectively achieved through the UV treatment in oxygen. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000373865700005 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.084  
  Call Number UA @ lucian @ c:irua:144729 Serial 4659  
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Lu, Y.; Schryvers, D.; Li, Z.; Zhang, D. pdf  url
doi  openurl
  Title Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite Type A1 Journal article
  Year 2016 Publication (down) Materials characterization Abbreviated Journal Mater Charact  
  Volume 112 Issue 112 Pages 129-133  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterogeneous Al/Al4C3/Al2O3/diamond{111}, Al/nanolayered Al4C3/diamond{111} and Al12W particle/Al4C3/Al2O3/diamond{111} multi-interfaces have been developed at the nanoscale in a W-coated diamond/Al composite produced by vacuum hot pressing. The formation of nanoscale Al4C3 crystals is strongly associated with local O enrichment and can be further promoted by Al12W interfacial particles. The latter effectively contributes to enhance interfacial chemical bonding reducing interfacial thermal resistance and, in turn, enhancing thermal conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370109200015 Publication Date 2015-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 7 Open Access  
  Notes This work is financially supported by the FWO project of Belgium (No. U2 FA 070100/3506), the travel funding BQR (No. R8DIV AUE) provided by Université Lille 1, the National Natural Science Foundation of China (Grant No. 51401123) and the China Postdoctoral Science Foundation (Grant No. 2014 M561469) for Dr. Z.Q. Tan. Dr. W.G. Grünewald (LeicaMicrosystems, Germany) is also thanked for the assistance of surface preparation. Approved Most recent IF: 2.714  
  Call Number c:irua:129976 Serial 3987  
Permanent link to this record
 

 
Author Lu, J.B.; Schryvers, D. pdf  url
doi  openurl
  Title Microstructure and phase composition characterization in a Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
  Year 2016 Publication (down) Materials characterization Abbreviated Journal Mater Charact  
  Volume 118 Issue 118 Pages 9-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co38Ni33Al29 ferromagnetic shape memory alloy. The secondary phase shows a γ′ L12 structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L10 martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensitic start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383292000002 Publication Date 2016-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 3 Open Access  
  Notes J.B. Lu thanks the Belgian Science Ministry (Belspo) for support of his post-doctoral research stay at EMAT. We thank S. Sedlakova-Ignacova from the Institute of Physics in Prague, Czech Republic, for providing samples. Approved Most recent IF: 2.714  
  Call Number c:irua:133100 Serial 4071  
Permanent link to this record
 

 
Author Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D. pdf  url
doi  openurl
  Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
  Year 2016 Publication (down) Materials characterization Abbreviated Journal Mater Charact  
  Volume 118 Issue 118 Pages 352-362  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383292000042 Publication Date 2016-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 9 Open Access  
  Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @ c:irua:137171 Serial 4334  
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Bals, S.; Koganezawa, T.; Yoshimoto, N.; Hannani, D.; Gaceur, M.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J. pdf  doi
openurl 
  Title Square-centimeter-sized high-efficiency polymer solar cells : how the processing atmosphere and film quality influence performance at large scale Type A1 Journal article
  Year 2016 Publication (down) Laser physics review Abbreviated Journal Adv Energy Mater  
  Volume 6 Issue 6 Pages 1600290  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organic solar cells based on two benzodithiophene-based polymers (PTB7 and PTB7-Th) processed at square centimeter-size under inert atmosphere and ambient air, respectively, are investigated. It is demonstrated that the performance of solar cells processed under inert atmosphere is not limited by the upscaling of photoactive layer and the interfacial layers. Thorough morphological and electrical characterizations of optimized layers and corresponding devices reveal that performance losses due to area enlargement are only caused by the sheet resistance of the transparent electrode reducing the effi ciency from 9.3% of 7.8% for PTB7-Th in the condition that both photoactive layer and the interfacial layers are of high layer quality. Air processing of photoactive layer and the interfacial layers into centimeter-sized solar cells lead to additional, but only slight, losses (< 10%) in all photovoltaic parameters, which can be addressed to changes in the electronic properties of both active layer and ZnO layers rather than changes in layer morphology. The demonstrated compatibility of polymer solar cells using solution-processed photoactive layer and interfacial layers with large area indicates that the introduction of a standard active area of 1 cm(2) for measuring effi ciency of organic record solar cells is feasible. However electric standards for indium tin oxides (ITO) or alternative transparent electrodes need to be developed so that performance of new photovoltaic materials can be compared at square centimeter-size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Place of publication unknown Editor  
  Language Wos 000379314700010 Publication Date 2016-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 6 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support by the French Fond Unique Intermisteriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7-contract no. 287594). Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies) is also acknowledged for providing financial support. The synchrotron radiation experiments were performed at BL46XU and BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2014B1916 and 2015A1984). The authors further acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; Approved Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:134951 Serial 4249  
Permanent link to this record
 

 
Author Cui, J.; Faria, M.; Bjornmalm, M.; Ju, Y.; Suma, T.; Gunawan, S.T.; Richardson, J.J.; Heidar, H.; Bals, S.; Crampin, E.J.; Caruso, F. pdf  doi
openurl 
  Title A framework to account for sedimentation and diffusion in particle-cell interactions Type A1 Journal article
  Year 2016 Publication (down) Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 32 Issue 32 Pages 12394-12402  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In vitro experiments provide a solid basis for understanding the interactions between particles and biological systems. An important confounding variable for these studies is the difference between the amount of particles administered and that which reaches the surface of cells. Here, we engineer a hydrogel-based nanoparticle system and combine in situ characterization techniques, 3D-printed cell cultures, and computational modeling to evaluate and study particle cell interactions of advanced particle systems. The framework presented demonstrates how sedimentation and diffusion can explain differences in particle cell association, and provides a means to account for these effects. Finally, using in silico modeling, we predict the proportion of particles that reaches the cell surface using common experimental conditions for a wide range of inorganic and organic micro- and nanoparticles. This work can assist in the understanding and control of sedimentation and diffusion when investigating cellular interactions of engineered particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000389117600017 Publication Date 2016-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 40 Open Access Not_Open_Access  
  Notes ; This work was supported by the Australian Research Council (ARC) under the Australian Laureate Fellowship scheme (F.C., FL120100030), the Australian Government through an Australian Postgraduate Award (M.B.), and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (Project Number CE140100036). This work was performed in part at the Materials Characterization and Fabrication Platform (MCFP) at the University of Melbourne and the Victorian Node of the Australian National Fabrication Facility (ANFF). ; Approved Most recent IF: 3.833  
  Call Number UA @ lucian @ c:irua:139210 Serial 4438  
Permanent link to this record
 

 
Author Thirumalraj, alamurugan; Palanisamy, S.; Chen, S.-M.; De Wael, K. pdf  url
doi  openurl
  Title A graphene/gelatin composite material for the entrapment of hemoglobin for bioelectrochemical sensing applications Type A1 Journal article
  Year 2016 Publication (down) Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 163 Issue 7 Pages 265-271  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the present work, a novel graphene (GN) and gelatin (GTN) composite was prepared and used as an immobilization matrix for hemoglobin (Hb). Compared with Hb immobilized on a bare, GN or GTN modified glassy carbon electrode (GCE), a stable and pair of well-defined quasi redox couple was observed at an Hb modified GN/GTN composite GCE at a formal potential of −0.306 V versus Ag|AgCl. The direct electrochemical behavior of Hb was greatly enhanced by the presence of both GTN and GN. A heterogeneous electron transfer rate constant (Ks) was calculated as 3.82 s−1 for Hb immobilized at GN/GTN modified GCE, which indicates the fast direct electron transfer of Hb toward the electrode surface. The biosensor shows a stable and wide linear response for H2O2 in the linear response range from 0.1 μM to 786.6 μM with an analytical sensitivity and limit of detection of 0.48 μAμM−1 cm−2 and 0.04 μM, respectively. The fabricated biosensor holds its high selectivity in the presence of potentially active interfering species and metal ions. The biosensor shows its satisfactory practical ability in the commercial contact lens solution and human serum samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377412900047 Publication Date 2016-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4651 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 9 Open Access  
  Notes ; This project was supported by the Ministry of Science and Technology (project no. NSC1012113M027001MY3), Taiwan (Republic of China). The authors express their sincere thanks to Prof. Bih-Show Lou, Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan for providing the human serum samples. ; Approved Most recent IF: 3.259  
  Call Number UA @ admin @ c:irua:132627 Serial 5635  
Permanent link to this record
 

 
Author Paria Sena, R.; Babaryk, A.A.; Khainakov, S.; Garcia-Granda, S.; Slobodyanik, N.S.; Van Tendeloo, G.; Abakumov, A.M.; Hadermann, J. pdf  url
doi  openurl
  Title A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)36.3O94 with advanced transmission electron microscopy and neutron diffraction Type A1 Journal article
  Year 2016 Publication (down) Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 45 Issue 45 Pages 973-979  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) A, b = 12.493(3) A, c = 3.95333(15) A. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.  
  Address Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium. joke.hadermann@uantwerpen.be babaryk@univ.kiev.ua  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367614700018 Publication Date 2015-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 6 Open Access  
  Notes We thank Dr E. Suard and Dr O. Fabello for assistance in collecting the neutron diffraction data. R.P.S. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS. The titan microscope was partly funded by the Hercules fund from the Flemish Government. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. AAB acknowledges the JSPDS ICDD Grant-in-Aid program (12-02).; esteem2jra1; esteem2jra2 Approved Most recent IF: 4.029  
  Call Number c:irua:130408 c:irua:130408 Serial 3998  
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Bobrikov, I.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Tsirlin, A.A.; Abakumov, A.M. pdf  doi
openurl 
  Title Synthesis, structure and magnetic ordering of the mullite-type Bi2Fe4-xCrxO9 solid solutions with a frustrated pentagonal Cairo lattice Type A1 Journal article
  Year 2016 Publication (down) Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 45 Issue 45 Pages 1192-1200  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Highly homogeneous mullite-type solid solutions Bi2Fe4-xCrxO9 (x = 0.5, 1, 1.2) were synthesized using a soft chemistry technique followed by a solid-state reaction in Ar. The crystal structure of Bi2Fe3CrO9 was investigated using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy (S.G. Pbam, a = 7.95579(9) angstrom , b = 8.39145(9) angstrom, c = 5.98242(7) angstrom, R-F(X-ray) = 0.022, R-F(neutron) = 0.057). The ab planes in the structure are tessellated with distorted pentagonal loops built up by three tetrahedrally coordinated Fe sites and two octahedrally coordinated Fe/Cr sites, linked together in the ab plane by corner-sharing forming a pentagonal Cairo lattice. Magnetic susceptibility measurements and powder neutron diffraction show that the compounds order antiferromagnetically (AFM) with the Neel temperatures decreasing upon increasing the Cr content from T-N similar to 250 K for x = 0 to T-N similar to 155 K for x = 1.2. The magnetic structure of Bi2Fe3CrO9 at T = 30 K is characterized by a propagation vector k = (1/2,1/2,1/2). The tetrahedrally coordinated Fe cations form singlet pairs within dimers of corner-sharing tetrahedra, but spins on the neighboring dimers are nearly orthogonal. The octahedrally coordinated (Fe, Cr) cations form antiferromagnetic up-up-down-down chains along c, while the spin arrangement in the ab plane is nearly orthogonal between nearest neighbors and collinear between second neighbors. The resulting magnetic structure is remarkably different from the one in pure Bi2Fe4O9 and features several types of spin correlations even on crystallographically equivalent exchange that may be caused by the simultaneous presence of Fe and Cr on the octahedral site.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000367614700041 Publication Date 2015-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:131095 Serial 4257  
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Zanaga, D.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes Type A1 Journal article
  Year 2016 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 3493-3500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of template-confined chemical reactions allows the synthesis of complex molecules that would hardly be producible through conventional method. This idea was developed to produce high quality nanocrystals more than 20 years ago. However, template-mediated assembly of colloidal nanocrystals is still at an elementary level, not only because of the limited templates suitable for colloidal assemblies, but also because of the poor control over the assembly of nanocrystals within a confined space. Here, we report the design of a new system called “supracrystalline colloidal eggs” formed by controlled assembly of nanocrystals into complex colloidal supracrystals through superlattice-matched epitaxial overgrowth along the existing colloidosomes. Then, with this concept, we extend the supracrystalline growth to lattice-mismatched binary nanocrystal superlattices, in order to reach anisotropic superlattice growths, yielding freestanding binary nanocrystal supracrystals that could not be produced previously.  
  Address CEA/IRAMIS , CEA Saclay F-91191 Gif-sur-Yvette, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372477700034 Publication Date 2016-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 57 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The authors thank Dr. P. A. Albouy for the SAXS measurement.; esteem2_ta Approved Most recent IF: 13.858  
  Call Number c:irua:131923 c:irua:131923 Serial 4018  
Permanent link to this record
 

 
Author Mikita, R.; Aharen, T.; Yamamoto, T.; Takeiri, F.; Ya, T.; Yoshimune, W.; Fujita, K.; Yoshida, S.; Tanaka, K.; Batuk, D.; Abakumov, A.M.; Brown, C.M.; Kobayashi, Y.; Kageyama, H.; pdf  doi
openurl 
  Title Topochemical nitridation with anion vacancy -assisted N3-/O2- exchange Type A1 Journal article
  Year 2016 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 3211-3217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present how the introduction of anion vacancies in oxyhydrides enables a route to access new oxynitrides, by conducting ammonolysis of perovskite oxyhydride EuTiO3-xHx (x similar to 0.18). At 400 degrees C, similar to our studies on BaTiO3-xHx, hydride lability enables a low temperature direct ammonolysis of EUTi3.82+O-2.82/H-0.18, leading to the N3-/H--exchanged product EuTi4+O2.82No0.12 square 0.06 center dot When the ammonolysis temperature was increased up to 800 degrees C, we observed a further nitridation involving N3-/O2- exchange, yielding a fully oxidized Eu3+Ti4+O2N with the GdFeO3-type distortion (Pnma) as a metastable phase, instead of pyrochlore structure. Interestingly, the same reactions using the oxide EuTiO3 proceeded through a 1:1 exchange of N3- with O-2 only above 600 degrees C and resulted in incomplete nitridation to EuTi02.25N0.75, indicating that anion vacancies created during the initial nitridation process of EuTiO2.82H0.18 play a crucial role in promoting anion (N3-/O2-) exchange at high temperatures. Hence, by using (hydride-induced) anion-deficient precursors, we should be able to expand the accessible anion composition of perovskite oxynitrides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000371945800055 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:133156 Serial 4266  
Permanent link to this record
 

 
Author Bladt, E.; van Dijk-Moes, R.J.A.; Peters, J.; Montanarella, F.; de Mello Donega, C.; Vanmaekelbergh, D.; Bals, S. url  doi
openurl 
  Title Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth Type A1 Journal article
  Year 2016 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 14288-14293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hetero-nanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) study of CdSe (core) / CdS (giant shell) hetero-nanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387095000026 Publication Date 2016-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). D.V. wishes to acknowledge the Dutch Foundation for Fundamental Research on Matter (FOM) in the programme ‘Designing Dirac Carriers in Semiconductor Superstructures’. E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:138251 Serial 4325  
Permanent link to this record
 

 
Author Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles Type A1 Journal article
  Year 2016 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 11453-11456  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core−shell NPs (nanorods and nanocubes) into octahedral nanorattles via roomtemperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383410700008 Publication Date 2016-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 75 Open Access OpenAccess  
  Notes This work has been funded by the European Research Council (ERC Advanced Grant No. 267867- PLASMAQUO, ERC Starting Grant No. 335078-COLOURATOMS) and Spanish MINECO (Grants MAT2013-45168-R and MAT2013-46101-R); ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:137123 Serial 4329  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. url  doi
openurl 
  Title High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning Type A1 Journal article
  Year 2016 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 107-110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392036900025 Publication Date 2016-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 267 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 Serial 4339  
Permanent link to this record
 

 
Author Kuno, Y.; Tassel, C.; Fujita, K.; Batuk, D.; Abakumov, A.M.; Shitara, K.; Kuwabara, A.; Moriwake, H.; Watabe, D.; Ritter, C.; Brown, C.M.; Yamamoto, T.; Takeiri, F.; Abe, R.; Kobayashi, Y.; Tanaka, K.; Kageyama, H. pdf  doi
openurl 
  Title ZnTaO2N: Stabilized High-Temperature LiNbO3-type Structure Type A1 Journal article
  Year 2016 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 15950-15955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R (3) over barc) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only the stability of this phase, but also the phase transition to a noncentrosymmetric (R3c) LiNbO3-type structure (LN-type) which is yet to be clarified. Synchrotron and neutron diffraction studies in combination with transmission electron microscopy show that Zn is located at a disordered 12c site instead of 6a, implying an order disorder mechanism of the phase transition. It is found that the dosed d-shell of Zn2+, as well as the high-valent Ta5+ ion, is responsible for the stabilization of the HTLN-type structure, affording a novel quasitriangular ZnO2N coordination. Interestingly, only 3% Zn substitution for MnTaO2N induces a phase transition from LN- to HTLN-type structure, implying the proximity in energy between the two structural types, which is supported by the first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000389962800032 Publication Date 2016-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:140298 Serial 4452  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: