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ABSTRACT: A sound theoretical rationale for the design of a
magnetic nanocarrier capable of magnetic capture in vivo after
intravenous administration could help elucidate the parameters
necessary for in vivo magnetic tumor targeting. In this work,
we utilized our long-circulating polymeric magnetic nano-
carriers, encapsulating increasing amounts of superparamag-
netic iron oxide nanoparticles (SPIONs) in a biocompatible oil
carrier, to study the effects of SPION loading and of applied
magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo
magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest
SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical
modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the
nanocapsules (NCs) in accordance with the Nacev−Shapiro construct, and this was then used to extrapolate to the expected
behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been
sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using
docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy and improve mice
survival compared to passive targeting at drug doses of ca. 5−8 mg of DTX/kg. This is, to our knowledge, the first study that
truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting.
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Superparamagnetic iron oxide nanoparticles (SPIONs) have
been widely explored for pharmaceutical applications.1,2

Their superparamagnetic state ensures no remanent (perma-
nent) moment in the absence of an applied field and obviates
the risk of uncontrolled aggregation of the nanoparticles in the
bloodstream or tissues.3 The directed transport of SPIONs in
the bloodstream is dependent on a dynamic equilibrium
between the magnetic and hydrodynamic forces acting on the
SPIONs.4−8 As a result, the physical properties, including the
field strength and gradients, the volumetric and magnetic
properties (magnetization) of the particles, and the hydro-
dynamic parameters such as blood flow, hematocrit, viscosity,
and SPION concentration in the blood, are all of
importance.1,6,9

Only one study investigating the optimal conditions on
magnetic targeting has been reported so far.10 This study
demonstrated that higher magnetic field strength offered better
magnetic targeting. However, the conclusion was drawn from a
custom-made magnetic setup and mainly determined on the
basis of intra-arterial administration, which required invasive
surgery.11 This was presumably due to the limited pharmaco-
kinetic properties such as blood circulation half-life, organ
biodistribution, and tumor extravasation ability. Thus, studying
the key factors that possibly affect magnetic targeting efficacy is
crucial.
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In this work, we used oil-cored polymeric magnetic
nanocapsules (m-NCs) with tunable SPION loadings and
prolonged blood circulation time12 to better understand the
factors influencing magnetic targeting after intravenous
injections in vivo. The high SPION loading eliminated the
need for using highly magnetized nanoparticles. The oil core
facilitated high hydrophobic drug loading compared to that of
the polymer-coated SPIONs reported in the literature.13,14 Our
aim was to assess the key factors influencing magnetic targeting
efficacy, including SPION loadings in m-NC and the remotely
applied magnetic force magnitude. To translate the results from
mouse to human, mathematical modeling was undertaken to

compute the in vivo magnetic, viscoelastic, convective, and
diffusive forces acting on the m-NCs in accordance with the
Nacev−Shapiro construct.15 The predicted magnetic targeting
behavior in mouse vasculature was compared with the observed
murine data and then extrapolated to the expected behavior in
humans. Docetaxel (DTX) was used as a model hydrophobic
anticancer drug to test the therapeutic efficacy of m-NCs in the
presence or absence of magnetic targeting.
The use of SPIONs in the biomedical field is advantageous

given the superparamagnetic state. Their small size (<30 nm)
also allows them to extravasate through the leaky blood
vasculature of tumors.16,17 However, through the 2000s and

Table 1. Physicochemical Characterization of PEGylated NCs with Different SPION Loadings and Oil Cores Prepared by Single
Emulsification−Solvent Evaporation Method

formulation
initial SPION

loadinga
hydrodynamic size ± SD

(nm)b,c PDI ± SDb,c
ζ potential ± SD

(mV)d,c
SPION EE% ±

SDe,c
actual SPION
loadinga,c,e

NC 1 0.00 203 ± 4 0.12 ± 0.01 −45 ± 2 − 0.00
NC 2 0.08 212 ± 2 0.17 ± 0.02 −38 ± 1 99 ± 3 0.08 ± 0.01
NC 3 0.38 218 ± 4 0.17 ± 0.02 −39 ± 1 99 ± 2 0.38 ± 0.01
NC 4 1.85 218 ± 3 0.19 ± 0.01 −36 ± 1 95 ± 3 1.76 ± 0.06
NC 5 7.02 214 ± 9 0.19 ± 0.02 −31 ± 1 94 ± 9 6.60 ± 0.63

aValues were expressed at w/w SPION−NC. Total NCs weight is calculated by the addition of polymer, lecithin, castor oil, SPION, and Tween 80
weights. Initial and final loading refers to SPION content before and after size-exclusion chromatography. bSize was measured with dynamic light
scattering and measured in deionized water. cResults are expressed as mean ± SD (n = 3). dValues were obtained with laser Doppler electrophoresis
and measured in deionized water. eIron content was determined by ICP-MS.

Figure 1. Physiochemical characterization of m-NCs. m-NCs were prepared by the single emulsification−solvent evaporation method. (a) Schematic
illustration of m-NC structure, comprising a core−shell structure. (b) Cryo-TEM image of NC 4. (c) Magnetizations curve of the as-received
SPIONs and a representative m-NC (NC 4) as a function of field, measured at 300 K. The saturation magnetizations of both samples were ca. 72
emu/gFe. (d) Transmission Mössbauer spectra of the as-received SPIONs and a representative m-NC (NC 4) recorded at room temperature. The
mean isomer shift (spectral centroid) of the SPION and m-NCs was 0.38 and 0.39 mm/s, respectively, and is characteristic of a material composed
largely of ferric ions.
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2010s, SPION-based magnetic drug targeting has been the
subject of intense debate, with concerns focusing on the
minimal magnetic forces generated from the small magnetic
cores and the limited blood circulation times of the SPIONs
used.10,11,18,19 To address these issues, we developed a
polymeric oil-cored m-NC system prepared with increasing
amounts of SPION (0% to ca. 7% w/w SPION−NC, namely
NC 1−5) with PEGylated poly(lactic-co-glycolic acid) (PLGA−
PEG).12 The hydrodynamic sizes were in the range of 203−218
nm, and no significant changes were observed over the 3 month

storage period (Table 1 and Figure S1). A schematic
morphological illustration of an m-NC is shown in Figure 1a.
m-NCs are expected to have a core−shell structure with
SPIONs entrapped within the oil core and surrounded by a
polymeric shell and PEGylated outer layer. Figure 1b shows the
2D projections of m-NCs imaged by low-dose cryo-trans-
mission electron microscopy (cryo-TEM), from which the
image strongly suggests that a high number of SPIONs
(electron-dense nanoparticles) are well-confined within the oil
core. The superparamagnetic properties were not compromised

Figure 2. In vivo magnetic targeting assessment of m-NC-111In with increasing amounts of SPION in CT26 tumor-bearing BALB/c mice under the
influence of an 8 mm diameter magnet (0.43 T). Mice were iv injected with indium-111 labeled NC 1−5. A permanent magnet (0.43 T, 8 mm in
diameter) was applied at one tumor site (TU+) for 1 h, and organs were excised at 24 h post-injection. (a) Blood clearance profiles. (b) Excretion
profiles. (c) Organ biodistribution profile. (d) Tumor accumulation profiles. (e) Magnetic targeting efficacy. (f) In vivo single-photon emission
computed tomography−computed tomography (SPECT−CT) imaging of m-NC 4-111In. (g) In vivo T2-weighted MR imaging of m-NC 4-111In.
Cross-sections in (f) were from lung (LU), liver (LI), spleen (SP), kidney (KI), nonmagnetically targeted tumor (TU-), and magnetically targeted
tumor (TU+) at equivalent time points. Tumors in (f) and (g) are marked in dashed lines. Results are expressed as % ID/g of organ as mean ± SEM
(n = 3). One-way ANOVA was performed using IBM SPSS Statistics software followed by Tukey’s multiple comparison test (*, p < 0.05; **, p <
0.01).
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as confirmed by the superconducting quantum interference
device (SQUID) and Mössbauer spectroscopy analysis (Figure
1c,d). This design potentially offered an increase in the
apparent magnetic forces acting on the nanocapsules as a whole
compared to SPIONs, as magnetic force is directly proportional
to the cumulative iron oxide nanoparticle volume within the m-
NC core.
Fundamental work of biodistribution profiles and tumor

accumulation was conducted to understand the key factors in
achieving efficacious magnetic targeting. NC 1−5 were
radiolabeled with indium-111 (Table S1), as we reported
previously.12 Magnetic targeting efficacy was assessed by
calculating the fold increase in percentage injected dose per
gram of tumor tissue (%ID/g of tumor) upon application of
magnetic field.
To explore the effect of SPION loading on magnetic

targeting efficiency, mice were injected with comparable NC
doses (312.5 mg of polymer/kg) with increased loadings of
SPIONs from 0 to ca. 7% w/w in m-NCs. This was achieved by
preparing m-NCs with different initial SPION loadings (NC 1−
5). The effect of SPION loading on blood circulation,
excretion, organ biodistribution, and tumor accumulation was
examined using the formulated m-NC-111In with magnetic field
of 0.43 T. Blood circulation profiles are shown in Figure 2a. All
m-NCs displayed prolonged blood circulation time with
approximately 40% and 20% remaining in the blood after 1
and 4 h, respectively. m-NCs with the highest SPION loading
(ca. 7%, NC 5-111In), however, showed significantly lower
blood circulation by 4 h post-injection (p < 0.05). It is unclear
why NC with the highest SPION loading circulated shorter
than the other formulations, but one may hypothesize that the
iron overloading induced NC instability, more notably under
the reasonably high shear forces in vivo. The gradual reduction
in ζ potential values, as SPION loading increases, is another
parameter that one may want to consider; NC 5 exhibited the
lowest ζ potential among all formulation.
Negligible radioactivity was found in feces (0−2% ID/

mouse), and nearly 40% ID/mouse was detected in urine over
the first 24 h post-injection period (Figure 2b) for all m-NCs.
Instant thin-layer chromatography (iTLC) confirmed that only
5.3−9.3% of the excreted radioactivity was in the form of 111In-
DTPA−EDTA chelates indicating that PLGA18KDa-PEG3.5KDa-
DTPA was excreted intact. Organ biodistribution of NC 1−
5-111In was assessed at 24 h post-injection (Figure 2c). The
highest uptake was observed in spleen followed by liver and
kidney tissue. Increasing SPION loadings led to a gradual
increase in liver and spleen uptake and became statistically
significant at 7% w/w (p < 0.01). Such results explain the
reduction in blood circulation time of m-NCs of highest SPION
loading.
Uptake in tumors exposed to magnetic field (TU+) or that

remained unexposed (TU−) was quantified and is shown in
Figure 2d. Significantly higher % ID/g of tumor was observed
in TU+ compared to TU− in NC 2−5 but at a different extent
(p < 0.05). No significant differences in % ID/g of tumor
(TU−) were observed with m-NCs at increasing loadings of
SPION, except for NC 5 with the SPION loading (ca. 7%),
which showed the lowest but significant uptake. This was
expected as a result of reduced blood circulation time and
increased liver and spleen uptake. Despite lower % ID/g of
tumor obtained for NC 5, its enhancement in tumor uptake
upon magnetic targeting was still significant and comparable to
that of NC 4 (Figure 2e). The effect of SPION loading on in

vivo magnetic targeting efficacy was also confirmed by single-
photon emission computed tomography−computed tomog-
raphy (SPECT−CT) imaging (Figure 2f and Figure S2).
Interestingly, signals could be seen in tumors exposed to
magnet (TU+) at 1 h post-injection, possibly due to magnetic
targeting, while signals in TU− only started to be obvious at 4 h
post-injection due to the passive EPR effect. Tumor
accumulation of m-NCs was enhanced over time in both
tumors for all formulations. Higher intensity was seen in TU+
compared to TU− at all imaging time points studied. Because
the m-NCs were also a good magnetic resonance (MR)
contrast agent,12 MR imaging was also performed to confirm
the tumor uptake of SPIONs with increasing SPION loadings
(Figures 2g and S3). Similar to SPECT−CT imaging, more
hypo-intense signals (darkening) were seen in TU+ than TU−
in mice injected with NC 2−5, indicating higher SPION
accumulation in tumors when the magnetic field was applied.
The intensities from MRI were not compared between m-NCs
due to different initial SPION injection doses (indicated in the
Supplementary Methods section).
The effect of magnetic field on tumor uptake was studied

using three magnets with different magnetic field strength/
gradients (0.43, 0.41, and 0.30 T) and dimensions (8, 7, and 6
mm in diameter, respectively). Organ biodistribution for NC
1−5 was not altered when different magnetic field strength and
gradients were applied to the tumor (Figures S4 and S5,
respectively). However, at lower magnetic field strength and
gradients (0.30 and 0.41 T), no magnetic targeting was
obtained in mice injected with NC 2 (the lowest SPION
loading) (Figures S4c and S5c). This is most probably because
the low magnetic field provided insufficient magnetic forces on
m-NCs under these conditions. On the contrary, when the
strongest magnetic field (0.43 T) was applied, tumor uptake
increased linearly when SPION doses increase from 0 to 125
mg SPION/kg. The results suggest that magnetic targeting is
still possible at lower magnetic field, but m-NCs of higher
SPION loadings are required for this instance. As a result, high
SPION loading and magnetic field strength and gradients were
therefore proven to be the determining factors to achieve
efficient magnetic targeting experimentally. To the best of our
knowledge, this is the first study to investigate the influence of
the magnetic field, at increasing SPION doses, on magnetic
targeting efficacy in vivo.
Another concern in the field of magnetic targeting research is

the lack of translation of mouse and rat experimental data to
human clinical designs. We, therefore, have applied magnetic
force calculation to the in vivo experimental conditions (viz., a
10 mm diameter tumor adjacent to the center of the circular
face of the NdFeB actuating magnet) to quantify the magnitude
of the magnetic forces experienced by m-NCs as they pass
through the tumor (see the Supplementary Methods section
and Figures S6−S13). In the case of NC 4 with the 8 mm
diameter magnet, these forces range from ca. 0.3 to 6.5 fN per
m-NC, with a median force (i.e., the force experienced by an m-
NC containing 43 SPIONs per m-NC (the center of the
polydispersity range) at the center of the tumor (5 mm from
the face of the magnet)) of ca. 1.9 fN per m-NC. This
quantification allows us to extrapolate from the observed
behavior in the mouse model to the expected behavior in
humans by reference to the finite element modeling work of
Nacev et al.20,21

The Nacev model is particularly useful here because it is
formulated in terms of three dimensionless physical parameters
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(the magnetic Richardson number Ψ, the mass Peclet number
Pe, and the reduced Renkin diffusion coefficient D) that may be
evaluated for both preclinical and clinical situations. This
simulates the competition between the applied magnetic forces,
blood convection, and diffusion and therefore reveals the
magnetic behaviors of m-NCs under any given physiological
conditions. Figure 3a shows the calculated Nacev behavior for
the mouse model for the case of NC 4 with the 8 mm diameter
magnet (further details on the calculations are given in the
Supplementary Methods section). The magnetic Richardson

number Ψ, the mass Peclet number Pe, and the reduced Renkin
diffusion coefficient D triad in this case were estimated to be Ψ
= 3.0−2.5

+8.0 × 10−3, Pe = 820 ± 360, and D = 0.30 ± 0.13, which
places the predicted magnetic targeting behavior firmly in the
region of positive capture, i.e., in the “boundary-layer
formation” region.20,21 The other formulation that positioned
in this region was NC 5 (ca. 7% w/w) (Figure S14). m-NCs
with lower SPION loadings, such as NC 2 (ca. 0.08% w/w),
were mostly located in the velocity-dominated region or the
phase-transition layer, indicating that the magnetic forces are
weak compared with the blood flow forces;15 thus, NC 2 are
likely to be washed out of the blood vessels, which agreed with
our experimental data.
These results made us confident in scaling our mouse

experimental results to the virtual human body by fitting the
magnetic force calculations into the Nacev model while using
human blood hydrodynamic parameters. We adopted the blood
and blood vessel parameters in humans from the Lübbe et al.
Phase I clinical study,22 as reported by Nacev et al.20,21 and
listed in the Supporting Information. Magnetic targeting tends
to be more difficult to achieve in humans because human blood
velocity and vessel diameters are at least 3 orders of magnitude
greater than those observed in both mice and rats. The tissue−
membrane diffusion coefficient is also ca. 3-fold higher. Figure
3b shows the predicted Nacev behavior in humans, again for
the case of NC 4 and the 8 mm diameter magnet. In this case,
the behavior-governing environment parameters were set to
values appropriate for ca. 5 mm skin-to-target distance, as
defined in an earlier human clinical trial of magnetic targeting
of near-to-skin solid tumors.23 The calculated triad values here
were Ψ = 3.0−2.5

+8.0 × 10−6, Pe = 8.3 + 3.6 × 105, and D = 1.0 + 0.4
× 10−3. It is apparent from Figure 3b that the predicted
magnetic targeting behavior in the human blood vessels
remains, for the most part, in the region of positive capture.
When the experimental and mathematical data are taken

together, it is obvious that the pharmacokinetic profile of m-
NCs also plays a crucial role in determining efficacy of magnetic
targeting, apart from the magnetic forces. For example, NC 4
showed higher blood circulation time than NC 5, which agreed
with TU+ uptake values (NC 4:5.7%ID/g and NC 5:3.8%ID/g,
p < 0.05) and therefore could deliver more drug to a tumor. As
a result, the high SPION loading acts as a trade-off between
strong magnetic forces and ideal pharmacokinetic properties in
a magnetic nanocarrier design. This suggests that for this
particular formulation, the optimal SPION loading is ca. 2%,
above which the magnetic targeting effect is counterbalanced by
shortened blood circulation time due to clearance by the
reticular endothelial system (RES); hence, no further improve-
ment in magnetic targeting could be seen.
In this study, the m-NC size of >200 nm was found to

perform better in magnetic targeting than the small-sized
SPION reported in the literature, more likely due to the
enhancement in the magnetic force acting per m-NC as a result
of their larger diameter. It is worth noting that this is not the
ideal size with which to exploit the EPR effect in mouse tumors
and, in particular, also in tumors in human patients. We,
however, showed that smaller-sized PLGA-based nanoparticles
(size∼ 150 nm), prepared without the oil core, were also able
to benefit from magnetic targeting of the tumors (data not
shown). It is also worth mentioning that the magnetic field
gradient used in this study is relatively low, and stronger
magnets can be used if smaller magnetic carriers are to be used.

Figure 3. Calculated magnetic targeting efficacy of NC 4 with the 8
mm diameter NdFeB magnet for both the CT26 mouse model and a
projected human clinical model. In accordance with the Nacev
magnetic targeting model, the three characteristic parameters that
govern the magnetic capture behavior of magnetic entities in blood
vessels (the magnetic Richardson number Ψ, the mass Peclet number
Pe, and the reduced Renkin diffusion coefficient D) were calculated for
NC 4 with the 8 mm diameter NdFeB magnet. Results are shown for
(a) the CT26 mouse model of this work and (b) a postulated human
clinical model of superficial solid tumors accessed by 5 mm diameter
blood vessels. Variations due to the polydispersity of the number of
SPIONs per nanocapsule and the different vascular pathways that the
m-NCs might take through the tumor were considered; hence, the ●
symbol marks the most-probable (Ψ and D) combination, and the
shaded box denotes the range of ± 1 standard deviation in those
parameters. The variation in Pe is evident in the breadth of the
intermediate zone separating the regions of positive capture
(“boundary-layer formation”) and of limited capture (“velocity-
dominated”).
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It is crucial to point out that in this study the m-NC were
prepared with different amounts of SPION loading, which may
influence their size and ζ potential and can indirectly affect the
organ biodistribution and magnetic tumor targeting profiles.
Despite the gradual reduction in ζ potential as SPION loading
increased, our data showed that there was no difference in m-

NC size or organ biodistribution profile nor blood circulation
time, except for NC 5, which coincidentally exhibited the least
negative ζ potential. It is likely that the discrepancy between
the modeling results of NC 5 and the in vivo magnetic tumor
targeting is related to their dramatically reduced blood
circulation time and their reduced ζ potential compared to

Table 2. Physicochemical Characterization of PEGylated DTX Encapsulated NCs Prepared by Single Emulsification−Solvent
Evaporation Method

formulation initial DTX loadinga hydrodynamic size ± SD (nm)b,c PDI ± SDb,c ζ potential ± SD (mV)d,c DTX EE% ± SDe,c

NC-DTX 4% 215 ± 13 0.19 ± 0.03 −52 ± 2 83 ± 2
m-NC-DTX 4% 215 ± 9 0.17 ± 0.02 −41 ± 1 85 ± 1
m-NC-DTX 10% 217 ± 1 0.20 ± 0.01 −50 ± 2 75 ± 4

a%w/w DTX−polymer. bSize was measured with dynamic light scattering and measured in deionized water. cResults are expressed as mean ± SD (n
= 3). dValues were obtained with laser Doppler electrophoresis and measured in deionized water. eDTX content was determined by reverse-phase
high-performance liquid chromatography.

Figure 4. In vivo therapeutic effect in BALB/c mice after multiple injections of m-NC-DTX in combination with magnetic targeting in the CT26
colon cancer model. Mice were subjected to multiple injections of the therapy, which were carried out every 4 days from day 11. A permanent
magnet (0.43 T, 8 mm in diameter) was applied at one tumor site (TU+) in all magnetically targeted groups for 1 h after each injection. (a), Tumor
growth curve of CT26 tumors. Dashed lines indicate four injection dates. Results are shown as mean ± SEM (n = 6−10). (b) Survival analysis of
tumor-bearing mice. Mice were culled when the largest tumor diameter reached 15 mm in length. (c) Hematoxylin and eosin staining (H&E) and
terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining of tumors after multiple injections. TUNEL and DAPI were
counterstained to identify apoptotic (green) cells from the total cell population (blue nuclei) in TUNEL assay. Scale bars are 1000 μm. One-way
ANOVA was performed for tumor growth curve using SPSS IBM 20 followed by Tukey’s multiple comparison test, and a log-rank test was
performed for the survival curve using Graph Pad (*, p < 0.05; ***, p < 0.005).
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those of other formulations. One way to overcome this problem
could be to prepare m-NC of a fixed SPION loading but then
alter the number of m-NCs injected per mouse to alter the
SPION dose administered. This approach may have its own
limitations, such as different degrees of RES saturation, making
this approach not perfect either.
The only in vivo study reported so far is by Chertok et al.,10

which examined the magnetic retention of MNPs under
different magnetic field gradients and topography in intra-
cerebral 9L-glioma bearing rats. When magnetic field strength
increased from 0.15 to 0.35 T, a 2.1-fold increase in iron
content in tumor tissue was observed. The topography of
magnetic field also affects the accumulation of MNPs in tumors.
The conventional permanent magnets or electromagnets
usually generate a relatively uniform magnetic field gradient
over a broad range. As a result, all vasculatures, especially tumor
arteries, tend to be exposed to high magnetic forces, thereby
causing vascular embolism when MNPs are injected intra-
arterially.8 In this study, we report that magnetic targeting can
be achieved with intravenously injected magnetic nanocarriers.
Our study, however, did not offer a solution to targeting deep
or metastatic tumors and was only limited to superficial tumors.
More innovative solutions are still to be found for magnetically
targeting deep tumors.
To test the therapeutic outcome of m-NCs with magnetic

targeting, a cancer therapy study was carried out using
docetaxel (DTX) as a model hydrophobic drug in a CT26
colon cancer model. DTX suffers from poor water solubility
(10−20 μg/L), which hampers its ability to be administered
systemically.24 The only commercial formulation available now
is Taxotere DTX (Sanofi-Aventis), but it is reported to have
several hypersensitivity reactions and incompatibility with
common peripheral venous catheters,24,25 so there is ongoing
substantial effort to develop better DTX formulations. In this
study, DTX was coencapsulated in the SPION-loaded oil-cored
polymeric m-NCs with the purpose of effectively delivering
high doses of drugs to cancers with the magnetic targeting
strategy.14 The physicochemical properties of DTX loaded m-
NCs (m-NC-DTX) were not significantly affected (Table 2)
and m-NC also demonstrated sustained drug-release profiles
(Figure S15a). An efficient cell-killing effect of m-NC-DTX
against the CT26 cell line was observed in the in vitro
cytotoxicity study (Figure S15b). Therefore, optimal magnetic
targeting conditions were employed in the therapy study, i.e.,
NC 4 (ca. 2%) with the 8 mm diameter magnet. To test the
efficacy of magnetic targeting, two different doses of DTX were
employed: (i) 5 mg/kg as the low (L) dose (m-NC-DTXL) and
(ii) 8 mg/kg as the high (H) dose (m-NC-DTXH). Mice were
either exposed to the magnet, e.g., DTX+, or remained
unexposed, e.g., DTX−.
Tumor growth curves responding to different treatments are

shown in Figure 4a. Mice injected with DTXH showed signs of
significant body weight loss after two or three injections and
were sacrificed before the completion of the treatment. Hence,
the results are not included. In the other groups, no differences
in tumor growth curves were observed between DTX±

L, PBS
±,

and m-NC± (no-drug) treatments, and mice reached the
terminal stage on day 19 with tumor volumes of ∼1000 mm3.
However, tumor growth delay was observed by day 19 in
groups receiving m-NC-DTXH with or without magnetic field
(337 ± 43 and 645 ± 95 mm3, respectively). Interestingly, only
the magnetically targeted groups, m-NC-DTX+

H and m-NC-
DTX+

L (586 ± 34 mm3), showed significantly smaller tumor

volume compared to that of the control treatments by day 19
(p < 0.05). No tumor growth inhibition was found in the m-
NC-DTX−

L group (951 ± 152 mm3 by day 19). By day 29,
mice receiving m-NC-DTX+

H showed significantly delayed
tumor growth compared to m-NC-DTX−

H or m-NC-DTX+
L (p

< 0.05).
To our knowledge, only one study reported the use of DTX

against CT26 tumors. This was in a metastasis model using
PLGA microparticles at a dose of 8 mg/kg.26 PLGA
microparticles prolonged the median survival times of mice
by 10 days. This was similar to the results obtained in this study
at the same administration dose when no magnet was applied
and at a lower dose with magnet, whereas the survival rate
increased from 19 to 34 days (p < 0.005) when the magnetic
targeting strategy was applied (Figure 4b). Results confirmed
our hypothesis that improvement in cancer therapy in vivo can
be achieved and lower drug doses can be given systemically
without compromising the therapeutic efficacy when optimal
magnetic targeting conditions are employed.
Tumors were also terminal deoxynucleotidyl transferase

dUTP nick-end labeling (TUNEL)-stained to determine the
degree of apoptosis after DTX therapy and histologically
examined using hematoxylin and eosin (H&E) staining (Figure
4c, right and left panels, respectively). Tumors from PBS,
empty m-NCs, and free DTX groups exhibited few green
patches (apoptotic cells), which were observed mainly at the
tumor periphery. Expectedly, larger apoptotic areas were found
in m-NC-DTX (L and H) treated tumors, more significantly
with the ones subjected to magnetic field. H&E staining of fixed
tissue sections showed no major signs of necrosis in the major
organs of mice in all experimental groups except for DTXH, in
which spleen angiectasis and hemorrhage associated with
fibrosis were found (Figure S16a). These abnormalities were
not seen at lower doses (5 mg/kg) or the same dose in m-NC
formulation (m-NC-DTXH). The inflammation-mediated tox-
icity (TNF-α levels) and liver function (liver biomarker level)
were also assessed after the systemic administration of m-NCs
or m-NC-DTX. No obvious increase was observed in both tests
compared to the results from negative controls (Figures S16b
and S17). Overall, these results suggest the biocompatibility of
the formulated m-NCs in vivo under the conditions tested, and
the m-NC formulation significantly reduced the systemic
toxicity of DTX.
This study was designed to enable better understanding of

the factors crucial for magnetic drug targeting in mice following
intravenous administration and, furthermore, to extrapolate
those preclinical findings to humans. Mathematical modeling
was undertaken to compute the in vivo magnetic, viscoelastic,
convective, and diffusive forces acting on m-NCs in accordance
with the Nacev−Shapiro construct, and parameters were
determined for which the theory successfully predicted the
observed murine data. These parameters were then used to
extrapolate to the expected behavior in humans, both generally
and for the previously reported case conditions of a clinical trial
on magnetic targeting to superficial solid tumors. The model
predicted that in the latter case, the m-NCs and magnetic forces
applied here would have been sufficient to achieve successful
targeting in humans. Lastly, an in vivo murine tumor growth
delay study was performed using the 2% w/w SPION−NC
nanocapsules with docetaxel (DTX), an anticancer drug,
incorporated into the oil core. Magnetic targeting was found
to offer enhanced therapeutic efficacy and improved mice

Nano Letters Letter

DOI: 10.1021/acs.nanolett.6b02261
Nano Lett. 2016, 16, 5652−5660

5658

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b02261/suppl_file/nl6b02261_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b02261/suppl_file/nl6b02261_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b02261/suppl_file/nl6b02261_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b02261/suppl_file/nl6b02261_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b02261/suppl_file/nl6b02261_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.6b02261


survival compared to the results from passive targeting at a drug
dose of ca. 5−8 mg of DTX/kg.
This work presented here bridges the gap between preclinical

experiments and clinical translation in the field of magnetic
drug targeting. Conceptual advance in both the fundamental
scientific understanding of the technology and its performance
have been made during this work. This is exampled by the
ability to calculate the magnetic force exerted on each
nanocapsule and links such values to the preclinical targeting
data. Such values were used to extrapolate magnetic targeting
efficiency from mouse to human. The method can be used to
predict magnetic targeting efficiency in preclinical or clinical
subjects once information on the diameters of SPION and the
magnetic carrier, the tumor’s position in relation to the magnet,
and blood vessels characteristics become available. Conversely,
the method allows us to design magnetic field setups of
characteristics optimal for achieving the most-efficient magnetic
targeting in vivo for a bespoken magnetic nanocarrier.
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