toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mazhar, R.; Azadi, H.; Van Passel, S.; Varnik, R.; Pietrzykowski, M.; Skominas, R.; Wei, Z.; Xuehao, B. url  doi
openurl 
  Title Does contract length matter? The impact of various contract-farming regimes on land-improvement investment and the efficiency of contract farmers in Pakistan Type A1 Journal article
  Year 2023 Publication Agriculture (Basel) Abbreviated Journal  
  Volume 13 Issue 9 Pages 1651-16  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Land-tenure security is integral to local communities' socioeconomic development. It has been a center of debate in academia and for legislators and advocates to implement reforms to enhance efficient and sustainable development in land management. Yet, knowledge gaps remain in how various contract-farming regimes contribute to land-improvement investment and technical efficiency. This study used a data set of 650 farm households collected through a two-stage stratified sampling to investigate the influence of three contract-farming regimes: long-term, medium-term, and short-term contracts, on the land-improvement investment, productivity, and technical efficiency of contract farmers in Punjab, Pakistan. The study used multivariate probit and ordinary least square regression models to examine the posit relationships. The findings highlight that farmers with long-term land contracts have higher per hectare yield, income and profit than those with medium-term and short-term contracts. The results confirm that farmers with medium- and long-term contracts tend to invest more in land-improvement measures, i.e., organic and green manure. Further, the study findings demonstrate that long-term land tenures are more effective when farmers make decisions regarding the on-farm infrastructure, like tube-well installation, tractor ownership, and holding farm logistics. Last, the study results confirm that long-term contracts are more robust regarding technical efficiency. Moreover, the findings support the Marshallian inefficiency hypothesis and extend the literature on contract farming, land-improvement investment, and land use policy, and offer coherent policy actions for stakeholders to improve farmers' productivity, technical efficiency, and income.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071045300001 Publication Date (up) 2023-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2077-0472 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200373 Serial 9201  
Permanent link to this record
 

 
Author De Micco, V.; Amitrano, C.; Mastroleo, F.; Aronne, G.; Battistelli, A.; Carnero-Diaz, E.; De Pascale, S.; Detrell, G.; Dussap, C.-G.; Ganigué, R.; Jakobsen, Ø.M.; Poulet, L.; Van Houdt, R.; Verseux, C.; Vlaeminck, S.E.; Willaert, R.; Leys, N. url  doi
openurl 
  Title Plant and microbial science and technology as cornerstones to Bioregenerative Life Support Systems in space Type A1 Journal article
  Year 2023 Publication NPJ microgravity Abbreviated Journal  
  Volume 9 Issue 1 Pages 69-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001093834300001 Publication Date (up) 2023-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2373-8065 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199050 Serial 8916  
Permanent link to this record
 

 
Author Huang, L.; Ratkowsky, D.A.; Hui, C.; Gielis, J.; Lian, M.; Shi, P. url  doi
openurl 
  Title Inequality measure of leaf area distribution for a drought-tolerant landscape plant Type A1 Journal article
  Year 2023 Publication Plants Abbreviated Journal  
  Volume 12 Issue 17 Pages 3143-11  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Measuring the inequality of leaf area distribution per plant (ILAD) can provide a useful tool for quantifying the influences of intra- and interspecific competition, foraging behavior of herbivores, and environmental stress on plants’ above-ground architectural structures and survival strategies. Despite its importance, there has been limited research on this issue. This paper aims to fill this gap by comparing four inequality indices to measure ILAD, using indices for quantifying household income that are commonly used in economics, including the Gini index (which is based on the Lorenz curve), the coefficient of variation, the Theil index, and the mean log deviation index. We measured the area of all leaves for 240 individual plants of the species Shibataea chinensis Nakai, a drought-tolerant landscape plant found in southern China. A three-parameter performance equation was fitted to observations of the cumulative proportion of leaf area vs. the cumulative proportion of leaves per plant to calculate the Gini index for each individual specimen of S. chinensis. The performance equation was demonstrated to be valid in describing the rotated and right shifted Lorenz curve, given that >96% of root-mean-square error values were smaller than 0.004 for 240 individual plants. By examining the correlation between any of the six possible pairs of indices among the Gini index, the coefficient of variation, the Theil index, and the mean log deviation index, the data show that these indices are closely related and can be used interchangeably to quantify ILAD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001065193100001 Publication Date (up) 2023-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2223-7747 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199564 Serial 8886  
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K. doi  openurl
  Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
  Year 2023 Publication Electrochemistry Abbreviated Journal  
  Volume 91 Issue 9 Pages 097003-97007  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082818000001 Publication Date (up) 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200340 Serial 9009  
Permanent link to this record
 

 
Author Finizola e Silva, M.; Van Schoubroeck, S.; Cools, J.; Aboge, D.O.; Ouma, M.; Olweny, C.; Van Passel, S. pdf  url
doi  openurl
  Title Local actors' perspectives on sustainable food value chains : evidence from a Q-methodology study in Kenya Type Administrative Services
  Year 2024 Publication Journal of Environmental Studies and Sciences Abbreviated Journal  
  Volume 14 Issue 1 Pages 36-51  
  Keywords Administrative Services; A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Governments and international organizations are increasingly determined to create more sustainable food value chains (SFVCs). However, only little empirical evidence is available on how SFVCs are understood. Enquiring African food value chain actors allows gathering valuable insights into their perception of sustainability, which characteristics of sustainable food value chains they prioritize, and which obstacles to a sustainable transformation they identify. By means of a Q-methodology involving interviews with 33 Kenyan respondents, four perspectives were distinguished. The first perspective, “economic productivity and growth,” prioritizes economic growth and has only limited attention to the social dimension of sustainability. The second perspective, “food security and food availability,” believes that ensuring food security should be the key goal of SFVCs. The third perspective, “environment first,” is dedicated to the environmental dimension of sustainability; the perspective implies that protecting natural resources is the primary way to sustain this level of production. The fourth perspective, “transformative knowledge,” entails that by innovating and sharing knowledge, food value chains can become more sustainable in different areas. Overall, this study provides reliable insights into how Kenyan food value chain actors perceive sustainability in their sector and which elements they believe should be prioritized when rethinking food systems. The study results are valuable for policy-making to further define an SFVC in Kenya and to pave the way for a sustainable transformation of the food sector in developing countries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001063371200001 Publication Date (up) 2023-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-6483 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199200 Serial 9210  
Permanent link to this record
 

 
Author Faust, V.; Boon, N.; Ganigué, R.; Vlaeminck, S.E.; Udert, K.M. url  doi
openurl 
  Title Optimizing control strategies for urine nitrification : narrow pH control band enhances process stability and reduces nitrous oxide emissions Type A1 Journal article
  Year 2023 Publication Frontiers in environmental science Abbreviated Journal  
  Volume 11 Issue Pages 1275152-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrification is well-suited for urine stabilization. No base dosage is required if the pH is controlled within an appropriate operating range by urine feeding, producing an ammonium-nitrate fertilizer. However, the process is highly dependent on the selected pH set-points and is susceptible to process failures such as nitrite accumulation or the growth of acid-tolerant ammonia-oxidizing bacteria. To address the need for a robust and reliable process in decentralized applications, two different strategies were tested: operating a two-position pH controller (inflow on/off) with a narrow pH control band at 6.20/6.25 (∆pH = 0.05, narrow-pH) vs. a wider pH control band at 6.00/6.50 (∆pH = 0.50, wide-pH). These variations in pH also cause variations in the chemical speciation of ammonia and nitrite and, as shown, the microbial production of nitrite. It was hypothesized that the higher fluctuations would result in greater microbial diversity and, thus, a more robust process. The diversity of nitrifiers was higher in the wide-pH reactor, while the diversity of the entire microbiome was similar in both systems. However, the wide-pH reactor was more susceptible to tested process disturbances caused by increasing pH or temperature, decreasing dissolved oxygen, or an influent stop. In addition, with an emission factor of 0.47%, the nitrous oxide (N2O) emissions from the wide-pH reactor were twice as high as the N2O emissions from the narrow-pH reactor, most likely due to the nitrite fluctuations. Based on these results, a narrow control band is recommended for pH control in urine nitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001087861500001 Publication Date (up) 2023-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-665x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199585 Serial 8909  
Permanent link to this record
 

 
Author Koirala, B.; Rasti, B.; Bnoulkacem, Z.; De Lima Ribeiro, A.; Madriz, Y.; Herrmann, E.; Gestels, A.; De Kerf, T.; Janssens, K.; Steenackers, G.; Gloaguen, R.; Scheunders, P. pdf  url
doi  openurl
  Title An extensive multisensor hyperspectral benchmark datasets of intimate mixtures of mineral powders Type P1 Proceeding
  Year 2023 Publication IEEE International Geoscience and Remote Sensing Symposium proceedings T2 – IGARSS 2023 – 2023 IEEE International Geoscience and Remote Sensing Symposium, 16-21 July 2023, Pasadena, CA, USA Abbreviated Journal  
  Volume Issue Pages 5890-5893 T2 - IGARSS 2023 - 2023 IEEE Internation  
  Keywords P1 Proceeding; Economics; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Since many materials behave as heterogeneous intimate mixtures with which each photon interacts differently, the relationship between spectral reflectance and material composition is very complex. Quantitative validation of spectral unmixing algorithms requires high-quality ground truth fractional abundance data, which are very difficult to obtain.In this work, we generated a comprehensive hyperspectral dataset of intimate mineral powder mixtures by homogeneously mixing five different clay powders (Kaolin, Roof clay, Red clay, mixed clay, and Calcium hydroxide). In total 325 samples were prepared. Among the 325 samples, 60 mixtures were binary, 150 were ternary, 100 were quaternary, and 15 were quinary. For each mixture (and pure clay powder), reflectance spectra are acquired by 13 different sensors, with a broad wavelength range between the visible and the long-wavelength infrared regions (i.e., between 350 nm and 15385 nm) and with a large variation in sensor types, platforms, and acquisition conditions. We will make this dataset public, to be used by the community for the validation of nonlinear unmixing methodologies (https://github.com/VisionlabUA/Multisensor_datasets)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001098971606002 Publication Date (up) 2023-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 979-83-503-2010-7 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201596 Serial 9035  
Permanent link to this record
 

 
Author Rakesh Roshan, S.C.; Yedukondalu, N.; Pandey, T.; Kunduru, L.; Muthaiah, R.; Rajaboina, R.K.; Ehm, L.; Parise, J.B. pdf  doi
openurl 
  Title Effect of atomic mass contrast on lattice thermal conductivity : a case study for alkali halides and alkaline-earth chalcogenides Type A1 Journal article
  Year 2023 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 5 Issue 11 Pages 5852-5863  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Lattice thermal conductivity (kappa(L)) is of great scientific interest for the development of efficient energy conversion technologies. Therefore, microscopic understanding of phonon transport is critically important for designing functional materials. In our previous study (Roshan et al., ACS Applied Energy Mater. 2021, 5, 882-896), anomalous kappa(L) trends were predicted for rocksalt alkaline-earth chalcogenides (AECs). In the present work, we extended it to alkali halides (AHs) and conducted a thorough investigation to explore the role of atomic mass contrast on lattice dynamics and phonon transport properties of 36 binary compounds (20 AHs + 16 AECs). The calculated spectral and cumulative kappa(L) reveal that low-lying optical phonon modes significantly boost kappa(L) alongside acoustic phonons in materials where the atomic mass ratio approaches unity and cophonocity nears zero. Phonon scattering rates are relatively low for materials with a mass ratio close to one, and the corresponding phonon lifetimes are higher, which enhances kappa(L). Phonon lifetimes play a critical role, outweighing phonon group velocities, in determining the anomalous trends in kappa(L) for both AHs and AECs. To further explore the role of atomic mass contrast in kappa(L), the effect of tensile lattice strain on phonon transport has also been investigated. Under tensile strain, both group velocities and phonon lifetimes decrease in the low frequency range, leading to a decrease in kappa(L). This work provides insights on how atomic mass contrast can tune the contribution of optical phonons to kappa(L) and its implications on scattering rates by either enhancing or suppressing kappa(L). These insights would aid in the selection of elements for designing new functional materials with and without atomic mass contrast to achieve relatively high and low kappa(L) values, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001096792500001 Publication Date (up) 2023-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201198 Serial 9026  
Permanent link to this record
 

 
Author Perreault, P.; Boruntea, C.-R.; Dhawan Yadav, H.; Portela Soliño, I.; Kummamuru, N.B. url  doi
openurl 
  Title Combined methane pyrolysis and solid carbon gasification for electrified CO₂-free hydrogen and syngas production Type A1 Journal article
  Year 2023 Publication Energies Abbreviated Journal  
  Volume 16 Issue 21 Pages 7316-7320  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The coupling of methane pyrolysis with the gasification of a solid carbon byproduct provides CO2-free hydrogen and hydrogen-rich syngas, eliminating the conundrum of carbon utilization. Firstly, the various types of carbon that are known to result during the pyrolysis process and their dependencies on the reaction conditions for catalytic and noncatalytic systems are summarized. The synchronization of the reactions’ kinetics is considered to be of paramount importance for efficient performance. This translates to the necessity of finding suitable reaction conditions, carbon reactivities, and catalysts that might enable control over competing reactions through the manipulation of the reaction rates. As a consequence, the reaction kinetics of methane pyrolysis is then emphasized, followed by the particularities of carbon deposition and the kinetics of carbon gasification. Given the urgency in finding suitable solutions for decarbonizing the energy sector and the limited information on the gasification of pyrolytic carbon, more research is needed and encouraged in this area. In order to provide CO2-free hydrogen production, the reaction heat should also be provided without CO2. Electrification is one of the solutions, provided that low-carbon sources are used to generate the electricity. Power-to-heat, i.e., where electricity is used for heating, represents the first step for the chemical industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001103312100001 Publication Date (up) 2023-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1073 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200456 Serial 8842  
Permanent link to this record
 

 
Author Gao, J.; Huang, W.; Gielis, J.; Shi, P. url  doi
openurl 
  Title Plant morphology and function, geometric morphometrics, and modelling : decoding the mathematical secrets of plants Type Editorial
  Year 2023 Publication Plants Abbreviated Journal  
  Volume 12 Issue 21 Pages 3724-2  
  Keywords Editorial; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001103336500001 Publication Date (up) 2023-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2223-7747 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201173 Serial 9072  
Permanent link to this record
 

 
Author Faust, V.; Vlaeminck, S.E.; Ganigué, R.; Udert, K.M. url  doi
openurl 
  Title Influence of pH on urine nitrification : community shifts of ammonia-oxidizing bacteria and inhibition of nitrite-oxidizing bacteria Type A1 Journal article
  Year 2024 Publication ACS ES&T engineering Abbreviated Journal  
  Volume 4 Issue 2 Pages 342-353  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine nitrification is pH-sensitive due to limited alkalinity and high residual ammonium concentrations. This study aimed to investigate how the pH affects nitrogen conversion and the microbial community of urine nitrification with a pH-based feeding strategy. First, kinetic parameters for NH3, HNO2, and NO2– limitation and inhibition were determined for nitrifiers from a urine nitrification reactor. The turning point for ammonia-oxidizing bacteria (AOB), i.e., the substrate concentration at which a further increase would lead to a decrease in activity due to inhibitory effects, was at an NH3 concentration of 12 mg-N L–1, which was reached only at pH values above 7. The total nitrite turning point for nitrite-oxidizing bacteria (NOB) was pH-dependent, e.g., 18 mg-N L–1 at pH 6.3. Second, four years of data from two 120 L reactors were analyzed, showing that stable nitrification with low nitrite was most likely between pH 5.8 and 6.7. And third, six 12 L urine nitrification reactors were operated at total nitrogen concentrations of 1300 and 3600 mg-N L–1 and pH values between 2.5 and 8.5. At pH 6, the AOB Nitrosomonas europaea was found, and the NOB belonged to the genus Nitrobacter. At pH 7, nitrite accumulated, and Nitrosomonas halophila was the dominant AOB. NOB were inhibited by HNO2 accumulation. At pH 8.5, the AOB Nitrosomonas stercoris became dominant, and NH3 inhibited NOB. Without influent, the pH dropped to 2.5 due to the growth of the acid-tolerant AOB “Candidatus Nitrosacidococcus urinae”. In conclusion, pH is a decisive process control parameter for urine nitrification by influencing the selection and kinetics of nitrifiers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2023-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203306 Serial 9048  
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
  Year 2023 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal  
  Volume Issue Pages 45-48  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001117703800012 Publication Date (up) 2023-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202839 Serial 9079  
Permanent link to this record
 

 
Author Mescia, L.; Bia, P.; Gielis, J.; Caratelli, D. url  doi
openurl 
  Title Advanced particle swarm optimization methods for electromagnetics Type P1 Proceeding
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 109-122 T2 - Proceedings of the 1st International  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Electromagnetic design problems involve optimizing multiple parameters that are nonlinearly related to objective functions. Traditional optimization techniques require significant computational resources that grow exponentially as the problem size increases. Therefore, a method that can produce good results with moderate memory and computational resources is desirable. Bioinspired optimization methods, such as particle swarm optimization (PSO), are known for their computational efficiency and are commonly used in various scientific and technological fields. In this article we explore the potential of advanced PSO-based algorithms to tackle challenging electromagnetic design and analysis problems faced in real-life applications. It provides a detailed comparison between conventional PSO and its quantum-inspired version regarding accuracy and computational costs. Additionally, theoretical insights on convergence issues and sensitivity analysis on parameters influencing the stochastic process are reported. The utilization of a novel quantum PSO-based algorithm in advanced scenarios, such as reconfigurable and shaped lens antenna synthesis, is illustrated. The hybrid modeling approach, based on the unified geometrical description enabled by the Gielis Transformation, is applied in combination with a suitable quantum PSO-based algorithm, along with a geometrical tube tracing and physical optics technique for solving the inverse problem aimed at identifying the geometrical parameters that yield optimal antenna performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2023-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-90-833839-0-3 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201048 Serial 9002  
Permanent link to this record
 

 
Author Gielis, J. url  doi
openurl 
  Title Conquering Mount Improbable Type P1 Proceeding
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 153-173 T2 - Proceedings of the 1st International  
  Keywords P1 Proceeding; Economics; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Our scientific and technological worldviews are largely dominated by the concepts of entropy and complexity. Originating in 19th-century thermodynamics, the concept of entropy merged with information in the last century, leading to definitions of entropy and complexity by Kolmogorov, Shannon and others. In its simplest form, this worldview is an application of the normal rules of arithmetic. In this worldview, when tossing a coin, a million heads or tails in a row is theoretically possible, but impossible in practice and in real life. On this basis, the impossible (in the binary case, the outermost entries of Pascal's triangle xn and yn for large values of n) can be safely neglected, and one can concentrate fully on what is common and what conforms to the law of large numbers, in fields ranging from physics to sociology and everything in between. However, in recent decades it has been shown that what is most improbable tends to be the rule in nature. Indeed, if one combines the outermost entries xn and yn with the normal rules of arithmetic, either addition or multiplication, one obtains Lamé curves and power laws respectively. In this article, some of these correspondences are highlighted, leading to a double conclusion. First, Gabriel Lamé's geometric footprint in mathematics and the sciences is enormous. Second, conic sections are at the core once more. Whereas mathematics so far has been exclusively the language of patterns in the sciences, the door is opened for mathematics to also become the language of the individual. The probabilistic worldview and Lamé's footprint can be seen as dual methods. In this context, it is to be expected that the notions of information, complexity, simplicity and redundancy benefit from this different viewpoint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2023-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-90-833839-0-3 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201045 Serial 9014  
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I. url  doi
openurl 
  Title A note on Generalized Möbius-Listing Bodies Type P1 Proceeding
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 31-39 T2 - Proceedings of the 1st International Sy  
  Keywords P1 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Generalized Möbius-Listing surfaces and bodies generalize Möbius bands, and this research was motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2023-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-90-833839-0-3 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201047 Serial 9063  
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S. doi  isbn
openurl 
  Title Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) Type ME3 Book as editor
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages xi, 175 p.  
  Keywords ME3 Book as editor; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2023-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-833839-0-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201049 Serial 9077  
Permanent link to this record
 

 
Author Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Rodrigues Fortes, F.; Hermans, C.; Domen, A.; Smits, E.; Lardon, F.; Vandamme, T.; Lin, A.; Vanlanduit, S.; Roeyen, G.; van Laere, S.; Prenen, H.; Peeters, M.; Deben, C. url  doi
openurl 
  Title Single-organoid analysis reveals clinically relevant treatment-resistant and invasive subclones in pancreatic cancer Type A1 Journal article
  Year 2023 Publication npj Precision Oncology Abbreviated Journal  
  Volume 7 Issue 1 Pages 128-14  
  Keywords A1 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution. We leveraged a fully characterized PDAC organoid panel ( N  = 8) and matched our artificial intelligence-driven, live-cell organoid image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones, which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the emerging era of personalized medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001118015800001 Publication Date (up) 2023-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-768x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201455 Serial 9091  
Permanent link to this record
 

 
Author Hugenschmidt, M.; Jannis, D.; Kadu, A.A.; Grünewald, L.; De Marchi, S.; Perez-Juste, J.; Verbeeck, J.; Van Aert, S.; Bals, S. pdf  doi
openurl 
  Title Low-dose 4D-STEM tomography for beam-sensitive nanocomposites Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal  
  Volume 6 Issue 1 Pages 165-173  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal-organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electron tomography without inducing electron-beam damage. Another significant challenge is the high contrast in high-angle annular dark field scanning transmission electron microscopy that can be expected for nanocomposites composed of a metal nanoparticle and an MOF. This strong contrast leads to so-called metal artifacts in the 3D reconstruction. To overcome these limitations, we here present low-dose electron tomography based on four-dimensional scanning transmission electron microscopy (4D-STEM) data sets, collected using an ultrafast and highly sensitive direct electron detector. As a proof of concept, we demonstrate the applicability of the method for an Au nanostar embedded in a ZIF-8 MOF, which is of great interest for applications in various fields, including drug delivery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001141178500001 Publication Date (up) 2023-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to S.B., Grant 770887 PICOMETRICS to S.V.A.). J.P.-J. and S.M. acknowledge financial support from the MCIN/AEI/10.13039/501100011033 (Grants No. PID2019-108954RB-I00) and EU Horizon 2020 research and innovation program under grant agreement no. 883390 (SERSing). J.V., S.B., S.V.A., and L.G. acknowledge funding from the Flemish government (iBOF-21-085 PERsist). Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202771 Serial 9053  
Permanent link to this record
 

 
Author Zaripov, A.A.; Khalilov, U.B.; Ashurov, K.B. pdf  doi
openurl 
  Title Synergism of the initial stage of removal of dielectric materials during electrical erosion processing in electrolytes Type A1 Journal article
  Year 2023 Publication Surface engineering and applied electrochemistry Abbreviated Journal  
  Volume 59 Issue 6 Pages 712-718  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ceramics and composites, many of whose physicochemical properties significantly exceed similar properties of metals and their alloys, are processed qualitatively mainly by the electroerosion method. Despite the existing works, the mechanism of the initial stage of the removal of materials has not yet been identified. For a comprehensive understanding of the mechanism of the removal of dielectrics, a new model is proposed based on the experimental results obtained on an improved electroerosion installation. It was revealed that the initial stage of the removal of a dielectric material consists of three successive stages that are associated with the synergistic effect on the process of the anionic group of electrolytes, plasma flare, and the cavitation shock. This makes it possible to better understand the mechanism of the removal of composite and ceramic materials, which should contribute to ensuring the machinability of those materials and their wide use in promising technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001126070700009 Publication Date (up) 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1068-3755; 1934-8002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202754 Serial 9102  
Permanent link to this record
 

 
Author Gao, J.; Huang, W.; Gielis, J.; Shi, P. url  doi
isbn  openurl
  Title Plant morphology and function, geometric morphometrics, and modelling : decoding the mathematical secrets of plants Type ME3 Book as editor
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 224 p.  
  Keywords ME3 Book as editor; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Delve into the diverse aspects of plant morphology, their responses to global climate change, and the spatiotemporal dynamics of forest productivity. Join us on a journey through the intricate web of plant characteristics and their impact on the environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2024-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-0365-9422-4; 978-3-0365-9423-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201545 Serial 9073  
Permanent link to this record
 

 
Author Verbeelen, T.; Fernandez, C.A.; Nguyen, T.H.; Gupta, S.; Aarts, R.; Tabury, K.; Leroy, B.; Wattiez, R.; Vlaeminck, S.E.; Leys, N.; Ganigué, R.; Mastroleo, F. url  doi
openurl 
  Title Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity Type A1 Journal article
  Year 2024 Publication NPJ microgravity Abbreviated Journal  
  Volume 10 Issue 1 Pages 3-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140007100001 Publication Date (up) 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2373-8065 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202285 Serial 9113  
Permanent link to this record
 

 
Author Van Echelpoel, R.; De Wael, K. doi  openurl
  Title Voltammetric drug testing makes sense at the border Type A1 Journal article
  Year 2024 Publication Nature Reviews Chemistry Abbreviated Journal  
  Volume Issue Pages 1-2  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The European BorderSens project leverages voltammetric sensors, developed with end-users' input, to rapidly and accurately detect illicit drugs. By embracing practicalities and validation, this technology has the potential to combat the illicit drug problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142000900001 Publication Date (up) 2024-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3358 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202646 Serial 9112  
Permanent link to this record
 

 
Author Vanden Abeele, M.M.P.; Vandebosch, H.; Koster, E.H.W.; De Leyn, T.; Van Gaeveren, K.; de Segovia Vicente, D.; Van Bruyssel, S.; van Timmeren, T.; De Marez, L.; Poels, K.; DeSmet, A.; De Wever, B.; Verbruggen, M.; Baillien, E. url  doi
openurl 
  Title Why, how, when, and for whom does digital disconnection work? A process-based framework of digital disconnection Type A1 Journal article
  Year 2024 Publication Communication theory Abbreviated Journal  
  Volume 34 Issue 1 Pages 3-17  
  Keywords A1 Journal article; Mass communications; Media, ICT and interpersonal relations in Organisations and Society (MIOS)  
  Abstract Digital disconnection has emerged as a concept describing the actions people take to limit their digital connectivity to enhance their well-being. To date, evidence on its effectiveness is mixed, leading to calls for greater consideration of why, how, when, and for whom digital disconnection works. This article responds to these calls, presenting a framework that differentiates four key harms that contribute to experiences of digital ill-being (time displacement, interference, role blurring, and exposure effects). Using these four harms as a starting point, the framework explains: (1) why people are motivated to digitally disconnect; (2) how specific disconnection strategies (i.e., placing limits on time, access, channels, and contents, interactions and features) may help them; and for whom (3) and under which conditions (when) these strategies can be effective.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001154547700001 Publication Date (up) 2024-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-3293; 1468-2885 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203874 Serial 9245  
Permanent link to this record
 

 
Author Jorissen, B.; Covaci, L.; Partoens, B. url  doi
openurl 
  Title Comparative analysis of tight-binding models for transition metal dichalcogenides Type A1 Journal article
  Year 2024 Publication SciPost physics core Abbreviated Journal  
  Volume 7 Issue 1 Pages 004-30  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We provide a comprehensive analysis of the prominent tight-binding (TB) models for transition metal dichalcogenides (TMDs) available in the literature. We inspect the construction of these TB models, discuss their parameterization used and conduct a thorough comparison of their effectiveness in capturing important electronic properties. Based on these insights, we propose a novel TB model for TMDs designed for enhanced computational efficiency. Utilizing MoS2 as a representative case, we explain why specific models offer a more accurate description. Our primary aim is to assist researchers in choosing the most appropriate TB model for their calculations on TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001170769300001 Publication Date (up) 2024-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202983 Serial 9012  
Permanent link to this record
 

 
Author O'Modhrain, C.; Trenchev, G.; Gorbanev, Y.; Bogaerts, A. url  doi
openurl 
  Title Upscaling plasma-based CO₂ conversion : case study of a multi-reactor gliding arc plasmatron Type A1 Journal article
  Year 2024 Publication ACS Engineering Au Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atmospheric pressure plasmas have shifted in recent years from being a burgeoning research field in the academic setting to an actively investigated technology in the chemical, oil, and environmental industries. This is largely driven by the climate change mitigation efforts, as well as the evident pathways of value creation by converting greenhouse gases (such as CO2) into useful chemical feedstock. Currently, most high technology readiness level (TRL) plasma-based technologies are based on volumetric and power-based scaling of thermal plasma systems, which results in large capital investment and regular maintenance costs. This work investigates bringing a quasi-thermal (so-called “warm”) plasma setup, namely, a gliding arc plasmatron, from a lab-scale to a pilot-scale capacity with an increase in throughput capacity by a factor of 10. The method of scaling is the parallelization of plasmatron reactors within a single housing, with the aim of maintaining a warm plasma regime while simultaneously improving build cost and efficiency (compared to separate reactors operating in parallel). Special attention is also given to the safety and control features implemented in the setup, a key component required for integration into industrial systems. The performance of the multi-reactor gliding arc plasmatron (MRGAP) reactor is investigated, focusing on the influence of flow rate and the number of active reactors. The location of active reactors was deemed to have a negligible effect on the monitored metrics of conversion, energy efficiency, and energy cost. The optimum operating conditions were found to be with the most active reactors (five) at the highest investigated flow rate (80 L/min). Analysis of results suggests that an optimum conversion (9%) and plug power-based energy efficiency (19%) can be maintained at a specific energy input (SEI) around 5.3 kJ/L (or 1 eV/molecule). The concept of parallelization of plasmatron reactors within a singular housing was demonstrated to be a viable method for scaling up from a lab-scale to a prototype-scale device, with performance analysis suggesting that increasing the power (through adding more reactor channels) and total flow rate, while maintaining an SEI around 5.3 or 4.2 kJ/L, i.e., 1.3 or 1 eV/molecule (based on plug power and plasma-deposited power, respectively), can result in increased conversion rate without sacrificing absolute conversion or energy efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001166625200001 Publication Date (up) 2024-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:204749 Serial 9182  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Raymenants, E.; Pham, V.T.; Pizzini, S.; Sorée, B.; Wostyn, K.; Couet, S.; Nguyen, V.D.; Temst, K. url  doi
openurl 
  Title Towards fully electrically controlled domain-wall logic Type A1 Journal article
  Year 2024 Publication AIP advances Abbreviated Journal  
  Volume 14 Issue 2 Pages 025030-25035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Utilizing magnetic tunnel junctions (MTJs) for write/read and fast spin-orbit-torque (SOT)-driven domain-wall (DW) motion for propagation, enables non-volatile logic and majority operations, representing a breakthrough in the implementation of nanoscale DW logic devices. Recently, current-driven DW logic gates have been demonstrated via magnetic imaging, where the Dzyaloshinskii-Moriya interaction (DMI) induces chiral coupling between perpendicular magnetic anisotropy (PMA) regions via an in-plane (IP) oriented region. However, full electrical operation of nanoscale DW logic requires electrical write/read operations and a method to pattern PMA and IP regions compatible with the fabrication of PMA MTJs. Here, we study the use of a Hybrid Free Layer (HFL) concept to combine an MTJ stack with DW motion materials, and He+ ion irradiation to convert the stack from PMA to IP. First, we investigate the free layer thickness dependence of 100-nm diameter HFL-MTJ devices and find an optimal CoFeB thickness, from 7 to 10 angstrom, providing high tunneling magnetoresistance (TMR) readout and efficient spin-transfer torque (STT) writing. We then show that high DMI materials, like Pt/Co, can be integrated into an MTJ stack via interlayer exchange coupling with the CoFeB free layer. In this design, DMI values suitable for SOT-driven DW motion are measured by asymmetric bubble expansion. Finally, we demonstrate that He+ irradiation reliably converts the coupled free layers from PMA to IP. These findings offer a path toward the integration of fully electrically controlled DW logic circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001163573400005 Publication Date (up) 2024-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203823 Serial 9109  
Permanent link to this record
 

 
Author Smets, B.; Boschker, H.T.S.; Wetherington, M.T.; Lelong, G.; Hidalgo-Martinez, S.; Polerecky, L.; Nuyts, G.; De Wael, K.; Meysman, F.J.R. url  doi
openurl 
  Title Multi-wavelength Raman microscopy of nickel-based electron transport in cable bacteria Type A1 Journal article
  Year 2024 Publication Frontiers in microbiology Abbreviated Journal  
  Volume 15 Issue Pages 1208033-16  
  Keywords A1 Journal article  
  Abstract Cable bacteria embed a network of conductive protein fibers in their cell envelope that efficiently guides electron transport over distances spanning up to several centimeters. This form of long-distance electron transport is unique in biology and is mediated by a metalloprotein with a sulfur-coordinated nickel (Ni) cofactor. However, the molecular structure of this cofactor remains presently unknown. Here, we applied multi-wavelength Raman microscopy to identify cell compounds linked to the unique cable bacterium physiology, combined with stable isotope labeling, and orientation-dependent and ultralow-frequency Raman microscopy to gain insight into the structure and organization of this novel Ni-cofactor. Raman spectra of native cable bacterium filaments reveal vibrational modes originating from cytochromes, polyphosphate granules, proteins, as well as the Ni-cofactor. After selective extraction of the conductive fiber network from the cell envelope, the Raman spectrum becomes simpler, and primarily retains vibrational modes associated with the Ni-cofactor. These Ni-cofactor modes exhibit intense Raman scattering as well as a strong orientation-dependent response. The signal intensity is particularly elevated when the polarization of incident laser light is parallel to the direction of the conductive fibers. This orientation dependence allows to selectively identify the modes that are associated with the Ni-cofactor. We identified 13 such modes, some of which display strong Raman signals across the entire range of applied wavelengths (405–1,064 nm). Assignment of vibrational modes, supported by stable isotope labeling, suggest that the structure of the Ni-cofactor shares a resemblance with that of nickel bis(1,2-dithiolene) complexes. Overall, our results indicate that cable bacteria have evolved a unique cofactor structure that does not resemble any of the known Ni-cofactors in biology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001189511900001 Publication Date (up) 2024-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302x ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205115 Serial 9214  
Permanent link to this record
 

 
Author Deben, C.; Freire Boullosa, L.; Rodrigues Fortes, F.; Cardenas De La Hoz, E.; Le Compte, M.; Seghers, S.; Peeters, M.; Vanlanduit, S.; Lin, A.; Dijkstra, K.K.; Van Schil, P.; Hendriks, J.M.H.; Prenen, H.; Roeyen, G.; Lardon, F.; Smits, E. url  doi
openurl 
  Title Auranofin repurposing for lung and pancreatic cancer : low CA12 expression as a marker of sensitivity in patient-derived organoids, with potentiated efficacy by AKT inhibition Type A1 Journal article
  Year 2024 Publication Journal of Experimental and Clinical Cancer Research Abbreviated Journal  
  Volume 43 Issue 1 Pages 88-15  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Background This study explores the repurposing of Auranofin (AF), an anti-rheumatic drug, for treating non-small cell lung cancer (NSCLC) adenocarcinoma and pancreatic ductal adenocarcinoma (PDAC). Drug repurposing in oncology offers a cost-effective and time-efficient approach to developing new cancer therapies. Our research focuses on evaluating AF's selective cytotoxicity against cancer cells, identifying RNAseq-based biomarkers to predict AF response, and finding the most effective co-therapeutic agents for combination with AF. Methods Our investigation employed a comprehensive drug screening of AF in combination with eleven anticancer agents in cancerous PDAC and NSCLC patient-derived organoids (n = 7), and non-cancerous pulmonary organoids (n = 2). Additionally, we conducted RNA sequencing to identify potential biomarkers for AF sensitivity and experimented with various drug combinations to optimize AF's therapeutic efficacy. Results The results revealed that AF demonstrates a preferential cytotoxic effect on NSCLC and PDAC cancer cells at clinically relevant concentrations below 1 µM, sparing normal epithelial cells. We identified Carbonic Anhydrase 12 (CA12) as a significant RNAseq-based biomarker, closely associated with the NF-κB survival signaling pathway, which is crucial in cancer cell response to oxidative stress. Our findings suggest that cancer cells with low CA12 expression are more susceptible to AF treatment. Furthermore, the combination of AF with the AKT inhibitor MK2206 was found to be particularly effective, exhibiting potent and selective cytotoxic synergy, especially in tumor organoid models classified as intermediate responders to AF, without adverse effects on healthy organoids. Conclusion Our research offers valuable insights into the use of AF for treating NSCLC and PDAC. It highlights AF's cancer cell selectivity, establishes CA12 as a predictive biomarker for AF sensitivity, and underscores the enhanced efficacy of AF when combined with MK2206 and other therapeutics. These findings pave the way for further exploration of AF in cancer treatment, particularly in identifying patient populations most likely to benefit from its use and in optimizing combination therapies for improved patient outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001190581500001 Publication Date (up) 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-9966 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:204924 Serial 9136  
Permanent link to this record
 

 
Author Finizola e Silva, M.; Cools, J.; Cools, J.; Van Passel, S. url  doi
openurl 
  Title A systematic review identifying the drivers and barriers to the adoption of climate-smart agriculture by smallholder farmers in Africa Type Administrative Services
  Year 2024 Publication Frontiers in environmental economics Abbreviated Journal  
  Volume 3 Issue Pages 1356335-14  
  Keywords Administrative Services; A3 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Climate change impact, food security concerns, and greenhouse gas emissions are pressuring agricultural production systems in developing countries. There is a need for a shift toward sustainable food systems. One of the concepts introduced to drive this shift is climate-smart agriculture (CSA), endorsed by international organizations to address multifaceted challenges. Despite widespread attention and support, the adoption of CSA among African farmers remains low. This systematic literature review aims to shed light on the factors influencing CSA adoption amongst African farmers. Within the articles identified as relevant, over 50 CSA practices and more than 40 factors influencing CSA adoption were distinguished. These influencing factors can be categorized as personal, farm- related, financial, environmental, and informational. The focus of this review is to identify and explain the overall impact (positive, negative, or mixed) of these factors on CSA adoption. Overall, many factors result in mixed effects, only some factors have an unambiguous positive or negative effect on CSA adoption. For instance, educational level emerges as a key personal factor, positively impacting CSA adoption, along with positive influences from farmers’ experience and farm size among farm-related factors. Financial factors reveal distinct patterns, with income from farming and access to credit positively influencing adoption, while off-farm income exhibits a negative effect. Environmental factors, though less researched, indicate positive impacts related to changes in rainfall patterns, temperature, and droughts. Lastly, informational factors consistently exhibit a positive effect on CSA adoption, with training, access to extension, group memberships, climate information, and CSA awareness playing crucial roles. These findings provide valuable insights for policymakers seeking to enhance CSA adoption in Africa, offering a nuanced understanding of the multifaceted dynamics at play.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2024-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205017 Serial 9233  
Permanent link to this record
 

 
Author Tsonev, I.; Ahmadi Eshtehardi, H.; Delplancke, M.-P.; Bogaerts, A. url  doi
openurl 
  Title Importance of geometric effects in scaling up energy-efficient plasma-based nitrogen fixation Type A1 Journal article
  Year 2024 Publication Sustainable energy & fuels Abbreviated Journal  
  Volume Issue Pages 1-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Despite the recent promising potential of plasma-based nitrogen fixation, the technology faces significant challenges in efficient upscaling. To tackle this challenge, we investigate two reactors, i.e., a small one, operating in a flow rate range of 5-20 ln min-1 and current range of 200-500 mA, and a larger one, operating at higher flow rate (100-300 ln min-1) and current (400-1000 mA). Both reactors operate in a pin-to-pin configuration and are powered by direct current (DC) from the same power supply unit, to allow easy comparison and evaluate the effect of upscaling. In the small reactor, we achieve the lowest energy cost (EC) of 2.8 MJ mol-1, for a NOx concentration of 1.72%, at a flow rate of 20 ln min-1, yielding a production rate (PR) of 33 g h-1. These values are obtained in air; in oxygen-enriched air, the results are typically better, at the cost of producing oxygen-enriched air. In the large reactor, the higher flow rates reduce the NOx concentration due to lower SEI, while maintaining a similar EC. This stresses the important effect of the geometrical configuration of the arc, which is typically concentrated in the center of the reactor, resulting in limited coverage of the reacting gas flow, and this is identified as the limiting factor for upscaling. However, our experiments reveal that by changing the reactor configuration, and thus the plasma geometry and power deposition mechanisms, the amount of gas treated by the plasma can be enhanced, leading to successful upscaling. To obtain more insights in our experiments, we performed thermodynamic equilibrium calculations. First of all, they show that our measured lowest EC closely aligns with the calculated minimum thermodynamic equilibrium at atmospheric pressure. In addition, they reveal that the limited NOx production in the large reactor results from the contracted nature of the plasma. To solve this limitation, we let the large reactor operate in so-called torch configuration. Indeed, the latter enhances the NOx concentrations compared to the pin-to-pin configuration, yielding a PR of 80 g h-1 at an EC of 2.9 MJ mol-1 and NOx concentration of 0.31%. This illustrates the importance of reactor design in upscaling. With the focus on feasibility evaluation of scaling-up plasma-based nitrogen fixation by combined experiments and thermodynamic modelling, we aim to tackle the challenge of design and development of an energy-efficient and scaled-up plasma reactor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001203657700001 Publication Date (up) 2024-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205435 Serial 9155  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: