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Single-organoid analysis reveals clinically relevant treatment-
resistant and invasive subclones in pancreatic cancer
Maxim Le Compte1, Edgar Cardenas De La Hoz2, Sofía Peeters1, Felicia Rodrigues Fortes1, Christophe Hermans1, Andreas Domen 1,3,
Evelien Smits1,4, Filip Lardon 1, Timon Vandamme1,3, Abraham Lin 1,5, Steve Vanlanduit 2, Geert Roeyen1,6, Steven Van Laere1,
Hans Prenen1,3, Marc Peeters1,3 and Christophe Deben 1✉

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive
nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of
care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively
unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution.
We leveraged a fully characterized PDAC organoid panel (N= 8) and matched our artificial intelligence-driven, live-cell organoid
image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific
sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized
drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones,
which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid
analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional
drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights
the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the
emerging era of personalized medicine.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is a rapidly progressing
and usually fatal disease with a 5-year overall survival rate of less
than 10%1,2. Despite significant efforts to improve the clinical
outcome, current standard of care treatments show only limited
efficacy in both locally advanced and metastatic PDAC patients3–5.
Numerous studies have shown that this poor outlook can be
attributed to the extensive intratumoral clonal heterogeneity,
patient-specific transcriptional plasticity, and the intrinsic invasive
behavior of PDAC tumor cells6–8. Given the patient-specific
signatures and aggressiveness of this malignancy, it is unques-
tionably evident that innovative and more personalized
approaches are paramount to treat PDAC patients and improve
their quality of life.
Over the past years, patient-derived tumor organoids emerged

as promising cancer models for personalized medicine, since they
preserve the clonal heterogeneity, mutational landscape, and
histological architecture of the originating tumor tissue9–11.
Furthermore, recent studies provided first evidence that tumor
organoids responded similarly to the corresponding patient when
treated with the same standard of care therapy. However, these
retrospective clinical studies were only able to predict clinical
responses in a subset of patients12,13. One major factor driving this
limitation is that current readouts only extract a fraction of the
information that tumor organoids could potentially provide. The
current gold-standard analysis method for organoid-based
research is the ATP-based endpoint assay, CellTiter-Glo 3D14,15.

Although this viability assay has been extensively used in
numerous studies, it fails to account for the heterogeneity of
tumor organoids by relying on a bulk lysis approach16. Moreover,
it has been shown that intracellular ATP levels can dynamically
change upon treatment with chemotherapeutics or targeted
therapies (e.g. CDK4/6 inhibitors), which could further bias this
readout17–21. Taken together, the current methods compress the
highly-dimensional tumor organoid model into an oversimplified,
single-layered readout, which can result in misleading clinical
interpretation and translatability. Therefore, we hypothesize that
by incorporating higher-dimensional analysis methods on a
single-organoid resolution, we will further unlock the predictive
performance of tumor organoids as ‘patient-in-the-lab’ models for
guiding drug development and clinical decision in personalized
medicine.
In this study, we combine a normalized drug screening metric

(NDR) with the dynamic quantification of single organoid
responses to evaluate drug responses (standard of care) in
patient-derived PDAC organoids, using our in-house developed
software platform (Orbits)22,23. This approach enables us to study
patient-specific and intratumoral subclonal sensitivities to differ-
ent standard-of-care therapies ex vivo, which is validated with
matched clinical patient response to therapy – progression free
survival (PFS). Our data not only highlight the inter-patient
heterogeneity in terms of therapy response, but also shed light on
the presence of treatment-resistant and invasive subclones that
could drive disease progression. Consequently, our approach also
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allows us to increase the clinical translatability of organoid analysis
by more accurately recapitulating and measuring the complexity
of human tumors in matched PDAC organoids. This method will
inevitably be of tremendous value for both the development of
novel therapeutics and the guiding of more informed clinical
decision in the rising era of personalized medicine.

RESULTS
Selected panel of PDAC organoids shows a distinct
phenotypic, molecular and clinical landscape
To capture the inter- and intra-patient heterogeneity, we selected
a panel of 8 human PDAC organoid lines based on the following
features: morphology, molecular landscape, and clinical character-
istics (in vivo response, treatment, progression-free survival). All 8
PDAC organoid lines were derived from primary tumor samples
taken during surgery. Hematoxylin and eosin (H&E) staining and
brightfield image analysis showed high phenotypic variations
between the PDAC organoid lines, both baseline (untreated) and
treated with gemcitabine-paclitaxel (chemotherapy) (Fig. 1a). In
line with previous studies, we identified both cystic/hollow-like
(thin layered epithelium) and more solid-like (lobular with
pleiomorphic cells) morphologies within our patient cohort.
Moreover, as growth rates have been reported to potentially vary
between individual patients24, the baseline PDAC organoid
growth rates were also monitored for 5 days, using live-cell
imaging. Interestingly, a high degree of growth rate variation
between the 8 PDAC organoid lines was revealed, and upon
further observation, solid-like PDAC organoids (PDAC068,
PDAC070, PDAC082 and PDAC087) appeared to exhibit signifi-
cantly (p= 0.04, Unpaired t-test) slower growth patterns com-
pared to the cystic-like organoids (PDAC002, PDAC044, PDAC052
and PDAC060) (Fig. 1a).
The observed morphological and growth rate differences likely

stem from distinct molecular landscapes, and therefore, we
performed RNA-seq analysis to delineate the different signatures.
The differentially expressed gene and Uniform Manifold Approx-
imation and Projection (UMAP) analysis (feature level clustering)
revealed that the 6 identified patient clusters have distinct
transcriptional characteristics, which further highlights the inter-
patient heterogeneity in PDAC (Fig. 1b, c, Supplementary Fig. 1a).
It is also of interest that, compared to the fast-cycling PDAC
organoids, the solid-like PDAC organoids (PDAC068, PDAC070,
PDAC082, and PDAC087) have a reduction in three hallmark cell
proliferation-related gene sets (G2M Checkpoint, E2F Targets and
mitotic spindle), which can be linked back to their intrinsic slower
growth rates (Fig. 1a, c, Supplementary Fig. 1b). Moreover, since
this study aims to integrate a diverse molecular landscape, we also
aimed to include a clinically relevant distribution of the oncogenic
KRAS mutations G12D (N= 3), G12V (N= 3), G12C (N= 1), and
G12R (N= 1) (Supplementary Figure 1c).
Apart from the morphological and molecular variation in PDAC

patients, it is crucial to capture the inter-patient treatment
response differences. Therefore, both neoadjuvant-treated
(N= 4) and treatment naïve (N= 4) patients were included in
this study, where each patient exhibited a distinct clinical
response. The clinical response was also recorded as a good,
bad, or mixed response, in order to evaluate ex vivo organoid
response to therapies with matched patient PFS. The representa-
tive clinical overview highlights the comprehensive diversity in
terms of stage, provided therapy and clinical response (Fig. 1d).
Altogether, we have selected and comprehensively characterized
a highly diverse panel of 8 PDAC organoid lines, which will provide
the foundation for the next steps in this study.

NDR-based intrawell normalization improves patient
stratification over traditional readouts
The aforementioned findings clearly highlight the inter-patient
heterogeneity in PDAC, but it is still necessary to determine
whether these phenotypic, functional, and molecular differences
translate into clinically relevant ex vivo treatment responses.
Therefore, we performed a drug screen with the standard of care
treatments, using our in-house developed artificial intelligence
(AI)-driven image analysis software platform (Orbits). Using
computer vision to identify and track organoids, Orbits combines
label-free viability assessment with a fluorescent cell death
readout. While the clinical data indicate the presence of sensitive
and resistant patients to the standard of care treatments, this
inter-patient response heterogeneity could not be captured using
the standard relative viability readouts of ATP based-assays (Fig.
2a). This is partially due to the high diversity in growth rate within
our panel, as it has been reported that fast-growing tumors
exhibited different therapeutic responses compared to slow
growing malignancies25. Therefore, we hypothesized that the
integration of the individual organoid growth rates into the
analysis would improve the patient stratification.
Here, we compared the performance of two growth rate-based

normalization metrics: Growth Rate normalization (GR) and
Normalized Drug Response (NDR). Interestingly, the intra-well
growth rate normalization (GR metric) was not sufficient for
discriminating individual patient responses (Fig. 2b) Conversely,
the NDR metric, which accounts for variations in seeding density
and integrates a positive control (staurosporine), outperforms
current response metrics in terms of patient stratification (and the
reduction of replicate variation) (Fig. 2c, d, Supplementary Fig. 2a,
b). This increased screening performance was also validated on
the imaging level, highlighting not only patient-specific growth
rates (PDAC060: fast growing and PDAC082: slow growing), but
also distinct cytostatic (PDAC060) or cytotoxic (PDAC052)
responses to gemcitabine-paclitaxel treatment, which were
captured by the NDR metric (both endpoint and kinetic) and
not with the % viability readout (Fig. 2d–f, Supplementary Fig. 2c).
As we focus on identifying patient and therapy-specific

sensitivities, we treated each PDAC organoid line with a clinically
relevant concentration range (taking into account the molar
ratios/or intratumoral concentrations without exceeding the peak
plasma concentrations) of FOLFIRINOX (5-Fluorouracil; 5-FU:8 µM,
irinotecan:0.02 µM, and oxaliplatin:1 µM ratio), gemcitabine-
paclitaxel (5 nM:1 nM ratio) and the corresponding mono/mod-
ified therapies. In line with the clinical observations, our NDR-
based area under the curve (AUC) analysis revealed patient-
specific sensitivities to both the individual and combination
therapies (Fig. 2g). Moreover, the NDR metric was also able to
capture patient- and therapy-specific antagonistic (oxaliplatin for
PDAC082) or additive (gem-pac for PDAC052) effects, which were
visualized using the AUC ratio (ratio: NDR AUC of standard of care
combination / NDR AUC reduced regimen) (Fig. 2h–j, Supplemen-
tary Fig 2d–f). This normalization allows for a concise visualization
of which therapies contribute to the observed effect.
In summary, these findings emphasized that neglecting the

patient-specific growth rates and intra-well variation (seeding
density and organoid size) could confound the observed
treatment efficacy via under- or overestimation. Consequently,
the use of the standardized NDR metric substantially increased
(high-throughput) drug screening performance, leading to better
patient-stratification.

Transcriptomic signatures align with the observed ex vivo
organoid responses to therapy
While NDR normalization resulted in greater patient stratification
ex vivo, it is crucial to determine how the measured organoid
treatment response reflects the clinical situation. Therefore, we
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aimed to compare baseline transcriptome signatures for all PDAC
organoid lines (N= 8) with the NDR metrics from ex vivo drug
screening. For this, we first grouped sensitive and resistant ex vivo
responders by conducting a principal component analysis (PCA)
(integrating the NDR-based AUC for the standard of care regimens

(FOLFIRINOX and GEM-PAC), growth rate, and NDR value at the
physiological relevant drug concentrations). Based on this analysis,
we were able to stratify 4 sensitive (PDAC002, PDAC044, PDAC052
and PDAC070) and 4 resistant (PDAC060, PDAC068, PDAC082 and
PDCA087) organoid lines (Supplementary Fig. 3a, b). Of note, we
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also performed a PCA analysis based on the normalized read
counts (transcriptomic level), and we observed a similar clustering
of sensitive and resistant patients (Supplementary Figure 3c),
showing a clear conformity between the drug response and
transcriptome of our 8 PDAC models.
Using this classification, hierarchical clustering of each sub-

group and functional annotation of four gene clusters revealed
that the sensitive PDAC organoid cohort had an enrichment in
hallmark gene sets such as interferon-alpha response, PI3K-AKT-
mTOR signaling, mitotic spindle, apical surface, and epithelial to
mesenchymal transition (EMT). On the other hand, the resistant
organoid lines showed an increased activation of gene sets related
to the fatty acid synthesis, cholesterol homeostasis, IL-6 Jak
STAT3 signaling, pancreas β cells and TNFα signaling, which could
serve as a rationale for developing more effective treatment
strategies (Fig. 3a).
The top 40 differentially expressed genes were identified based

on the variable importance score to assess if this transcriptional
biomarker selection can be extended towards a greater patient
cohort (Fig. 3b). We categorized the 40 biomarkers based on their
expression: 17 were upregulated and 23 were downregulated in
the good responder group relative to the bad responder group
(see Supplementary Figure 3d). Utilizing the GEPIA2 platform, we
conducted survival analysis on each individual upregulated gene.
Of these, six genes exhibited a favorable survival impact (HR < 1)
as determined by the Mantel-Cox test (Fig. 3c). Subsequently, we
integrated these six genes into a composite signature and
generated the associated Kaplan-Meier curve (Fig. 3d). The survival
outcome for the high 6-gene signature cohort was notably
superior (Logrank p= 0.0041, HR= 0.53, p= 0.0048). This under-
scores the clinical significance of the biomarkers unearthed from
our organoid screening.
In addition to having high clinical relevance, we also assessed

whether the image-based drug responses (e.g. cytostatic or
cytotoxic) from the NDR-based approach reflect an associated
transcriptional state (growth arrest or cell death, respectively). As
proof-of-concept, we selected PDAC044, PDAC002 and PDAC060,
given their specific classification as a cytotoxic (PDAC002 and
PDAC044; NDR < 0) and cytostatic (PDAC060; NDR= 0) organoid
lines (Fig. 3e). Although stress related signatures (e.g. UV response,
apoptosis, p53 pathway) were detected in all treated (400 nM
gemcitabine: 80 nM paclitaxel) organoid lines, PDAC060 showed a
substantial decrease in gene sets related to proliferation and cell
cycle progression (e.g. E2F targets, G2M Checkpoint, MYC targets
V1 and V2), indicating a transcriptional growth arrest state. On the
other hand, PDAC044 and PDAC002 failed to suppress cell cycle
progression, which was in concordance with their observed
ex vivo response (Fig. 3f). Therefore, taken together, the NDR-
based approach is not only able to better stratify patient
responses, but also shows promise to distinguish cytostatic from
cytotoxic responses with transcriptomic translatability.

Single-organoid analysis reveals the intra-tumoral response
heterogeneity to therapies
While the NDR metric provided compelling information regarding
the mechanism of drug response and increases patient

stratification, it still relied on a whole-well (bulk) readout, thereby
overlooking intratumoral heterogeneity. Moreover, our clinical
data clearly showed that almost all patients (7/8) eventually
developed disease progression, implying the presence of
treatment-resistant tumor clones (Fig. 4a). Therefore, we aimed
to encapsulate the information regarding intratumoral hetero-
geneity within our PDAC organoid cohort, using our Orbits
software analysis platform. Intriguingly, despite having distinct
NDR metrics, we identified sensitive and resistant organoid clones
in both sensitive (PDAC052) and resistant (PDAC060 and
PDAC082) organoid lines upon ex vivo treatment with the
standard of care therapy, gemcitabine-paclitaxel (Fig. 4b, c).
Considering that not all PDAC organoid subclones visually showed
the same response to a specific therapy, we developed a single-
organoid readout using our Orbits software platform, to quantify
individual sensitivities on a high-throughput scale. For this, we
used positive and negative controls to first define the fraction of
organoids affected within a well (i.e. cell death) and defined 3
response ranges: resistant (<0.15), sensitive (0.16-0.33), and highly
sensitive (>0.34). Our single-organoid endpoint analysis, 5 days
after treatment, confirmed the visual assessment that resistant
clones were present in both sensitive and resistant PDAC organoid
lines (Fig. 4d, Supplementary Fig. 4a, b). However, the size and
fraction of these resistant PDAC clones clearly varied between the
individual patients and does not necessarily line up with the NDR-
based sensitivities. For example, PDAC002 had a good NDR-based
ex vivo response, but the single-organoid analysis detected a vast
number of resistant organoid clones (Fig. 4e). Together, this
highlights the need for incorporating a single-organoid readout in
a predictive clinical setting.
One of the limitations of single-timepoint analysis is that it only

provides insight into an isolated window of analysis, and
therefore, using time-lapse microscopy, we evaluated single-
organoid treatment dynamics over time. This again revealed
patient-specific responses, where PDAC044 and PDAC052 showed
a clear reduction of resistant clones over time, which is in line with
longer patient PFS (Fig. 4a). By contrast, PDAC060, PDAC002,
PDAC068 and PDAC087 still showed a substantial amount of non-
responsive organoid clones upon treatment with relatively high
concentrations of gemcitabine-paclitaxel (400 nM gemcitabine:
80 nM paclitaxel) or FOLFIRINOX (20 µM 5-FU, 0.0625 µM SN38,
and 2.5 µM oxaliplatin) (Fig. 4f, Supplementary Fig. 4c). Overall,
this advanced readout confirms the patient-specific, intratumoral
response heterogeneity in PDAC and subsequently allows us to
study this inherent disease-promoting feature in more detail.

Bulk and single-organoid analysis reveals patient-, therapy-,
concentration-, and time-specific invasion patterns
In addition to the intratumoral response heterogeneity, PDAC is
also characterized by its explicit invasive behavior, resulting in
metastatic disease in the majority of patients over time26–28. These
invasive features are on one hand, intrinsically imprinted or can be
promoted by external stress factors such as chemotherapy29,30.
Based on our live-cell image analysis, we observed strong visual
clues (evasion of spindle-shaped cells and budding cell clusters)
that gemcitabine-paclitaxel (and to a lesser extent FOLFIRONOX)

Fig. 1 PDAC organoid cohort shows distinct morphological, clinical and molecular features. a Representation of the H&E and brightfield
images (72 h) of untreated and chemotherapy-treated (400 nM gemcitabine: 80 nM paclitaxel) PDAC organoid lines combined with the
associated growth rates (grey scale bar=30 µm and black scale bar=100 µm). One representative image was selected for visualization out of
two technical replicates. b The 8 organoid lines were grouped in 6 clusters based on their similarity in gene expression profiles (Fig. 3a). The
plot represents a geneset UMAP colored by standard deviation between the 6 clusters of the normalized log-expression of each geneset
annotated for the top 20 genesets of the Hallmark collection. Genesets that cluster nearby have a high covariance. c Geneset signature maps
of each cluster colored by relative log-expression of each geneset of the individual clusters in reference to the average log expression. The
corresponding organoids lines are annotated to each cluster. d Timeline of the clinical course showing the individual patient characteristics,
stage, treatment, response and relapse/dead. Gem-Pac: gemcitabine/nab-paclitaxel.
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might drive the invasive behavior of PDAC cells (Supplementary
Fig. 5a). Moreover, not all PDAC organoid clones within the treated
wells showed this invasive behavior, which also appeared to be
time dependent. This again highlights the importance of
detecting clonal heterogeneity within organoids to better
represent patient tumors in the clinic.

To study these findings more in-depth, we added specific
features to our image analysis, enabling us to monitor the invasive
regions surrounding the organoids. Quantification was performed
by using the sum invasive area, invasive area per organoid area,
and invasive fraction (Fig. 5a). By integrating a non-linear
dimensionality reduction algorithm (tSNE), we were able to
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confirm our finding (tested as proof-of-concept on an invasive
patient; PDAC002) that not all PDAC organoid clones are driven in
the same ‘direction’ (no uniform response) following treatment
with gemcitabine, paclitaxel or the combination at a clinically
relevant concentration range. The tSNE analysis revealed the
presence of distinct clusters, highlighting the response hetero-
geneity. In this context, cluster 6 represents PDAC organoids with
invasive characteristics (high invasive area and high invasive
fraction), cluster 7 sensitive PDAC organoids (high fraction
affected) and cluster 2 and 5 PDAC organoids with an increased
area and lower fraction affected (healthy, growing organoids) (Fig.
5b, Supplementary Fig. 5b–e). The conducted pseudotime analysis
(trajectory interference analysis) also indicated temporal and
treatment dependent transition trajectories towards the invasive,
sensitive and non-responsive PDAC organoids (Fig. 5c). Interest-
ingly, we observed a strong overlap (close proximity on tSNE plot)
between the invasive (cluster 6) and sensitive clusters (cluster 7),
suggesting the presence of both sensitive and less-responsive
organoid clones with invasive features (Fig. 5d). Furthermore, to
assess whether these invasive features are treatment specific, we
calculated the distribution (validated with the paclitaxel ex vivo
response, Supplementary Fig. 5f) over the invasive trajectory for
gemcitabine, paclitaxel or the combination regimen. As indicated
on the imaging level, paclitaxel shows the highest organoid
density over this path, confirming the initial indications that
indeed chemotherapy (paclitaxel) might promote the invasive
characteristics of PDAC (Fig. 5e).
Next, we investigated whether the developed organoid analysis

can accurately quantify patient- and concentration-specific
differences in terms of invasiveness over time. As seen visually,
PDAC044 showed a minimally invasive area upon treatment,
whereas paclitaxel clearly increased the invasive area around the
organoids of PDAC060 and PDAC002 (Fig. 5f). However, kinetic
and endpoint analysis revealed that the addition of gemcitabine
drastically reduced this invasive behavior of PDAC060, which was
not observed for PDAC002, again emphasizing patient-specific
behavior (Fig. 5g, h). Moreover, these therapy-specific invasive
characteristics also appeared to be concentration-dependent,
highlighting the complexity of this disease-promoting phenom-
enon (patient-therapy-concentration specific) (Fig. 5i).
Lastly, considering that the tSNE analysis indicates the presence

of sensitive and resistant invasive organoid clones, we evaluated
the invasive behavior on single-organoid resolution. In line with
the density analysis, paclitaxel shows the highest increase in both
sensitive and resistant invasive clones (Fig. 5j, k). When translating
this to the clinical response, it is of interest that the addition of
paclitaxel to the initial gemcitabine monotherapy increased the
clinical response in vivo (ex vivo observation: increase in sensitive
clones with paclitaxel and the combination therapy). However,
eventually, the patient (PDAC002) still developed liver metastasis
and disease progression due to the presence of resistant clones
(ex vivo observation: high number of invasive-resistant clones with
the combination treatment). Overall, these findings emphasize the
extensive intra-tumoral heterogeneity within the invasive land-
scape, which is orchestrated on a concentration, therapy, patient
and time-specific level. Moreover, this data also supports further

exploration on how chemotherapy (paclitaxel) can paradoxically
fuel the clone-specific invasive characteristics of PDAC cells/ducts.

Combination of the NDR metric with a single organoid
analysis improves the clinical translatability
While patient-derived tumor organoids have shown initial promise
for predicting drug sensitivity of individual patient tumors, a
recent prospective intervention trial (SENSOR trial) revealed that
only a subset of patients benefited from the organoid technol-
ogy31. The limited predictivity in this study was largely due to the
limitations of traditional assays that use rudimentary, bulk
readouts (e.g. CellTiter-Glo 3D viability assay), which flattens the
complexity of patient tumors, thus hampering wide clinical
translatability. Considering this unmet need, we evaluated the
approach of combining the NDR metric (e.g. type of response)
with data on single-organoid level (e.g. presence of resistant
subclones), to improve the predictive potential of organoids in the
clinic. To study this, we retrospectively investigated the PFS of the
individual patients and matched their clinical response to their
ex vivo organoid response at single-organoid resolutions. Based
on the previously established response ranges, we were able to
quantify the fraction of resistant, sensitive, and highly sensitive
clones for each individual patient. The performed Spearman rank
correlation analysis for clinically relevant concentrations of
gemcitabine-paclitaxel showed a significant correlation with the
percentage sensitive (Spearman=0.9643 and p= 0.0028) and ratio
of sensitive and resistant clones (Spearman=0.8929 and
p= 0.0123), but not with the percentage resistant clones (Spear-
man= -0.6429 and p= 0.1389) (Fig. 6a–d).
Nevertheless, despite the ability of our developed the single

organoid analysis to identify treatment-resistant and sensitive
organoid subclones, it currently neglects the type of response.
Therefore, in addition to correlating the presence of resistant
subclones with the PFS, we also aimed to evaluate whether
specific NDR signatures can predict the type of response to the
standard of care therapies. For this, we combined the NDR metric
with the % cell death in order to develop the following response
signatures: cytotoxic (NDR < -0.5 and cell death > 40%), mixed
response (cell death detectable; 0 < NDR > -0.5 and cell death
>40%) and cytostatic (minimal cell death detectable; NDR > 0 and
cell death < 40%) (Fig. 6e). Based on these thresholds, PDAC044
showed a cytotoxic signature under gemcitabine-paclitaxel
treatment, which correlated with a regression of the primary
tumor (-27%) and a reduction of the metastatic liver nodules (not
shown in the provided z-plane) (Fig. 6f). On the other hand,
PDAC068 and PDAC060 were characterized by a mixed clinical
response under gemcitabine-paclitaxel treatment (PDAC068:
slight regression of metastatic lung nodules, PDAC060: regression
of a lymph node metastasis but only disease control of the
primary tumor site), which was in line with the mixed response
signature observed ex vivo (cytostatic NDR around 0 but still a
high amount of cell death). We also evaluated patients with no
tumor regression under the FOLFIRINOX regimen (PDAC068 and
PDAC87). Interestingly, these patients were characterized by a

Fig. 2 Normalized drug metric (NDR) highlights the inter-patient ex vivo response heterogeneity. a–c Comparison of relative viability,
Growth rate (GR) and NDR. black squares indicate clinically relevant concentration ranges; 400–10,000 nM gemcitabine at 5:1 ratio with
paclitaxel. Error bars indicate the standard deviation. d Dot plot comparison of 4 selected PDAC organoid lines (treated with 400 nM
gemcitabine: 80 nM paclitaxel) showing the increased stratification performance of the NDR. e Label-free annotated brightfield images of
PDAC044, PDAC052, PDAC060 and PDAC082 (Orbits software) indicating clear differences in growth (control) and therapy response (400 nM
gemcitabine: 80 nM paclitaxel). One representative image was selected for visualization out of two technical replicates. Scale bar=100 µm.
f Heatmap-based comparison of % viability and NDR values for gemcitabine-paclitaxel and FOLFIRINOX g. NDR-based area under the curve
(AUC) indicating patient and therapy-specific sensitivities. h NDR-curve of PDAC082 upon treatment with the FOLFIRINOX-based mono and
combination treatment. i,j. AUC ratio (ratio: NDR AUC of standard of care combination/NDR AUC alternative regimen) calculation visualizes
potential patient-specific antagonistic effects of the standard of care combination treatment (FOLFIRINOX and gemcitabine-paclitaxel).
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cytostatic signature, again matching the clinical outcome (no
tumor regression under FOLFIRINOX treatment (Fig. 6f, g).
Finally, when evaluating the clinical translatability of all included

readouts, the current gold standard (% viability) showed almost
no trend with the clinical outcome (e.g. PDAC044 was more
resistant then PDAC060, while the clinical data showed the
opposite). On the other hand, the NDR signatures (bulk readout)
correlated with the initial clinical response in a subset of patients
(5/8, 62%) (Fig. 6h). However, the addition of the single organoid
analysis showed a high translatability in all patients, emphasizing
the predictive power of combining these 2 measurements in one
single readout, which is capable of predicting the response to

therapy as well as the probability of developing relapse due to the
presence of resistant PDAC clones (Fig. 6h).

DISCUSSION
Over the past years, tumor organoids have been widely adopted
in both preclinical (development of novel drug candidates) and
clinical research (personalized medicine)31,32. Nevertheless,
despite their numerous advantages and increased complexity,
we still rely on primitive viability readouts that have been used for
decades in traditional two-dimensional cell cultures. As a result,
we completely neglect the response heterogeneity of individual

Fig. 3 Transcriptional analysis highlights clinical relevance of NDR readout. a Heatmap showing gene expression profiles of good
(PDAC044, PDAC070, PDAC052 and PDAC002) and bad (PDAC060, PDAC068, PDAC087 and PDAC082) ex vivo responders with the
corresponding enriched Hallmark gene set clusters (S1, S2, S3 and S4), sorted by 2-way hierarchical clustering. b Cumulative Variable
importance plot, generated by calculating an importance score for each variable (gene) using machine learning algorithms, including LASSO
Cox regression, elastic nets, random forests, and extreme gradient boosting using the BigOmics Playground biomarker board with our
classification of responder and non-responder as phenotype of interest. c, d Heatmap visualization of the hazard ratio (Mantel-Cox test) and
Kaplan-Meier analysis of the overall survival using the predefined gene signature. Dotted lines represent the 95% Confidence Interval.
e Kinetic NDR analysis of PDAC044 and PDAC002 (cytotoxic responders) and PDAC060 (cytostatic responder) upon treatment with
gemcitabine-paclitaxel (400 nM:80 nM). Error bars indicate the standard deviation. f Hallmark gene set enrichment analysis of PDAC044,
PDAC002 and PDAC060 upon treatment with gemcitabine-paclitaxel (400 nM:80 nM) colored by relative log-expression.
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PDAC clones, thereby diminishing the translational relevance.
Considering that PDAC is characterized by a high relapse rate due
to the presence of invasive and treatment-resistant tumor cells, it
is essential that more advanced assays are incorporated into the
rapidly evolving field of “patients-in-a-lab”. For this study, we
developed an automated high-throughput screening pipeline
that can dynamically study the type of response as well as the
subclonal response heterogeneity on single-organoid resolution.
In accordance with the variance in molecular landscape and
clinical response, our ex vivo chemotherapy screen revealed
patient-specific treatment sensitivities. Importantly, these distinct

response patterns were only evaluable with the NDR metric and
not with the GR and relative viability readout. Furthermore, as
explained above, an important aspect of this chemotherapy
screen was to use clinically relevant concentrations/combinations
of the individual monotherapies33–35. In line with previous
findings, we show that oxaliplatin monotherapy shows limited
efficacy, whereas irinotecan and 5-FU drive the efficacy of the
FOLFIRONOX regimen36,37. However, using the NDR readout, we
were able to capture patient-specific additive effects of oxaliplatin
in combination with 5-FU, confirming the rationale for combining
all three chemotherapeutics. Although the NDR metric can

Fig. 4 Single-organoid analysis reveals the ex vivo intra-tumoral response heterogeneity. a Bar plot representation of the progression-free
survival (PFS) in months per patient. b NDR results upon treatment with gemcitabine-paclitaxel highlighting the 3 distinct responses. Error
bars indicate the standard deviation. c Representative brightfield/fluorescence (Cytotox Green) images of PDAC052, PDAC060 and PDAC082
indicating the presence of persistent PDAC organoid clones (black circle). One representative image was selected for visualization out of the
two technical replicates. Scale bar=100 µm d Single organoid dose response based on cell death (green area/brightfield area) labeled as
fraction affected and area (brightfield) of PDAC052, PDAC060 and PDAC082 treated with gemcitabine-paclitaxel (400 nM:80 nM). Dark grey
region (Fraction affected <0.15) indicates resistant, middle grey region sensitive (Fraction affected 0.15-0.34) and light grey highly sensitive
(Fraction affected >0.34) PDAC organoid clones. Bubble size correlates with the organoid area. e Relative fraction of resistant, sensitive and
highly sensitive PDAC organoids for each patient treated with gemcitabine-paclitaxel (400 nM:80 nM). f Dynamic quantification of single-
organoid responses treated with gemcitabine-paclitaxel (400 nM:80 nM) or FOLFIRINOX (20 µM 5-FU:0.0625 µM SN38:2.5 µM Oxaliplatin). The
single organoid data was combined from 2 technical replicates.
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Fig. 5 PDAC organoids reveal patient-, therapy-, concentration- and time-specific invasive patterns. a Representative brightfield (top),
masked (left under) and fluorescent overlap (right under) images of PDAC002 highlighting the clone-specific invasive behavior. Red arrows=
invasive PDAC organoid clones, blue circles=non-invasive PDAC organoid clones. One representative image was selected for visualization out
of the two technical replicates. Scale bar=50 µm. b tSNE analysis of 6 features (area, invasive area, fraction affected, invasive fraction,
brightness and texture) resulting in 10 distinct clusters of single PDAC002 organoids (untreated or treated with gemcitabine, paclitaxel and
gemcitabine-paclitaxel). c Whole 384-well plate (all conditions) single-organoid pseudotemporal trajectory analysis of patient PDAC002.
d tSNE visualization of PDAC organoids with a high (yellow) invasive fraction. e Therapy comparison of the PDAC density distribution over the
invasive trajectory (cluster 6). f Annotated brightfield images masking the PDAC organoids (red) and invasive area (green) upon treatment
with gemcitabine-paclitaxel (400 nM:80 nM) and the corresponding monotherapies. Scale bar=100 µm g Endpoint quantification of the sum
invasive area. Error bars indicate the standard deviation. h Kinetic quantification (5 days) of the sum invasive area upon treatment with
gemcitabine-paclitaxel normalized to timepoint 0. i Concentration-dependent invasive behavior of PDAC002, PDAC044 and PDAC060.
j Single-organoid endpoint analysis of PDAC002 treated with either Gem-Pac (400 nM:80 nM), Gem (400 nM) and Pac (80 nM). k Relative
quantification of invasive, non-invasive, sensitive and resistant PDAC organoid clones of PDAC002. Gem-Pac=gemcitabine-paclitaxel (400 nM:
80 nM), Gem=gemcitabine (400 nM) and Pac=paclitaxel (80 nM). The single organoid data was combined from 2 technical replicates.
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capture additive/antagonistic effects, the observation that
specific combinations (e.g. FOLFIRINOX vs FOLFIRI for PDAC082
and PDAC002) might be more effective in a patient-specific
manner should be further evaluated. With respect to the

performance of the NDR metric, it needs to be taken into
account that for slow-growing tumor organoids (growth rate
<1.2), the NDR might overestimate the initial effect (e.g.
PDAC070).

Fig. 6 Clinical significance of NDR and single organoid analysis. a–c Spearman rank correlation of the % sensitive, % resistant and ratio %
sensitive/resistant PDAC clones (gemcitabine-paclitaxel; 400 nM: 80 nM) with the PFS. d. Correlation of % ratio sensitive/resistant with the
initial clinical response to gemcitabine-paclitaxel. Responses were based on available radiological CT protocols. Good= tumor regression and/
or PFS > 10 months, Mixed= minor tumor regression, Bad= no tumor regression and/or fast disease progression. e NDR signatures indicating
the NDR value (left y-axis) and % cell death (right y-axis) upon treatment with gemcitabine-paclitaxel (400 nM:80 nM) or FOLFIRINOX (4 µM 5-
FU:0.0125 µM SN38:0.5 µM Oxaliplatin). f Representative CT-scans before and after treatment with gemcitabine/nab-paclitaxel or FOLFIRINOX
(8 cycles). Red contours indicate the tumor margins. g Overview of the clinical characteristics of patient PDAC044, PDAC052, PDAC060,
PDAC068 and PDAC087. h Comparison of the implemented readouts, suggesting a potential clinical application of combining the NDR
readout with the developed single-organoid analysis.
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Nonetheless, even though the NDR shows an overall better
drug screening performance (can distinct cytostatic from cytotoxic
responses and shows conformity with the transcriptional signa-
tures) compared to the current gold standards, we still did not
capture the full story of PDAC as heterogenous and immensely
complex/adaptive disease38,39. Therefore, we integrated a single-
organoid readout that is able to dynamically monitor this
complexity and response heterogeneity. Interestingly, as docu-
mented in pathological tumor regression assessments, we were
able to identify persistent malignant ducts, even with patients that
showed a good NDR-based ex vivo response40. This presence of
less sensitive clones (even at clinically relevant concentrations)
could explain why eventually 7 out of 8 patients had disease
progression due to local or metastatic outgrowth of the tumor.
Furthermore, in accordance with the high metastatic burden in

PDAC, it is well described in previous studies that chemotherapy-
induced stress might promote invasion and EMT41–44. To our
interest, we also observed time, concentration, therapy, and
patient-specific differences in invasive cells/cell clusters that
migrate out of the PDAC organoids. However, a limitation of this
study is that we not functionally confirmed the mesenchymal/
invasive state of these cells due to the technical difficulty of
specifically isolating this small subset of cells. Nevertheless,
morphological comparison of our organoids with published
organoid invasion studies combined with the identification of
spindle-shaped cells/budding cell clusters migrating out of the
organoid upon treatment suggest an EMT-like state (which can be
organoid clone specific)45–48. Moreover, as indicated by the tSNE
analysis, we observed a vast number of invasive-resistant PDAC
organoid clones upon treatment with gemcitabine-paclitaxel,
which might explain the course of PDAC as a highly invasive
and treatment-resistant disease over time. In spite of these
intriguing observations, it should be highlighted that further
fundamental studies are required to fully elucidate these findings
on the molecular level.
When evaluating the clinical relevance of our findings, it should

be addressed that this study serves as a proof-of-concept, since
we only include 8 patients diagnosed with PDAC. Moreover, it still
remains to be determined whether organoids derived from the
primary tumor site can predict the therapy response of metastatic
lesions (e.g. due to the influence of a different tumor micro-
environment). This question arises, for example, for patient
PDAC044 who responded for a long period of time to the
treatment and whose organoids were highly sensitive ex vivo.
Nonetheless, this patient relapsed shortly after surgery due to a
metastatic lesion in the liver. Therefore, we highly anticipate on
evaluating the clinical relevance of our analysis pipeline in a
greater cohort of patients from which we can obtain both primary
and metastatic lesions. To support the (clinical) validation of our
approach by other groups, a detailed protocol has been
published23 and our Orbits image analysis platform will be made
available in a cloud-based platform. Our data, once again,
highlights the inter-patient and therapy-specific response hetero-
geneity in PDAC, and our organoid analysis approach can detect
these differences. This will become a critical tool for overcoming
tumor and patient heterogeneity in personalized medicine.
Lastly, in addition to the clinical applications, this innovative

readout can also serve as a foundation for developing novel/more
effective treatments for PDAC (and other tumor types). Especially
because it will allow researchers to evaluate the efficacy of a novel
therapeutic on multiple subclones (i.e. does the therapy targets all
subclones), it will provide them information regarding potential
pro-invasive properties (i.e., does the therapy increase the
invasiveness) and it is fully automated/high-throughput compa-
tible. To conclude, we developed and validated an advanced AI-
driven live-cell imaging readout that enabled us to study the
complexity and intrinsic subclonal response heterogeneity and
invasive properties of PDAC in more depth. Consequently, we are

convinced that these findings will inevitably breathe new life into
the rapidly evolving landscape of personalized medicine for which
patient-derived tumor organoids will become an important
predictive platform.

METHODS
Establishment of human pancreatic cancer organoids
Tissue resection fragments were obtained from PDAC patients
undergoing curative surgery at the Antwerp University Hospital.
Written informed consent was obtained from all patients, and the
study was approved by the UZA Ethical Committee (ref. 14/47/
480). The human biological material used in this publication was
provided by Biobank@UZA (Antwerp, Belgium; ID:
BE71030031000); Belgian Virtual Tumorbank funded by the
National Cancer Plan. The corresponding resected tumor frag-
ments were stored in Ad-DF+++ (Advanced DMEM/F12 (GIBCO),
with 1% GlutaMAX (GIBCO), 1% HEPES (GIBCO), 1% penicillin/
streptomycin (GIBCO) supplemented with 2% Primocin (Invivo-
gen) at 4 °C and transported on ice to be processed within 24 h for
organoid culture. The tumor fragments were dissected on ice to
remove remaining connective (healthy) tissue and are subse-
quently cut into small pieces of approximately 2 mm in diameter.
Following dissection, the tissue fragments were washed with ice-
cold phosphate-buffered saline (PBS) and were subsequently
enzymatically digested at 37 °C for 1 h using 5mg/mL collagenase
II (Sigma-Aldrich), 10 μM Y-27632 (Cayman Chemicals) and 1:500
Primocin (Invivogen). After digestion, the cell suspension was
passed through a 100 μm filter (Fischer Scientific) and the filtrates
were centrifuged at 300 x g for 5 min. The strained cell pellet was
resuspended in >80% ice-cold Cultrex growth factor reduced BME
type 2 (R&D Systems) in PDAC organoid medium. Small droplets of
20 µL were plated and were incubated inverted for 30 min at 37 °C
to allow them to solidify. Thereafter, the droplets were overlayed
with Full PDAC medium consisted of 0.5 nM WNT Surrogate-Fc-
Fusion protein (ImmunoPrecise), 4% Noggin-Fc Fusion Protein
conditioned medium (ImmunoPrecise), 4% Rspo3-Fc Fusion
Protein conditioned medium (ImmunoPrecise), 1x B27 without
vitamin A (Gibco), 10 mM nicotinamide (Sigma-Aldrich), 1 mM
N-acetylcysteine (Sigma-Aldrich), 100 ng/ml FGF-10 (Peprotech),
500 nM A83-01 (Tocris), 10 nM gastrin (R&D Systems) and 10 μM
Y-27632 (Cayman Chemicals). To prevent microbial contamination,
1x Primocin was added to the culture medium during the first two
weeks. For passaging, the organoids were digested to single cells
with TrypLE Express (GIBCO). For cryopreservation, 3-day-old
organoids were harvested with Cultrex Harvesting Solution (R&D
Systems) and frozen in Recovery Cell Culture Freezing Medium
(GIBCO). Samples were tested for Mycoplasma contamination with
the MycoAlert Mycoplasma Detection Kit (LONZA).

Histological evaluation
Early passage organoids were collected using Cultrex Organoid
Harvesting Solution, washed with ice-cold PBS, and fixated in 4%
paraformaldehyde for 30 min at room temperature. Fixed
organoids were transferred to a 4% agarose micro-array mold
and paraffin-embedded as described before49. Five µm-thick
sections were prepared, deparaffinized and rehydrated prior to
Hematoxylin+Eosin (H&E) staining. Images were acquired on the
Leica DM750.

Clinical response evaluation
The degrees of treatment response were defined by the following
criteria. Good tumor response was defined as: tumor decreasing in
size. Mixed tumor response was defined for patients with multiple
lesions (local and/or metastatic): one tumor decreasing in size/or
stable, one tumor increasing in size (classified as RECIST response/
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progressions. Bad tumor response was defined as: no tumor
volume reduction/tumor progression under treatment.
Progression-free survival (PFS) was defined as the time between
the date of diagnosis and the date of disease progression.

Drug screening
Drug screening was performed using our pre-validated drug
screening pipeline for which a detailed protocol is available in the
Journal of Visualized Experiment50. Briefly, three days before the
start of the experiment, the PDAC organoids were passaged as
single cells using TrypLE and plated in Cultrex drops. Subse-
quently, the PDAC organoids were harvested (enzymatic diges-
tion) with Cultrex Harvesting Solution, collected in 15 mL tubes
coated with 0.1% BSA/PBS, washed with Ad DF+++ and
resuspended in 1mL Full Ad-DF+++ medium (without Y-
27632). Next the number of organoids were counted with the
in-house developed organoid counting software in a 384-well
microplate (Orbits). The PDAC Organoids were then diluted in Full
Ad-DF+++ and 4% Cultrex on ice to a concentration that results
in ~200 organoids/50 µL. Next, 50 µL of this solution was
dispensed into a 384-well ultra-low attachment microplate
(Corning, #4588) using the OT-2 a pipetting robot (Opentrons) in
a cooled environment. Thereafter, the plate was centrifuged (100
rcf, 30 sec, 4 °C) and incubated overnight at 37 °C allowing the
organoids to recover from the stress during plating.
All drugs and fluorescent reagents were added to the plate

using the Tecan D300e Digital Dispenser. Cytotox Green (60 nM /
well, Sartorius), Staurosporine (2 µM), 5-Fluorouracil (5-FU), SN38
(active metabolite Irinotecan), gemcitabine and paclitaxel (Med-
ChemExpress) were dissolved in DMSO. Oxaliplatin and leucovorin
(MedChemExpress) were dissolved in PBS to yield a final
concentration of 0.3 Tween-20 required for dispensing with the
D300e Dispenser (Tecan). To mimic the clinical setting, the
following ratios were used based on tissue-relevant concentration
ranges (not exceeding peak plasma concentrations): gemcitabine-
paclitaxel (5 nM gemcitabine:1 nM paclitaxel) and FOLFIRONOX
(20 µM 5-FU:0.0625 µM SN38:2.5 µM Oxaliplatin). A fixed concen-
tration of Leucovorin (1 µM) was used to enhance the efficacy of
5-FU (as in the clinical setting). Brightfield and green fluorescence
whole-well images (4x objective) were taken every 24 h with the
Tecan Spark Cyto set at 37 °C / 5% CO2 for 5 days. Two technical
replicates per patient (N= 8) were included in this study in order
to mimic a clinical predictive high-throughput drug screen (since
scaling up organoids for a repetitive biological replicate is not
always feasible in this clinical setting).

Drug response metrics
Following image acquisition with the Tecan Spark Cyto, Brightfield
and fluorescence images were analyzed using the validated and
in-house developed analysis software Orbits platform. For %
viability assessment, data results were normalized to vehicle
(100%) and/or baseline control (0%) (Staurosporine 2 µM). The
growth rate (GR) metric (negative control) and the normalized
drug response (NDR) metric (positive and negative controls) were
calculated based on the work of Hafner and colleagues and Gupta
and colleagues, respectively, using the adapted R script51,52. The
Total brightfield Area – Total Green Area parameter was used, and
the fold change was calculated for each well individually from the
first measurement (T0) and a timepoint as indicated in the figures.
Based on the NDR values, the drug effects can be classified as: >1,
proliferative effect; = 1, normal growth as in negative control; = 0,
complete growth inhibition;= -1, complete killing.

Single-organoid analysis
For each organoid, the label-free total masked area (Orbits) and
overlapping total green area (Cytotox green) was calculated.

Based on this ratio (total green/total masked area, fraction
affected), we defined the following response ranges: resistant
(<0.15), sensitive (0.16-0.33), and highly sensitive (>0.34). For the
quantification of the invasive characteristics, we improved our
orbits analysis to quantify the survival invasive area (masked
invasive are – overlapping green invasive area) and the invasive
fraction (invasive area/masked organoid area). An invasive fraction
<2 indicates tumor organoids with invasive characteristic. To
model temporal heterogeneity in the response profiles of the
organoid population obtained from a single patient (i.e. PDAC002),
the morphology, treatment response and invasive cancer cell
behavior at different time points (i.e. baseline to 5 days) were
subjected to principal component analysis (PCA) using the BioC-
package PCAtools. In total, 29,371 data points were included in the
analysis. Measurements were centered and scaled to unit variance.
Thousand random matrix permutations (i.e. Holm’s method) were
used to select informative principal components (PCs) by
comparing the observed and expected percentage of variation
explained by each PC. Next, informative PCs were subjected to
t-Stochastic Neighbor Embedding (t-SNE) using the R-package
Rtsne, with the perplexity hyperparameter set to the root square of
the number of organoids. Then, the t-SNE output was analyzed
using k-nearest neighbor searching (R-package FNN) with k set to
1000, resulting in a network in which each data point is connected
to its 1000 nearest neighbors with connection strengths (i.e. edge
weights) set to the complement of the Euclidean distance
between the connected samples in the t-SNE output. The resulting
weighted network was analyzed using the louvain community
detection algorithm (R-package igraph) to identify clusters, which
were further characterized by mapping measurements of orga-
noid morphology, treatment response and invasive behavior onto
the clustered scatter plot. Prior to visualization, data were rank
normalized to enhance contrast. Next, using the BioC-package
TSCAN, pseudotime vectors were calculated based on the t-SNE
coordinates and the cluster labels. Therefore, a minimal spanning
tree (MST) was first calculated where each node is a cluster
centroid, and each edge is weighted by the Euclidean distance
between centroids. This represents the most parsimonious
explanation for a particular trajectory and has the advantage of
being directly interpretable with respect to the pre-existing
clusters. The MST was forced to end in clusters of data points
representing resistant, sensitive or invasive organoids, as these
states are the most discrete in the data set. Then, each data point
was mapped onto the closest edge of the MST and pseudotime
vectors were computed according to each path through the MST
starting from the cluster most strongly enriched for baseline
measurements. This was done to ensure that each pseudotime
vector recapitulated chronologic changes in real-time. Common
pseudotime is defined as the pseudotime averaged across
all paths.

RNA sequencing
For RNA sequencing (RNA seq), full grown organoids PDAC
organoids were harvested from the 384-well plate to mimic the
same conditions as the drug screen. Afterwards, RNA was
extracted using RNeasy midi kit (Qiagen) for tumor samples of
20-250mg. For removal of gDNA, RNAse-free DNAse treatment
was performed. RNA concentration and purity were checked using
the Qubit RNA BR Assay Kit on Qubit 4 Fluorometer (Thermo-
Fisher) and NanoDrop ND-1000 (ThermoFisher), respectively.
Samples were frozen at -80 °C and delivered to Genomics Core
Leuven for transcriptome sequencing using Lexogen QuantSeq 3′
FWD library preparation kit for Illumina on a Hiseq4000 SR50 line
with a minimum of 2 M reads per sample.
Downstream analysis (Sample clustering, Differential gene

expression, Gene set enrichment, PCA, UMAP and Cumulative
importance analysis) was performed using the validated Omics
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Playground tool of Big Omics Analytics53. UMAP clustering of
genesets was used to compare expression signatures between
samples or conditions. Feature-level clustering is based on
pairwise co-expression between genesets in contrast to sample-
level clustering, which clusters sample by similarity of their
expression profile. This allows for a clear visualization of hundreds
of genesets. Genesets that are clustered nearby have high
covariance. The geneset UMAP is colored by the standard
deviation of the normalized log-expression (sd.logCPM). Heatmap
coloring ranges from blue, indicating low variability in geneset
expression, and red, which indicates a high variability in geneset
expression between samples/conditions. The geneset UMAP was
annotated for the Hallmark genesets. The geneset signature maps
represent UMAP clustering of genesets colored by relative log-
expression of the individual sample/condition groups in reference
to the average. The blue heatmap coloring indicates down-
regulated regions of correlated genesets and the red coloring
indicates upregulated correlated genesets.

KRAS mutation profiling
Full-grown PDAC organoids were collected as described above
and DNA was isolated using the QIAamp DNA blood mini kit
(Qiagen) and send to Genewiz Europe (Leipzig, Germany) for
whole exome sequencing on an Illumina NovaSeq platform
(2 ×150 bp sequencing, 12 Gb (120x)). Raw reads 24 were mapped
onto the human reference genome (hg38) using the BWA MEM
algorithm (v.0.7.17) in standard settings. Resulting SAM-files were
converted into BAM-files, coordinated-sorted, and indexed using
samtools (v.1.9). Variants were called using the haplotype-based
variant detector freebayes (v.1.3.2; 220 Garrison E, Marth G.
Haplotype-based variant detection from short-read sequencing).
Indel positions were left aligned and normalized using the
bcftools (v.1.9) norm-command. Resulting VCF-files were anno-
tated using SnpEff (v.5.1) for functional annotations and SnpSift
(v.5.1) for human genetic variation using dbSNP (build 154),
ClinVar (release 05/09/2022) and COSMIC (v96). Annotated VCF
files were further manipulated using the SnpSift filter-command
retaining only coding, non-synonymous variants that are con-
tained COSMIC, that are not considered as benign and/or likely
benign by ClinVar, that have a minimal coverage of 120x with at
least 40 reads supporting the alternate allele with no positional or
strand bias, that are not of germline origin or are reported as
common variants (minor allele frequency>1%) in any human
population and that are either missense, stop gained or frame
shift mutations.

Statistical analysis
Statistical analysis, including the Spearman rank correlation,
unpaired sample t-test and the Kruskal-Wallis H test were
conducted in GraphPad Prism 10.0.0 and R version 4.3.1,
respectively. The Omics Playground tool of Big Omics Analytics
was used to explore statistical differences of the transcriptional
profiles (statistical tests are included in the platform). Survival
analysis on the TCGA PAAD (= PDAC) cohort for the biomarker
geneset was performed with GEPIA2 using the Mantel-Cox test
and Logrank test54.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The raw drug screening datasets are available from the corresponding author on
reasonable request, as it is still part of an ongoing study. The RNA datasets have been
deposited in the Gene Expression Omnibus (GEO) database under accession number

GSE235548. The RNA data has also been deposited as public datasets in the BigOmics
Analytics platform (GSE325548_Treated_vs_Untreated; GSE325548_PDAC_Orga-
noids) in which the data can be explored using a free account (https://bigomics.ch).

CODE AVAILABILITY
A web-based platform of the Orbits software will be made available (under
development) to support the validation of the clinical relevance in a greater cohort of
patients. For any additional questions related to the code, please contact the
corresponding author.
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