|   | 
Details
   web
Records
Author Zhang, F.; Chevalier, J.; Olagnon, C.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Vleugels, J.
Title Grain-boundary engineering for aging and slow-crack-growth resistant zirconia Type A1 Journal article
Year 2017 Publication Journal of dental research Abbreviated Journal J Dent Res
Volume 96 Issue 7 Pages 774-779
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La2O3) and aluminum oxide (Al2O3) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La2O3 and Al2O3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.
Address
Corporate Author Thesis
Publisher Place of Publication St. Louis, Mo. Editor
Language Wos 000403934500010 Publication Date (up) 2017-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.755 Times cited 3 Open Access Not_Open_Access
Notes ; This research was supported by the Research Fund of KU Leuven under project 0T/ 10/052 and the Research Foundation-Flanders (FWO-Vlaanderen) under grant G.0431.10N. We thank J.W. Seo for TEM and sample preparations. F. Zhang thanks the Research Fund of KU Leuven for her postdoctoral fellowship (PDM/15/153) and the JECS-Trust for the travel grant (No. 201599) to perform double-torsion testing in the MATEIS lab of INSA, Lyon, France. Jerome Chevalier would like to dedicate this paper to Maria Cattani Lorente, who recently passed away under tragic conditions. She was deeply involved in the study of dental zirconia and we will miss her. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. ; Approved Most recent IF: 4.755
Call Number UA @ lucian @ c:irua:144161 Serial 4660
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Karakulina, O.M.; Batuk, M.; Cabioc’h, T.; Hadermann, J.; Delville, R.; Lambrinou, K.; Vleugels, J.
Title Synthesis of MAX Phases in the Zr-Ti-Al-C System Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue 56 Pages 3489-3498
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350–1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard’s law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard’s law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397171100045 Publication Date (up) 2017-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 26 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0431.10N.F ; Agentschap voor Innovatie door Wetenschap en Technologie, 131081 ; European Atomic Energy Community, 604862 ; SCK-CEN Academy for Nuclear Science and Technology; Hercules Foundation, Project/Award no: AKUL/1319 Project/Award no: ZW09-09 ; Approved Most recent IF: 4.857
Call Number EMAT @ emat @ c:irua:141794 Serial 4491
Permanent link to this record
 

 
Author Ben Hafsia, A.; Hendrickx, M.; Batuk, M.; Khitouni, M.; Hadermann, J.; Greneche, J.-M.; Rammeh, N.
Title Crystal structure study of manganese and titanium substituted BaLaFe2O6-δ Type A1 Journal article
Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 251 Issue 251 Pages 186-193
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Barium lanthanum ferrite and four Mn/Ti substituted materials were synthesized by the sol-gel method. The crystal structure of the materials was studied by a combination of X-ray powder diffraction, electron diffraction, scanning transmission electron microscopy and 57Fe Mössbauer spectrometry. BaLaFe2O6-δ has a cubic perovskite structure and Ba0.7La1.3FeMnO6-δ is distorted perovskite with the R-3c symmetry, both from electron diffraction and X-ray powder diffraction. However, according to transmission electron microscopy, the crystals of BaLaFeTiO6-δ, BaLaFeTi0.5Mn0.5O6-δ, and BaLaFe0.5Ti0.5MnO6-δ consist of nanodomains with different symmetries (Pm3m next to R-3c due to octahedral tilts), whereas the bulk X-ray powder diffraction patterns for these compounds correspond to the simple cubic structure. 57Fe Mössbauer spectrometry confirms that all materials contain high spin state Fe3+ ions which are strongly influenced by the chemical disorder

resulting from various cationic environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402581200024 Publication Date (up) 2017-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited Open Access Not_Open_Access
Notes This study has been supported by the Tunisian Ministry of Higher Education and Scientific Research and by the University of Antwerp BOF Grant 33024 funding scheme. Approved Most recent IF: 2.299
Call Number EMAT @ emat @ c:irua:143988 Serial 4582
Permanent link to this record
 

 
Author Chin, C.-M.; Sena, R.P.; Hunter, E.C.; Hadermann, J.; Battle, P.D.
Title Interplay of structural chemistry and magnetism in perovskites : a study of CaLn2Ni2WO9: Ln=La, Pr, Nd Type A1 Journal article
Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 251 Issue Pages 224-232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline samples of CaLn(2)Ni(2)WO(9) (Ln=La, Pr, Nd) have been synthesized and characterised by a combination of X-ray and neutron diffraction, electron microscopy and magnetometry. Each composition adopts a perovskite-like structure with a similar to 5.50, b similar to 5.56, c similar to 7.78 angstrom beta similar to 90.1 degrees in space group P2(1)/n. Of the two crystallographically distinct six-coordinate sites, one is occupied entirely (Ln=Pr) or predominantly (Ln=La, Nd) by Ni2+ and the other by Ni2+ and W6+ in a ratio of approximately 1:2. None of the compounds shows long-range magnetic order at 5 K. The magnetometry data show that the magnetic moments of the Ni2+ cations form a spin glass below 30 K in each case. The Pr3+ moments in CaPr2Ni2WO9 also freeze but the Nd3+ moments in CaNd2Ni2WO9 do not. This behaviour is contrasted with that observed in other (A,A')B2B'O-9 perovskites.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402581200030 Publication Date (up) 2017-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 5 Open Access OpenAccess
Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful to Ivan da Silva who provided experimental assistance at ISIS and to Maria Batuk for help with the STEM-EDX analysis. ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:144179 Serial 4664
Permanent link to this record
 

 
Author Ranjbar, S.; Hadipour, A.; Vermang, B.; Batuk, M.; Hadermann, J.; Garud, S.; Sahayaraj, S.; Meuris, M.; Brammertz, G.; da Cunha, A.F.; Poortmans, J.
Title P-N Junction Passivation in Kesterite Solar Cells by Use of Solution-Processed TiO2 Layer Type A1 Journal article
Year 2017 Publication IEEE journal of photovoltaics Abbreviated Journal Ieee J Photovolt
Volume 7 Issue 7 Pages 1130-1135
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this work, we used a solution-processed TiO2 layer between Cu2ZnSnSe4 and CdS buffer layer to reduce the recombination at the p–n junction. Introducing the TiO2 layer showed a positive impact on VOC but fill factor and efficiency decreased. Using a KCN treatment, we could create openings in the TiO2 layer, as confirmed by transmission electron microscopy measurements. Formation of these openings in the TiO2 layer led to the improvement of the short-circuit current, fill factor, and the efficiency of the modified solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404258900026 Publication Date (up) 2017-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-3381 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.712 Times cited 2 Open Access OpenAccess
Notes This work was supported in part by the European Union’s Horizon 2020 research and innovation program under Grant 640868, in part by the Flemish government, Department Economy, Science and Innovation, in part by the FEDER funds through the COMPETE 2020 Programme, and in part by the National Funds through FCT – Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013. The work of S. Ranjbar was supported by the Portuguese Science and Technology Foundation through Ph.D. grant SFRH/BD/78409/2011. The work of B. Vermang was supported by the Flemish Research Foundation FWO (mandate 12O4215N). Approved Most recent IF: 3.712
Call Number EMAT @ emat @ c:irua:143986 Serial 4583
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M.
Title Cobalt location in p -CoO x / n -SnO 2 nanocomposites: Correlation with gas sensor performances Type A1 Journal Article
Year 2017 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 721 Issue Pages 249-260
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405252400030 Publication Date (up) 2017-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited Open Access Not_Open_Access
Notes This work was supported by ERA-Net.Plus grant N 096 FONSENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. Approved Most recent IF: 3.133
Call Number EMAT @ emat @ Serial 4711
Permanent link to this record
 

 
Author Tang, Y.; Sena, R.P.; Aydeev, M.; Battle, P.D.; Cadogan, J.M.; Hadermann, J.; Hunter, E.C.
Title Magnetic properties of the 6H perovskite Ba3Fe2TeO9 Type A1 Journal article
Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 253 Issue Pages 347-354
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of Ba3Fe2TeO9 having the 6H perovskite structure has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mossbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. Partial ordering of Fe3+ and Te6+ cations occurs over the six-coordinate sites; the corner-sharing octahedra are predominantly occupied by the former and the face-sharing octahedra by a 1:1 mixture of the two. On cooling through the temperature range 18 < T/K < 295 an increasing number of spins join an antiferromagnetic backbone running through the structure while the remainder show complex relaxation effects. At 3 K an antiferromagnetic phase and a spin glass coexist.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000406572600047 Publication Date (up) 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 6 Open Access OpenAccess
Notes ; We thank EPSRC for financial support through grant EP/M018954/1. ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:145692 Serial 4743
Permanent link to this record
 

 
Author Singh, V.; Mehta, B.R.; Sengar, S.K.; Karakulina, O.M.; Hadermann, J.; Kaushal, A.
Title Achieving independent control of core diameter and carbon shell thickness in Pd-C core–shell nanoparticles by gas phase synthesis Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 29 Pages 295603
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pd-C core–shell nanoparticles with independently controllable core size and shell thickness are grown by gas phase synthesis. First, the core size is selected by electrical mobility values of charged particles, and second, the shell thickness is controlled by the concentration of carbon precursor gas. The carbon shell grows by adsorption of carbon precursor gas molecules on the surface of nanoparticles, followed by sintering. The presence of a carbon shell on Pd nanoparticles is potentially important in hydrogen-related applications operating at high temperatures or in catalytic reactions in acidic/aqueous environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404633200002 Publication Date (up) 2017-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 1 Open Access Not_Open_Access
Notes VS is thankful to the All India Council for Technical Education, India, for providing assistantship under its Quality Improvement Programme. BRM gratefully acknowledges the support of the Nanomission Programme of the Department of Science and Technology (DST), India and Schlumberger Chair Professorship. BRM would also like to acknowledge the support from the project funded by BRNS, DAE, India. Approved Most recent IF: 3.44
Call Number EMAT @ emat @c:irua:144831 Serial 4712
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M.
Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414151800068 Publication Date (up) 2017-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019
Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401
Call Number EMAT @ emat @c:irua:145926 Serial 4710
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G.
Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 20 Pages 8901-8913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000413884900037 Publication Date (up) 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access OpenAccess
Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:147432 Serial 4886
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V.
Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 258 Issue 258 Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000423650400001 Publication Date (up) 2017-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access
Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:149283 Serial 4936
Permanent link to this record
 

 
Author Morozov, V.A.; Batuk, D.; Batuk, M.; Basovich, O.M.; Khaikina, E.G.; Deyneko, D.V.; Lazoryak, B.I.; Leonidov, I.I.; Abakumov, A.M.; Hadermann, J.
Title Luminescence Property Upgrading via the Structure and Cation Changing in AgxEu(2–x)/3WO4and AgxGd(2–x)/3–0.3Eu0.3WO4 Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 20 Pages 8811-8823
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescence properties. AgxEu3+(2−x)/3□(1−2x)/3WO4 and AgxGd(2−x)/3−0.3Eu3+0.3□(1−2x)/3WO4 (x = 0.5−0) scheelite-type phases were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder synchrotron X-ray diffraction. Transmission electron microscopy also revealed the (3 + 1)D incommensurately modulated character of AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.286, 0.2) phases. The crystal structures of the scheelite-based AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.5, 0.286, 0.2) red phosphors have been refined from high resolution synchrotron powder X-ray diffraction data. The luminescence properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.5, 0.286,0.2) phosphors show the strongest absorption at 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The excitation spectra of the Eu2/3□1/3WO4 and Gd0.367Eu0.30□1/3WO4 phases exhibit the highest contribution of the charge transfer band at 250 nm and thus the most efficient energy transfer mechanism between the host and the luminescent ion as compared to direct excitation. The emission spectra of all samples indicate an intense red emission due to the 5D0 → 7F2 transition of Eu3+. Concentration dependence of the 5D0 → 7F2 emission for AgxEu(2−x)/3□(1−2x)/3WO4 samples differs from the same dependence for the earlier studied NaxEu3+(2−x)/3□(1−2x)/3MoO4 (0 ≤ x ≤ 0.5) phases. The intensity of the 5D0 → 7F2 emission is reduced almost 7 times with decreasing x from 0.5 to 0, but it practically does not change in the range from x = 0.286 to x = 0.200. The emission spectra of Gd-containing samples show a completely different trend as compared to only Eu-containing samples. The Eu3+ emission under excitation of Eu3+(5L6) level (λex = 395 nm) increases more than 2.5 times with the increasing Gd3+ concentration from 0.2 (x = 0.5) to 0.3 (x = 0.2) in the AgxGd(2−x)/3−0.3Eu3+0.3□(1−2x)/3WO4, after which it remains almost constant for higher Gd3+ concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413884900028 Publication Date (up) 2017-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 7 Open Access Not_Open_Access
Notes This research was supported by FWO (project G039211N), Flanders Research Foundation. V.A.M. is grateful for financial support of the Russian Foundation for Basic Research (Grant 15-03-07741). E.G.K. and O.M.B. are grateful for financial support of the Russian Foundation for Basic Research (Grants 13-03-01020 and 16-03-00510). D.V.D. is grateful for financial support of the Russian Foundation for Basic Research (Grant 16-33-00197) and the Foundation of the President of the Russian Federation (Grant MK-7926.2016.5.). We are grateful to the ESRF for granting the beamtime. Experimental support of Andy Fitch at the ID31 beamline of ESRF is kindly acknowledged. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:147241 Serial 4768
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Ogorodnikov, I.I.; Kuznetsov, M.V.; Volykhov, A.A.; Matsui, F.; Callaert, C.; Hadermann, J.; Verbitskiy, N.I.; Koch, R.J.; Varykhalov, A.; Rader, O.; Yashina, L.V.
Title Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3 Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 45 Pages 30520-30532
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi2Te3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi2Te3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi2Te3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi2Te3 leading to the formation of septuple layers of Bi3Te4 within a distance of similar to 25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.'));
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000416054400023 Publication Date (up) 2017-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 4 Open Access OpenAccess
Notes ; The authors acknowledge financial support within the bilateral program “Russian-German Laboratory at BESSY II” and thank Helmholtz Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and U49-PGM1. The Supercomputing Center of Lomonosov Moscow State University is gratefully acknowledged for granting access to the “Lomonosov” supercomputer. The work was partially supported by DFG priority program SPP 1666, Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft (Grant No. HRJRG-408) and Russian Foundation for Basic Research (Grants No. 13-02-91327 and No. 16-29-06410). C. C. acknowledges support from the University of Antwerp through the BOF grant 31445. The authors thank Dr Vera Neudachina, Daria Tsukanova, Dr Elmar Kataev and Dr Maria Batuk for their support during the XPS and TEM experiments. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:147659 Serial 4888
Permanent link to this record
 

 
Author Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T.A.L.; Lippertz, G.; Trekels, M.; Menendez, E.; Kremer, F.; Wahl, U.; Costa, A.R.G.; Correia, J.G.; Banerjee, D.; Gunnlaugsson, H.P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M.J.; Hadermann, J.; Araujo, J.P.; Temst, K.; Vantomme, A.; Pereira, L.M.C.
Title Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in gamma-Fe nanoparticles Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 17 Pages 174410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('gamma-Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of gamma-Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mossbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a = 3.76(2) angstrom and c = 3.50(2) angstrom, and a magnetic moment of 2.45(5) mu(B) per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured gamma-Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of gamma-Fe taking tetragonal distortion into account.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000414525200005 Publication Date (up) 2017-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access OpenAccess
Notes ; The authors thank the Fund for Scientific Research-Flanders, the Concerted Research Action of the KU Leuven (GOA/14/007), the KU Leuven BOF (STRT/14/002), the Hercules Foundation, the Portuguese Foundation for Science and Technology (CERN/FIS-NUC/0004/2015), and the European Union Seventh Framework through ENSAR2 (European Nuclear Science and Applications Research, Project No. 654002), and SPIRIT (Support of Public and Industrial Research Using Ion Beam Technology, Contract No. 227012). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing beam time (experiments 26-01-1018, 26-01-1057, 20-02-728, HC-1850, HC-2208), as well as C. Baehtz, N. Boudet, and N. Blancand for support during the experiments. We acknowledge the ISOLDE-CERN facility for providing beam time (experiment IS580) and technical assistance. The authors (L.M.C.P., F.K.) acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Advanced Microscopy, Australian National University. We also acknowledge the contribution of Prof. Mark Ridgway (Australian National University), who passed away before the work was completed. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:147387 Serial 4873
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V.
Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 23 Pages 9954-9963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600013 Publication Date (up) 2017-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access OpenAccess
Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:148531 Serial 4869
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J.
Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 258 Issue 258 Pages 825-834
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000423650400107 Publication Date (up) 2017-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access
Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:149284 Serial 4928
Permanent link to this record
 

 
Author Sathiya, M.; Jacquet, Q; Doublet, M.L; Karakulina, O.M.; Hadermann, J.; Tarascon, J.-M.
Title A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes Type A1 Journal article
Year 2018 Publication Advanced energy materials Abbreviated Journal Adv. Energy Mater.
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Sodium ion batteries (NIBs) are one of the versatile technologies for lowcost rechargeable batteries. O3-type layered sodium transition metal oxides (NaMO2, M = transition metal ions) are one of the most promising positive electrode materials considering their capacity. However, the use of O3 phases is limited due to their low redox voltage and associated multiple phase transitions which are detrimental for long cycling. Herein, a simple strategy is proposed to successfully combat these issues. It consists of the introduction of a larger, nontransition metal ion Sn4+ in NaMO2 to prepare a series of NaNi0.5Mn0.5−y SnyO2 (y = 0–0.5) compositions with attractive electrochemical performances, namely for y = 0.5, which shows a single-phase transition from O3 ⇔ P3 at the very end of the oxidation process. Na-ion NaNi0.5Sn0.5O2/C coin cells are shown to deliver an average cell voltage of 3.1 V with an excellent capacity retention as compared to an average stepwise voltage of ≈2.8 V and limited capacity retention for the pure NaNi0.5Mn0.5O2 phase. This study potentially shows the way to manipulate the O3 NaMO2 for facilitating their practical use in NIBs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430163100013 Publication Date (up) 2018-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 21.875 Times cited 28 Open Access OpenAccess
Notes M.S. and Q.J. contributed equally to this work. The authors thank Dr. Daniel Alves Dalla Corte and Sujoy Saha for electronic conductivity measurements and Prof. Dominique Larcher for fruitful discussions. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. TGA analysis by Matthieu Courty, LRCS, Amiens, is greatly acknowledged. J.H. and O.M.K. acknowledge funding from FWO Vlaanderen project G040116N. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:149515 Serial 4907
Permanent link to this record
 

 
Author Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 8 Issue 13 Pages 7287-7300
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425508900064 Publication Date (up) 2018-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 9 Open Access OpenAccess
Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108
Call Number EMAT @ emat @c:irua:149513 Serial 4905
Permanent link to this record
 

 
Author Garud, S.; Gampa, N.; Allen, T.G.; Kotipalli, R.; Flandre, D.; Batuk, M.; Hadermann, J.; Meuris, M.; Poortmans, J.; Smets, A.; Vermang, B.
Title Surface passivation of CIGS solar cells using gallium oxide Type A1 Journal article
Year 2018 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 215 Issue 7 Pages 1700826
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se-2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5nm passivation layer show an substantial absolute improvement of 56mV in open-circuit voltage (V-OC), 1mAcm(-2) in short-circuit current density (J(SC)), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430128500015 Publication Date (up) 2018-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access
Notes ; The work published in this paper was supported by the European Research Council (ERC) under the Union's Horizon 2020 research and innovation programme (grant agreement No 715027). The authors would also like to thank Dr. Marcel Simor (Solliance) for the CIGS layer fabrication and Prof. Johan Lauwaert (Universtiy of Ghent) for his guidance on DLTS measurements. ; Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:150761 Serial 4981
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R.
Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno
Volume 18 Issue 3 Pages 1688-1695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426033400022 Publication Date (up) 2018-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.483 Times cited Open Access Not_Open_Access
Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483
Call Number EMAT @ emat @c:irua:147505 Serial 4775
Permanent link to this record
 

 
Author Vishwakarma, M.; Thota, N.; Karakulina, O.; Hadermann, J.; Mehta, B.R.
Title Role of graphene inter layer on the formation of the MoS2 – CZTS interface during growth Type P1 Proceeding
Year 2018 Publication (icc-2017) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000436313003046 Publication Date (up) 2018-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume 1953 Series Issue Edition
ISSN 978-0-7354-1648-2; 0094-243x; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes ; The authors acknowledge support provided by DST project. M.V. acknowledges IIT Delhi for MHRD fellowship. Prof. B. R. Mehta acknowledges the support of the Schlumberger chair professorship. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:153203 Serial 5126
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M.
Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 10 Pages 3285-3293
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000433403800014 Publication Date (up) 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:152048 Serial 4996
Permanent link to this record
 

 
Author Tang, Y.; Hunter, E.C.; Battle, P.D.; Hendrickx, M.; Hadermann, J.; Cadogan, J.M.
Title Ferrimagnetism as a consequence of unusual cation ordering in the Perovskite SrLa2FeCoSbO9 Type A1 Journal article
Year 2018 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 57 Issue 12 Pages 7438-7445
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of SrLa2FeCoSbO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, magnetometry, Mossbauer spectroscopy, X-ray diffraction, and neutron diffraction. The compound adopts a monoclinic (space group P2(1)/n; a = 5.6218(6), b = 5.6221(6), c = 7.9440(8) angstrom, beta = 90.050(7)degrees at 300 K) perovskite-like crystal structure with two crystallographically distinct six-coordinate sites. One of these sites is occupied by 2/3 Co-2(+),1/3 Fe3+ and the other by 2/3 Sb5+, 1/3 Fe3+. This pattern of cation ordering results in a transition to a ferrimagnetic phase at 215 K. The magnetic moments on nearest-neighbor, six-coordinate cations align in an antiparallel manner, and the presence of diamagnetic Sb5+ on only one of the two sites results in a nonzero remanent magnetization of similar to 1 mu(B) per formula unit at 5 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000436023800073 Publication Date (up) 2018-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 6 Open Access Not_Open_Access
Notes ; PDB, ECH, and JH acknowledge support from EPSRC under grant EP/M0189954/1. We would like to thank the STFC for the award of beamtime at the ISIS Neutron and Muon Source (RB 1610100), and we thank Dr. I. da Silva for the assistance provided. We also thank Dr. R Paria Sena for help with the HAADF-STEM and STEM-EDX experiments. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:152485 Serial 5103
Permanent link to this record
 

 
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J.
Title Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 14 Pages 4788-4798
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000440105500037 Publication Date (up) 2018-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access
Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:153156 Serial 5107
Permanent link to this record
 

 
Author Volykhov, A.A.; Sanchez-Barriga, J.; Batuk, M.; Callaert, C.; Hadermann, J.; Sirotina, A.P.; Neudachina, V.S.; Belova, A.I.; Vladimirova, N.V.; Tamm, M.E.; Khmelevsky, N.O.; Escudero, C.; Perez-Dieste, V.; Knop-Gericke, A.; Yashina, L.V.
Title Can surface reactivity of mixed crystals be predicted from their counterparts? A case study of (Bi1-xSbx)2Te3 topological insulators Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 33 Pages 8941-8949
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The behavior of ternary mixed crystals or solid solutions and its correlation with the properties of their binary constituents is of fundamental interest. Due to their unique potential for application in future information technology, mixed crystals of topological insulators with the spin-locked, gapless states on their surfaces attract huge attention of physicists, chemists and material scientists. (Bi1-xSbx)(2)Te-3 solid solutions are among the best candidates for spintronic applications since the bulk carrier concentration can be tuned by varying x to obtain truly bulk-insulating samples, where the topological surface states largely contribute to the transport and the realization of the surface quantum Hall effect. As this ternary compound will be evidently used in the form of thin-film devices its chemical stability is an important practical issue. Based on the atomic resolution HAADF-TEM and EDX data together with the XPS results obtained both ex situ and in situ, we propose an atomistic picture of the mixed crystal reactivity compared to that of its binary constituents. We find that the surface reactivity is determined by the probability of oxygen attack on the Te-Sb bonds, which is directly proportional to the number of Te atoms bonded to at least one Sb atom. The oxidation mechanism includes formation of an amorphous antimony oxide at the very surface due to Sb diffusion from the first two quintuple layers, electron tunneling from the Fermi level of the crystal to oxygen, oxygen ion diffusion to the crystal, and finally, slow Te oxidation to the +4 oxidation state. The oxide layer thickness is limited by the electron transport, and the overall process resembles the Cabrera-Mott mechanism in metals. These observations are critical not only for current understanding of the chemical reactivity of complex crystals, but also to improve the performance of future spintronic devices based on topological materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000443279300007 Publication Date (up) 2018-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 3 Open Access Not_Open_Access
Notes ; The authors acknowledge financial support within the bilateral program "Russian-German Laboratory at BESSY II''. We thank Helmholtz-Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and ISISS. Support of ALBA staff during measurements at the CIRCE beamline is gratefully acknowledged. We thank Dr Ivan Bobrikov for support in the XRD measurements and Daria Tsukanova for the participation in crystal preparation and XPS measurements. A. Volykhov thanks RSF (grant 18-73-00248) for financial support. A. I. Belova acknowledges support from the G-RISC Centre of Excellence. The work was supported by Helmholtz Gemeinschaft (Grant No. HRJRG-408) and RFBR (grant 14-03-31518). J. H. and C. C. acknowledge support from the University of Antwerp through the BOF grant 31445. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:153647 Serial 5080
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
Year 2018 Publication Materials Abbreviated Journal Materials
Volume 11 Issue 11 Pages 1304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444112800041 Publication Date (up) 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited 15 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author Cassidy, S.J.; Orlandi, F.; Manuel, P.; Hadermann, J.; Scrimshire, A.; Bingham, P.A.; Clarke, S.J.
Title Complex Magnetic Ordering in the Oxide Selenide Sr2Fe3Se2O3 Type A1 Journal article
Year 2018 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 57 Issue 16 Pages 10312-10322
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000442489100078 Publication Date (up) 2018-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 2 Open Access OpenAccess
Notes ; S. J. Cassidy prepared the samples and performed the diffraction and magnetometry measurements. F.O., P.M., and S. J. Cassidy measured and interpreted the NPD data. J.H. performed and interpreted the electron diffraction measurements. A.S. and P.A.B. performed and interpreted the Mossbauer spectroscopy measurements. S. J. Cassidy and S. J. Clarke conceived the project and wrote the paper with input from all co-authors. We acknowledge the financial support of the EPSRC (Grants EP/I017844/1, EP/P018874/1, and EP/ M020517/1), and the Leverhulme Trust (RPG-2014-221). We thank the ESTEEM2 network for enabling the electron microscopy investigations, the ISIS facility for the award of beamtime on WISH (RB1610357), and the Diamond Light Source Ltd. for the award of beam time on I11 (allocation EE13284). We thank Dr. C. Murray, Dr. S. Day and Dr. A. Baker for assistance on I11 and Dr. M. Coduri and Dr. A. N. Fitch for assistance on ID22. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:153723 Serial 5085
Permanent link to this record
 

 
Author Malkov, I., V; Krivetskii, V.V.; Potemkin, D., I; Zadesenets, A., V; Batuk, M.M.; Hadermann, J.; Marikutsa, A., V; Rumyantseva, M.N.; Gas'kov, A.M.
Title Effect of Bimetallic Pd/Pt Clusters on the Sensing Properties of Nanocrystalline SnO2 in the Detection of CO Type A1 Journal article
Year 2018 Publication Russian journal of inorganic chemistry Abbreviated Journal Russ J Inorg Chem+
Volume 63 Issue 8 Pages 1007-1011
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline tin dioxide modified by Pd and Pt clusters or by bimetallic PdPt nanoparticles was synthesized. Distribution of the modifers on the SnO2 surface was studied by high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis with element distribution mapping. It was shown that the Pd/Pt ratio in bimetallic particles varies over a broad range and does not depend on the particle diameter. The effect of platinum metals on the reducibility of nanocrystalline SnO2 by hydrogen was determined. The sensing properties of the resulting materials towards 6.7 ppm CO in air were estimated in situ by electrical conductivity measurements. The sensor response of SnO2 modified with bimetallic PdPt particles was a superposition of the signals of samples with Pt and Pd clusters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000442749500003 Publication Date (up) 2018-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-0236 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.787 Times cited 3 Open Access Not_Open_Access
Notes ; This work was supported by the ERA.Net RUS Plus program (project 096 FONSENS, RFBR grant 16-53-76001). ; Approved Most recent IF: 0.787
Call Number UA @ lucian @ c:irua:153752 Serial 5092
Permanent link to this record
 

 
Author Marikutsa, A.; Yang, L.; Rumyantseva, M.; Batuk, M.; Hadermann, J.; Gaskov, A.
Title Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts Type A1 Journal article
Year 2018 Publication Sensors and actuators : B : chemical Abbreviated Journal
Volume 277 Issue Pages 336-346
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline tungsten oxide with variable particle size and surface area was synthesized by aqueous deposition and heat treatment for use in resistive gas sensors. Surface modification with 1 wt.% Pd and Ru was performed by impregnation to improve the sensitivity to CO and ammonia. Acid and oxidation surface sites were evaluated by temperature-programmed techniques using probe molecules. The surface acidity dropped with increasing particle size, and was weakly affected by additives. Lower crystallinity of WO3 and the presence of Ru species favoured temperature-programmed reduction of the materials. Modifying WO3 increased its sensitivity, to CO at ambient condition for modification by Pd and to NH3 at elevated temperature for Ru modification. An in situ infrared study of the gas – solid interaction showed that the catalytic additives change the interaction route of tungsten oxide with the target gases and make the reception of detected molecules independent of the semiconductor oxide matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453066700042 Publication Date (up) 2018-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156219 Serial 8513
Permanent link to this record
 

 
Author Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A.
Title Effects of Ag additive in low temperature CO detection with In2O3 based gas sensors Type A1 Journal article
Year 2018 Publication Nanomaterials Abbreviated Journal
Volume 8 Issue 10 Pages 801
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25-250 degrees C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H-2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 degrees C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451174100057 Publication Date (up) 2018-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156335 Serial 7842
Permanent link to this record