toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Poppe, R. url  openurl
  Title Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages iv, 150 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200610 Serial 9084  
Permanent link to this record
 

 
Author Ulu Okudur, F.; Batuk, M.; Hadermann, J.; Safari, M.; De Sloovere, D.; Kumar Mylavarapu, S.; Joos, B.; D'Haen, J.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title Solution-gel-based surface modification of LiNi0.5Mn1.5O4-δ with amorphous Li-Ti-O coating Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 47 Pages 33146-33158  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LNMO (LiNi0.5Mn1.5O4-delta) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 mu m LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in R-ct values as high as 1247 Omega (after 1000 cycles) for bare LNMO, against 216 Omega for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001102666700001 Publication Date 2023-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.108  
  Call Number UA @ admin @ c:irua:202091 Serial 9096  
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. doi  openurl
  Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203389 Serial 9100  
Permanent link to this record
 

 
Author Singh, A.; Yuan, B.; Rahman, M.H.; Yang, H.; De, A.; Park, J.Y.; Zhang, S.; Huang, L.; Mannodi-Kanakkithodi, A.; Pennycook, T.J.; Dou, L. pdf  doi
openurl 
  Title Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures Type A1 Journal article
  Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 36 Pages 19885-19893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial heterostructures of two-dimensional (2D) halide perovskites offer a new platform for studying intriguing structural, optical, and electronic properties. However, difficulties with the stability of Pb- and Sn-based heterostructures have repeatedly slowed the progress. Recently, Pb-free halide double perovskites are gaining a lot of attention due to their superior stability and greater chemical diversity, but they have not been successfully incorporated into epitaxial heterostructures for further investigation. Here, we report epitaxial core-shell heterostructures via growing Pb-free double perovskites (involving combinations of Ag(I)-Bi(III), Ag-Sb, Ag-In, Na-Bi, Na-Sb, and Na-In) around Pb perovskite 2D crystals. Distinct from Pb-Pb and Pb-Sn perovskite heterostructures, growths of the Pb-free shell at 45 degrees on the (100) surface of the lead perovskite core are observed in all Pb-free cases. The in-depth structural analysis carried out with electron diffraction unequivocally demonstrates the growth of the Pb-free shell along the [110] direction of the Pb perovskite, which is likely due to the relatively lower surface energy of the (110) surface. Furthermore, an investigation of anionic interdiffusion across heterostructure interfaces under the influence of heat was carried out. Interestingly, halide anion diffusion in the Pb-free 2D perovskites is found to be significantly suppressed as compared to Pb-based 2D perovskites. The great structural tunability and excellent stability of Pb-free perovskite heterostructures may find uses in electronic and optoelectronic devices in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001060980300001 Publication Date 2023-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access  
  Notes Approved Most recent IF: 15; 2023 IF: 13.858  
  Call Number UA @ admin @ c:irua:200342 Serial 9111  
Permanent link to this record
 

 
Author Gao, Y.-J.; Jin, H.; Esteban, D.A.; Weng, B.; Saha, R.A.; Yang, M.-Q.; Bals, S.; Steele, J.A.; Huang, H.; Roeffaers, M.B.J. url  doi
openurl 
  Title 3D-cavity-confined CsPbBr₃ quantum dots for visible-light-driven photocatalytic C(sp³)-H bond activation Type A1 Journal article
  Year 2024 Publication Carbon Energy Abbreviated Journal  
  Volume Issue Pages e559  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low-cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two-step double-solvent strategy to grow and confine CsPbBr3 QDs within the three-dimensional (3D) cavities of a mesoporous SBA-16 silica scaffold (CsPbBr3@SBA-16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA-16 presents a high activity and stability for visible-light-driven photocatalytic toluene C(sp(3))-H bond activation to produce benzaldehyde with similar to 730 mu mol g(-1) h(-1) yield rate and near-unity selectivity. Similarly, the structural stability of CsPbBr3@SBA-16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM-41 with 1D channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001223583600001 Publication Date 2024-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-9368 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206000 Serial 9133  
Permanent link to this record
 

 
Author Yang, C.-Q.; Yin, Z.-W.; Li, W.; Cui, W.-J.; Zhou, X.-G.; Wang, L.-D.; Zhi, R.; Xu, Y.-Y.; Tao, Z.-W.; Sang, X.; Cheng, Y.-B.; Van Tendeloo, G.; Hu, Z.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Atomically deciphering the phase segregation in mixed halide perovskite Type A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mixed-halide perovskites show promising applications in tandem solar cells owing to their adjustable bandgap. One major obstacle to their commercialization is halide phase segregation, which results in large open-circuit voltage deficiency and J-V hysteresis. However, the ambiguous interplay between structural origin and phase segregation often results in aimless and unspecific optimization strategies for the device's performance and stability. An atomic scale is directly figured out the abundant Ruddlesden-Popper anti-phase boundaries (RP-APBs) within a CsPbIBr2 polycrystalline film and revealed that phase segregation predominantly occurs at RP-APB-enriched interfaces due to the defect-mediated lattice strain. By compensating their structural lead halide, such RP-APBs are eliminated, and the decreasing of strain can be observed, resulting in the suppression of halide phase segregation. The present work provides the deciphering to precisely regulate the perovskite atomic structure for achieving photo-stable mixed halide wide-bandgap perovskites of high-efficiency tandem solar cell commercial applications. The phase segregation in mixed halide perovskite film predominantly occurs at Ruddlesden-Popper anti-phase boundaries (RP-APBs)-enriched interfaces due to the defect-mediated lattice strain. The RP-APBs defects can be eliminated by compensating for their structural lead halide deficiency, resulting in the suppression of halide phase segregation. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001200673300001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Approved Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:205509 Serial 9134  
Permanent link to this record
 

 
Author Lelouche, S.N.K.; Lemir, I.; Biglione, C.; Craig, T.; Bals, S.; Horcajada, P. url  doi
openurl 
  Title AuNP/MIL-88B-NH₂ nanocomposite for the valorization of nitroarene by green catalytic hydrogenation Type A1 Journal article
  Year 2024 Publication Chemistry: a European journal Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001204094600001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.3 Times cited Open Access  
  Notes Approved Most recent IF: 4.3; 2024 IF: 5.317  
  Call Number UA @ admin @ c:irua:205426 Serial 9135  
Permanent link to this record
 

 
Author Cioni, M.; Delle Piane, M.; Polino, D.; Rapetti, D.; Crippa, M.; Arslan Irmak, E.; Pavan, G.M.; Van Aert, S.; Bals, S. doi  openurl
  Title Data for Sampling Real‐Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine Learning Type Dataset
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic‐resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state‐of‐the‐art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark‐field scanning transmission electron microscopy enables the acquisition of ten high‐resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allows resolving the real‐time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205843 Serial 9143  
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V. url  doi
openurl 
  Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type A1 Journal article
  Year 2024 Publication Nature Abbreviated Journal  
  Volume 626 Issue Pages 542-548  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001176943100001 Publication Date 2023-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited Open Access  
  Notes Approved Most recent IF: 64.8; 2024 IF: 40.137  
  Call Number UA @ admin @ c:irua:204796 Serial 9144  
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X. url  doi
openurl 
  Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
  Year 2024 Publication Energy & environment materials Abbreviated Journal  
  Volume Issue Pages e12755-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001204495900001 Publication Date 2024-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205438 Serial 9148  
Permanent link to this record
 

 
Author Vlasov, E. url  doi
openurl 
  Title Exploiting secondary electrons in transmission electron microscopy for 3D characterization of nanoparticle morphologies Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages x, 118 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) is an indispensable tool for determining the three-dimensional (3D) structure of nanomaterials in (scanning) transmission electron microscopy ((S)TEM). ET enables 3D characterization of a variety of nanomaterials across different fields, including life sciences, chemistry, solid-state physics, and materials science down to atomic resolution. However, the acquisition of a conventional tilt series for ET is a time-consuming process and thus cannot capture fast transformations of materials in realistic conditions. Moreover, only a limited number of nanoparticles (NPs) can be investigated, hampering a general understanding of the average properties of the material. Therefore, alternative characterization techniques that allow for high-resolution characterization of the surface structure without the need to acquire a full tilt series in ET are required which would enable a more time-efficient investigation with better statistical value. In the first part of this work, an alternative technique for the characterization of the morphology of NPs to improve the throughput and temporal resolution of ET is presented. The proposed technique exploits surface-sensitive secondary electron (SE) imaging in STEM employed using a modification of electron beam-induced current (EBIC) setup. The time- and dose efficiency of SEEBIC are tested in comparison with ET and superior spatial resolution is shown compared to conventional scanning electron microscopy. Finally, contrast artefacts arising in SEEBIC images are described, and their origin is discussed. The second part of my thesis focuses on real applications of the proposed technique and introduces a high-throughput methodology that combines images acquired by SEEBIC with quantitative image analysis to retrieve information about the helicity of gold nanorods. It shows that SEEBIC imaging overcomes the limitation of ET providing a general understanding of the connection between structure and chiroptical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2024-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:204905 Serial 9149  
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B. pdf  doi
openurl 
  Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
  Year 2024 Publication Advanced materials Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001219658400001 Publication Date 2024-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access  
  Notes Approved Most recent IF: 29.4; 2024 IF: 19.791  
  Call Number UA @ admin @ c:irua:206037 Serial 9152  
Permanent link to this record
 

 
Author Bampouli, A.; Goris, Q.; Hussain, M.N.; Louisnard, O.; Stefanidis, G.D.; Van Gerven, T. pdf  doi
openurl 
  Title Importance of design and operating parameters in a sonication system for viscous solutions : effects of input power, horn tip diameter and reactor capacity Type A1 Journal article
  Year 2024 Publication Chemical engineering and processing Abbreviated Journal  
  Volume 198 Issue Pages 109715-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This study investigates the distribution of ultrasound (US) energy in a batch system for solutions with viscosity ranging from 1 to approximately 3000 mPas. Sonication was performed using horn type configurations operating at 20-30 kHz and rated power capacity of 50 or 200 W. Two different tip diameters (3 or 7 mm) and two insertion depths (35 or 25 mm) within vessels of different sizes ( approximate to 60 or 130 ml) were utilized. Additionally, a special conical tip design was employed. For each experimental setup, the calorimetric efficiency was estimated, the cavitationally active regions were visualized using the sonochemiluminescence (SCL) method and bubble cluster formation inside the vessel was macroscopically observed using a high speed camera (HSC). In the viscosity range tested, the calorimetry results showed that the efficiency and continuous operation of the device depend on both the rated power and the horn tip diameter. The ratio between electrical and calorimetric power input remained consistently around 40 to 50% across the different configurations for water, but for the 123.2 mPas solution exhibited significant variation ranging from 40 to 85%. Moreover, the power density in the smaller reactor was found to be nearly double compared to the larger one. The SCL analysis showed multiple cavitationally active zones in all setups, and the zones intensity decreased considerably with increase of the solutions viscosity. The results for the cone tip were not conclusive, but can be used as the basis for further investigation. The current research highlights the importance of thoroughly understanding the impact of each design parameter, and of establishing characterization methodologies to assist in the future development of scaled-up, commercial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001218630800001 Publication Date 2024-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.3 Times cited Open Access  
  Notes Approved Most recent IF: 4.3; 2024 IF: 2.234  
  Call Number UA @ admin @ c:irua:206003 Serial 9154  
Permanent link to this record
 

 
Author Wang, G.; Xie, C.; Wang, H.; Li, Q.; Xia, F.; Zeng, W.; Peng, H.; Van Tendeloo, G.; Tan, G.; Tian, J.; Wu, J. pdf  doi
openurl 
  Title Mitigated oxygen loss in lithium-rich manganese-based cathode enabled by strong Zr-O affinity Type A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 2313672  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxygen loss is a serious problem of lithium-rich layered oxide (LLO) cathodes, as the high capacity of LLO relies on reversible oxygen redox. Oxygen release can occur at the surface leading to the formation of spinel or rock salt structures. Also, the lattice oxygen will usually become unstable after long cycling, which remains a major roadblock in the application of LLO. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in LLO due to the high affinity between Zr and O. A simple sol-gel method is used to dope Zr4+ into the LLOs to adjust the local electronic structure and inhibit the diffusion of oxygen anions to the surface during cycling. Compared with untreated LLOs, LLO-Zr cathodes exhibit a higher cycling stability, with 94% capacity retention after 100 cycles at 0.4 C, up to 223 mAh g-1 at 1 C, and 88% capacity retention after 300 cycles. Theoretical calculations show that due to the strong Zr-O covalent bonding, the formation energy of oxygen vacancies has effectively increased and the loss of lattice oxygen under high voltage can be suppressed. This study provides a simple method for developing high-capacity and cyclability Li-rich cathode materials for lithium-ion batteries. Oxygen release can occur at the cathode surface leading to the formation of spinel or rock salt structures. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in lithium-rich layered oxides (LLO) due to the high affinity between Zr and O. LLO-Zr exhibit higher cycling stability, with 88% capacity retention after 300 cycles at 1 C. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001159843800001 Publication Date 2024-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Approved Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:203812 Serial 9161  
Permanent link to this record
 

 
Author Coulombier, M.; Baral, P.; Orekhov, A.; Dohmen, R.; Raskin, J.P.; Pardoen, T.; Cordier, P.; Idrissi, H. url  doi
openurl 
  Title On-chip very low strain rate rheology of amorphous olivine films Type A1 Journal article
  Year 2024 Publication Acta materialia Abbreviated Journal  
  Volume 266 Issue Pages 119693-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Recent observations made by the authors revealed the activation of stress induced amorphization and sliding at grain boundary in olivine [1], a mechanism which is expected to play a pivotal role in the viscosity drop at the lithosphere-asthenosphere boundary and the brittle -ductile transition in the lithospheric mantle. However, there is a lack of information in the literature regarding the intrinsic mechanical properties and the elementary deformation mechanisms of this material, especially at time scales relevant for geodynamics. In the present work, amorphous olivine films were obtained by pulsed laser deposition (PLD). The mechanical response including the rate dependent behavior are investigated using a tension -on -chip (TOC) method developed at UCLouvain allowing to perform creep/relaxation tests on thin films at extremely low strain rates. In the present work, strain rate down to 10-12 s- 1 was reached which is unique. High strain rate sensitivity of 0.054 is observed together with the activation of relaxation at the very early stage of deformation. Furthermore, digital image correlation (DIC), used for the first time on films deformed by TOC, reveals local strain heterogeneities. The relationship between such heterogeneities, the high strain rate sensitivity and the effect of the electron beam in the scanning electron microscope is discussed and compared to the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001170513400001 Publication Date 2024-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.4 Times cited Open Access  
  Notes Approved Most recent IF: 9.4; 2024 IF: 5.301  
  Call Number UA @ admin @ c:irua:204864 Serial 9163  
Permanent link to this record
 

 
Author Joy, R.M.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Goerlitz, J.; Herrmann, D.; Noel, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesladek, M.; Haenen, K. pdf  doi
openurl 
  Title Photoluminescence of germanium-vacancy centers in nanocrystalline diamond films : implications for quantum sensing applications Type A1 Journal article
  Year 2024 Publication ACS applied nano materials Abbreviated Journal  
  Volume 7 Issue 4 Pages 3873-3884  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Point defects in diamond, promising candidates for nanoscale pressure- and temperature-sensing applications, are potentially scalable in polycrystalline diamond fabricated using the microwave plasma-enhanced chemical vapor deposition (MW PE CVD) technique. However, this approach introduces residual stress in the diamond films, leading to variations in the characteristic zero phonon line (ZPL) of the point defect in diamond. Here, we report the effect of residual stress on germanium-vacancy (GeV) centers in MW PE CVD nanocrystalline diamond (NCD) films fabricated using single crystal Ge as the substrate and solid dopant source. GeV ensemble formation indicated by the zero phonon line (ZPL) at similar to 602 nm is confirmed by room temperature (RT) photoluminescence (PL) measurements. PL mapping results show spatial nonuniformity in GeV formation along with other defects, including silicon-vacancy centers in the diamond films. The residual stress in NCD results in shifts in the PL peak positions. By estimating a stress shift coefficient of (2.9 +/- 0.9) nm/GPa, the GeV PL peak position in the NCD film is determined to be between 598.7 and 603.2 nm. A larger ground state splitting due to the strain on a GeV-incorporated NCD pillar at a low temperature (10 K) is also reported. We also report the observation of intense ZPLs at RT that in some cases could be related to low Ge concentration and the surrounding crystalline environment. In addition, we also observe thicker microcrystalline diamond (MCD) films delaminate from the Ge substrate due to film residual stress and graphitic phase at the diamond/Ge substrate interface (confirmed by electron energy loss spectroscopy). Using this approach, a free-standing color center incorporated MCD film with dimensions up to 1 x 1 cm(2) is fabricated. Qualitative analysis using time-of-flight secondary ion mass spectroscopy reveals the presence of impurities, including Ge and silicon, in the MCD film. Our experimental results will provide insights into the scalability of GeV fabrication using the MW PE CVD technique and effectively implement NCD-based nanoscale-sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001164609600001 Publication Date 2024-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.9 Times cited Open Access  
  Notes Approved Most recent IF: 5.9; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:204826 Serial 9164  
Permanent link to this record
 

 
Author Lu, Q. url  openurl
  Title Precipitation behavior and heat resistance properties of Al-Cu-Mg-Ag-(Si) alloy Type Doctoral thesis
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages VIII, 212 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract With the rapid increase in the speed of new-generation aerospace vehicles, conventional heat-resistant aluminum alloys cannot meet the long-term service of the equipment. Therefore, the development of new high-strength heat-resistant aluminum alloys is of great strategic for the sustainable and high-quality development of industries. Al-Cu-Mg-Ag alloy is an age-hardenable heat-resistant aluminum alloy and has high strength and heat resistance. The addition of alloying elements such as Si and Sc to Al-Cu-Mg-Ag alloy introduces a competitive relationship among the σ-Al5Cu6Mg2, θ′-Al2Cu, and Ω phases. Therefore, a systematic investigation of precipitation behavior and heat resistance of Al-Cu-Mg-Ag-(Si) is essential for guiding the design of high-strength heat-resistant aluminum alloys. Combined characterization testing methods such as scanning electron microscopy, transmission electron microscopy, atom probe tomography, microhardness testing, and tensile testing with simulation calculation methods such as calculation of phase diagram, first-principles calculations, and Ab initio molecular dynamics, the effects of heat treatment processes and element content on the precipitation behavior, mechanical properties, and heat resistance of Al-Cu-Mg-Ag-(Si) alloys were systematically investigated. Furthermore, a multiple interface segregation structure was constructed at the θ′/Al interface, and a new Al-Cu-Mg-Ag-Si-Sc alloy with synergistically improved strength and heat resistance was developed. The main conclusions are as follows: (1) Based on the Kampmann-Wagner-Numerical theory, the relationship between the coarsening rate of the Ω phase and the aging process was analyzed, revealing for the first time that the critical size of Ω phase ( ) under thermal exposure temperature was the key factor determining the coarsening rate of Ω phase during long time thermal exposure heat treatment. After artificial ageing, when the size of Ω phase was smaller than the critical size , the dissolution of smaller Ω phase leaded to a rapid decrease in the number density of Ω phases, thereby reducing the heat resistance of the alloy. When the size of Ω phase was greater than or equal to the critical size , the coarsening rate of Ω phase was consistent, but a larger initial size would result in a larger final size after long-term thermal exposure. Therefore, the closer the size of Ω phase in the alloy is to the critical size under heat exposure temperature, the better the heat resistance of the alloy. (2) A concept of constructing a multiple interface segregation structure at the precipitate/matrix interface was proposed, and based on this concept, a multiple interface segregation structure containing the C/L-AlMgSiCu interfacial phase, newly discovered χ-AgMg interfacial phase, and Sc segregation layer was successfully constructed at the θ′/Al interface. The existence of the multiple interface segregation structure ensured that the designed Al-Cu-Mg-Ag-Si-Sc alloy maintains a yield strength of 400 MPa after thermal exposure at 200 C for 100 h, with a strength retention rate of 97%, creating a new record for the synergistic improvement of strength and heat resistance in aluminum alloys. In addition, combining transmission electron microscopy ex-situ/in-situ characterization with first-principles calculations, it is shown that the χ-AgMg interface phase will be destroyed due to the diffusion of the outer Ag layer during thermal exposure, and gradually dissolve into the matrix, but it can still delay the coarsening behavior of θ′-Al2Cu phase. (3) The criteria for determining whether Ω phase can precipitate are updated in Al-Cu-Mg-Ag-Si alloys with low Mg/Si ratio based on phase diagram thermodynamic calculations and multi-scale structural characterization. When W(Mg)/W(Si) > 1.4 and X(Ag)/X(Mgexcess) > 1, Ω phase can precipitate in Al-Cu-Mg-Ag-Si alloys, where X(Mgexcess) represents the atomic percentage of residual Mg elements after the formation of the AlMgSiCu quaternary precipitate phase C/L phase in the supersaturated solid solution, and the W(Mg) is the mass fraction of Mg in the supersaturated solid solution before artificial ageing. (4) The effects of alloy element content on precipitation behavior and heat resistance of Al-Cu-Mg-Ag-Si alloys were systematically analyzed. Critical conditions for the precipitation of σ-Al5Cu6Mg2 and Ω phase in Al-Cu-Mg-Ag-Si alloys are revealed. Based on calculation of phase diagram results, the conditions for precipitating σ-Al5Cu6Mg2 phase in the alloy are: ① W(Mg)/W(Si) > 1.8; ② W(Cu) > 2.7W(Mg) – 5W(Si). When W(Mg)/W(Si) < 1.8, the alloy is mainly precipitated with C/L/Q′-AlMgSiCu. When W(Cu) < 2.7W(Mg) – 5W(Si), the alloy will generate GPB zone. In addition, W(Ag)/W(Si) > 4 is the critical condition which the Ω phase can the main precipitates in Al-Cu-Mg-Ag-Si alloys. Furthermore, the correlation between precipitate types and heat resistance was summarized, showing that Al-Cu-Mg-Ag-(Si) alloys with Ω phase as the main strengthening phase are more suitable for the preparation of structures with short service time but high temperature, while Al-Cu-Mg-Ag-(Si) alloys with low Mg content and multiple segregation structures are more suitable for structures requiring long-term service at medium to high temperatures. This study, for the first time, combines calculation of phase diagram with multi-scale microstructure characterization, systematically unraveling the effects of element content on precipitation behavior, strength, and heat resistance of Al-Cu-Mg-Ag-(Si) alloys. In addition, a concept of constructing a multiple interface segregation structure at the precipitate/matrix interface was proposed to synergistically improve alloy strength and heat resistance. This work provides theoretical guidance for optimizing the composition and processing of Al-Cu-Mg-Ag-(Si) alloy and regulating the microstructure. Furthermore, it also offers new ideas and theoretical guidance for the development of novel high-strength heat-resistant alloys in other systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206180 Serial 9167  
Permanent link to this record
 

 
Author Poppe, R.; Roth, N.; Neder, R.B.; Palatinus, L.; Iversen, B.B.; Hadermann, J. url  doi
openurl 
  Title Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction data Type A1 Journal article
  Year 2024 Publication IUCrJ Abbreviated Journal  
  Volume 11 Issue 1 Pages 82-91  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) angstrom for the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) angstrom for the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 001168018300012 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-2525 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access  
  Notes Approved Most recent IF: 3.9; 2024 IF: 5.793  
  Call Number UA @ admin @ c:irua:205513 Serial 9170  
Permanent link to this record
 

 
Author Brognara, A.; Kashiwar, A.; Jung, C.; Zhang, X.; Ahmadian, A.; Gauquelin, N.; Verbeeck, J.; Djemia, P.; Faurie, D.; Dehm, G.; Idrissi, H.; Best, J.P.; Ghidelli, M. url  doi
openurl 
  Title Tailoring mechanical properties and shear band propagation in ZrCu metallic glass nanolaminates through chemical heterogeneities and interface density Type A1 Journal article
  Year 2024 Publication Small Structures Abbreviated Journal  
  Volume Issue Pages 2400011-11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr 24 Cu 76 /Zr 61 Cu 39 , fully amorphous nanocomposite with controlled nanoscale periodicity ( Λ , from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ  ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 2024-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2688-4062 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205798 Serial 9176  
Permanent link to this record
 

 
Author Debie, Y.; van Audenaerde, J.R.M.; Vandamme, T.; Croes, L.; Teuwen, L.-A.; Verbruggen, L.; Vanhoutte, G.; Marcq, E.; Verheggen, L.; Le Blon, D.; Peeters, B.; Goossens, M.; Pannus, P.; Ariën, K.K.; Anguille, S.; Janssens, A.; Prenen, H.; Smits, E.L.J.; Vulsteke, C.; Lion, E.; Peeters, M.; Van Dam, P.A. pdf  url
doi  openurl
  Title Humoral and cellular immune responses against SARS-CoV-2 after third dose BNT162b2 following double-dose vaccination with BNT162b2 versus ChAdOx1 in patients with cancer Type University Hospital Antwerp
  Year 2023 Publication Clinical cancer research Abbreviated Journal  
  Volume 29 Issue 3 Pages 635-646  
  Keywords University Hospital Antwerp; A1 Journal article; Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Purpose: Patients with cancer display reduced humoral responses after double-dose COVID-19 vaccination, whereas their cellular response is more comparable with that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and patients with cancer. Because of the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine fromthe one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in patients with cancer. Experimental Design: A total of 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs. 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARSCoV- 2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4þ and CD8þ T-cell responses against SARS-CoV-2–specific S1 and S2 peptides. Results: Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects [GMT 1,755.90 BAU/mL (95% CI, 1,276.95–2,414.48) vs. 1,495.82 BAU/mL (95% CI, 1,131.48–1,977.46)]. However, homologous- boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8þ T cells, including higher IFNg and TNFa levels. Conclusions: In patients with cancer who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000928414200001 Publication Date 2022-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1078-0432; 1557-3265 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access  
  Notes Approved Most recent IF: 11.5; 2023 IF: 9.619  
  Call Number UA @ admin @ c:irua:192500 Serial 9207  
Permanent link to this record
 

 
Author Lentijo-Mozo, S.; Tan, R.P.; Garcia-Marcelot, C.; Altantzis, T.; Fazzini, P.F.; Hungria, T.; Cormary, B.; Gallagher, J.R.; Miller, J.T.; Martinez, H.; Schrittwieser, S.; Schotter, J.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Gatel, C.; Soulantica, K. pdf  url
doi  openurl
  Title Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 2792-2804  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized coreshell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000351791800055 Publication Date 2015-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 25 Open Access OpenAccess  
  Notes 312483 Esteem2; 246791 Countatoms; 335078 Colouratom; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:125380 c:irua:125380 Serial 87  
Permanent link to this record
 

 
Author Pfannmöller, M.; Heidari, H.; Nanson, L.; Lozman, O.R.; Chrapa, M.; Offermans, T.; Nisato, G.; Bals, S. pdf  url
doi  openurl
  Title Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 15 Issue 15 Pages 6634-6642  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells.  
  Address EMAT-University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Wos 000363003100052 Publication Date 2015-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 26 Open Access OpenAccess  
  Notes This work was supported by the FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7-contract num. 287594). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). M.P. gratefully acknowledges the SIM NanoForce program for their financial support. We acknowledge AGFA for providing the neutral PEDOT:PSS and GenesInk for the ZnO nanoparticles. We would like to thank Stijn Van den broeck for extensive support on FIB sample preparation. M.P. and H.H. thank Daniele Zanaga for the many fruitful discussions.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592  
  Call Number c:irua:129423 c:irua:129423 Serial 3973  
Permanent link to this record
 

 
Author Van Aert, S. pdf  openurl
  Title Atomen in 3D : Antwerpenaren brengen atomaire structuur nanodeeltjes in beeld Type Newspaper/Magazine/blog article
  Year 2011 Publication Chemie magazine Abbreviated Journal  
  Volume 7 Issue 3 Pages 9  
  Keywords Newspaper/Magazine/blog article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0379-7651 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94122 Serial 163  
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A. pdf  url
doi  openurl
  Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 5653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000347227700003 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 197 Open Access  
  Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166  
Permanent link to this record
 

 
Author Javon, E.; Gaceur, M.; Dachraoui, W.; Margeat, O.; Ackermann, J.; Ilenia Saba, M.; Delugas, P.; Mattoni, A.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Competing forces in the self-assembly of coupled ZnO nanopyramids Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 3685-3694  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Self-assembly (SA) of nanostructures has recently gained increasing interest. A clear understanding of the process is not straightforward since SA of nanoparticles is a complex multiscale phenomenon including different driving forces. Here, we study the SA between aluminum doped ZnO nanopyramids into couples by combining inorganic chemistry and advanced electron microscopy techniques with atomistic simulations. Our results show that the SA of the coupled nanopyramids is controlled first by morphology, as coupling only occurs in the case of pyramids with well-developed facets of the basal planes. The combination of electron microscopy and atomistic modeling reveals that the coupling is further driven by strong ligandligand interaction between the bases of the pyramids as dominant force, while screening effects due to Al doping or solvent as well as corecore interaction are only minor contributions. Our combined approach provides a deeper understanding of the complex interplay between the interactions at work in the coupled SA of ZnO nanopyramids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000353867000030 Publication Date 2015-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 21 Open Access OpenAccess  
  Notes Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:125978 Serial 434  
Permanent link to this record
 

 
Author Ennaert, T.; Geboers, J.; Gobechiya, E.; Courtin, C.M.; Kurttepeli, M.; Houthoofd, K.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Bals, S.; Jacobs, P.A.; Sels, B.F. pdf  url
doi  openurl
  Title Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water Type A1 Journal article
  Year 2015 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 5 Issue 5 Pages 754-768  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The wide range of liquid-phase reactions required for the catalytic conversion of biomass compounds into new bioplatform molecules defines a new set of challenges for the development of active, selective, and stable catalysts. The potential of bifunctional Ru/H-USY catalysts for conversions in hot liquid water (HLW) is assessed in terms of physicochemical stability and long-term catalytic performance of acid sites and noble metal functionality, as probed by hydrolytic hydrogenation of cellulose. It is shown that zeolite desilication is the main zeolite degradation mechanism in HLW. USY zeolite stability depends on two main parameters, viz., framework and extra-framework aluminum content. The former protects the zeolite lattice by counteracting hydrolysis of framework bonds, and the latter, when located at the external crystal surface, prevents solubilization of the zeolite framework which is the result of its low water-solubility. Hence, the hot liquid water stability of commercial H-USY zeolites, in contrast to their steam stability, increased with decreasing Si/AI ratio. As a result, mildly steamed USY zeolites containing a high amount of both Al species exhibit the highest resistance to HLW. During an initial period of transformations, Al-rich zeolites form additional protective extra-framework Al species at the outer surface, self-stabilizing the framework. A critical bulk Si/AI ratio of 3 was determined whereby USY zeolites with a lower Si/AI ratio will self-stabilize over time. Besides, due to the initial transformation period, the accessibility of the catalytic active sites is extensively enhanced resulting in a material that is more stable and drastically more accessible to large substrates than the original zeolite. When these findings are applied in the hydrolytic hydrogenation of cellulose, unprecedented nearly quantitative hexitol yields were obtained with a stable catalytic system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000349275300031 Publication Date 2014-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 65 Open Access OpenAccess  
  Notes 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 10.614; 2015 IF: 9.312  
  Call Number c:irua:125288 Serial 474  
Permanent link to this record
 

 
Author Peirs, J.; Verleysen, P.; Tirry, W.; Rabet, L.; Schryvers, D.; Degrieck, J. doi  openurl
  Title Dynamic shear localization in Ti6Al4V Type P1 Proceeding
  Year 2011 Publication Procedia Engineering T2 – 11th International Conference on the Mechanical Behavior of Materials, (ICM), 2011, Como, ITALY (ICM11) Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The alloy Ti6Al4V is known to be prone to the formation of adiabatic shear bands when dynamically loaded in shear. This causes a catastrophic decrease of the load carrying capacity and is usually followed by fracture. Although, the main mechanism is recognized to be the competition between strain hardening and thermal softening, a detailed understanding of the role of microstructural plasticity mechanisms and macroscopic loading conditions does not exist yet. To study strain localization and shear fracture, different high strain rate shear tests have been carried out: compression of hat-shaped specimens, torsion of thin walled tubular specimens and in-plane shear tests. The value of the three techniques in studying shear localization is evaluated. Post-mortem analysis of the fracture surface and the materials' microstructure is performed with optical and electron microscopy. In all cases a ductile fracture is observed. SEM and TEM techniques are used to study the local microstructure and composition in the shear band and as such the driving mechanism for the ASB formation. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000300451302060 Publication Date 2011-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 10 Series Issue Edition  
  ISSN 1877-7058; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113069 Serial 767  
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A. pdf  url
doi  openurl
  Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 5161-5169  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000359499100003 Publication Date 2015-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127758 Serial 3977  
Permanent link to this record
 

 
Author Huijben, M.; Liu, Y.; Boschker, H.; Lauter, V.; Egoavil, R.; Verbeeck, J.; te Velthuis, S.G.E.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Enhanced local magnetization by interface engineering in perovskite-type correlated oxide heterostructures Type A1 Journal article
  Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 2 Issue 2 Pages 1400416  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000349916000001 Publication Date 2015-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 30 Open Access  
  Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 4.279; 2015 IF: NA  
  Call Number c:irua:125333 c:irua:125333UA @ admin @ c:irua:125333 Serial 1052  
Permanent link to this record
 

 
Author Béché, A.; Winkler, R.; Plank, H.; Hofer, F.; Verbeeck, J. pdf  url
doi  openurl
  Title Focused electron beam induced deposition as a tool to create electron vortices Type A1 Journal article
  Year 2015 Publication Micron Abbreviated Journal Micron  
  Volume 80 Issue 80 Pages 34-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Focused electron beam induced deposition (FEBID) is a microscopic technique that allows geometrically controlled material deposition with very high spatial resolution. This technique was used to create a spiral aperture capable of generating electron vortex beams in a transmission electron microscope (TEM). The vortex was then fully characterized using different TEM techniques, estimating the average orbital angular momentum to be approximately 0.8variant Planck's over 2pi per electron with almost 60% of the beam ending up in the l=1 state.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Wos 000366770100006 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 21 Open Access  
  Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V., R.W., H.P. and F.H. acknowledge financial support from the European Union under the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). R.W and H.P also acknowledge financial support by the COST action CELINA (Nr. CM1301) and the EUROSTARS project TRIPLE-S (Nr. E!8213). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government.; esteem2jra3 ECASJO; Approved Most recent IF: 1.98; 2015 IF: 1.988  
  Call Number c:irua:129203 c:irua:129203UA @ admin @ c:irua:129203 Serial 3946  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: