toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kashiwar, A.; Arseenko, M.; Simar, A.; Idrissi, H. url  doi
openurl 
  Title On the role of microstructural defects on precipitation, damage, and healing behavior in a novel Al-0.5Mg2Si alloy Type A1 Journal article
  Year 2024 Publication Materials & design Abbreviated Journal  
  Volume 239 Issue Pages 112765-112769  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A recently developed healable Al-Mg2Si designed by the programmed damage and repair (PDR) strategy is studied considering the role microstructural defects play on precipitation, damage, and healing. The alloy incorporates sacrificial Mg2Si particles that precipitate after friction stir processing (FSP). They act as damage localization sites and are healable based on the solid-state diffusion of Al-matrix. A combination of different transmission electron microscopy (TEM) imaging techniques enabled the visualization and quantification of various crystallographic defects and the spatial distribution of Mg2Si precipitates. Intragrain nucleation is found to be the dominant mechanism for precipitation during FSP whereas grain boundaries and subgrain boundaries mainly lead to coarsening of the precipitates. The statistical and spatial analyses of the damaged particles have shown particle fracture as the dominant damage mechanism which is strongly dependent on the size and aspect ratio of the particles whereas the damage was not found to depend on the location of the precipitates within the matrix. The damaged particles are associated with dislocations accumulated around them. The interplay of these dislocations is directly visualized during healing based on in situ TEM heating which revealed recovery in the matrix as an operative mechanism during the diffusion healing of the PDR alloy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001194110200001 Publication Date 2024-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 8.4; 2024 IF: 4.364  
  Call Number UA @ admin @ c:irua:203298 Serial 9068  
Permanent link to this record
 

 
Author Li, H.; Pandey, T.; Jiang, Y.; Gu, X.; Lindsay, L.; Koh, Y.K. pdf  doi
openurl 
  Title Origins of heat transport anisotropy in MoTe₂ and other bulk van der Waals materials Type A1 Journal article
  Year 2023 Publication Materials Today Physics Abbreviated Journal  
  Volume 37 Issue Pages 101196-101198  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Knowledge of how heat flows anisotropically in van der Waals (vdW) materials is crucial for thermal management of emerging 2D materials devices and design of novel anisotropic thermoelectric materials. Despite the importance, anisotropic heat transport in vdW materials is yet to be systematically studied and is often presumably attributed to anisotropic speeds of sound in vdW materials due to soft interlayer bonding relative to covalent in-plane networks of atoms. In this work, we investigate the origins of the anisotropic heat transport in vdW materials, through time-domain thermoreflectance (TDTR) measurements and first-principles calculations of anisotropic thermal conductivity of three different phases of MoTe2. MoTe2 is ideal for the study due to its weak anisotropy in the speeds of sound. We find that even when the speeds of sound are roughly isotropic, the measured thermal conductivity of MoTe2 along the c-axis is 5-8 times lower than that along the in-plane axes. We derive meaningful characteristic heat capacity, phonon group velocity, and relaxation times from our first principles calculations for selected vdW materials (MoTe2, BP, h-BN, and MoS2), to assess the contributions of these factors to the anisotropic heat transport. Interestingly, we find that the main contributor to the heat transport anisotropy in vdW materials is anisotropy in heat capacity of the dominant heat-carrying phonon modes in different directions, which originates from anisotropic optical phonon dispersion and disparity in the frequency of heat-carrying phonons in different directions. The discrepancy in frequency of the heat-carrying phonons also leads to similar to 2 times larger average relaxation times in the cross-plane direction, and partially explains the apparent dependence of the anisotropic heat transport on the anisotropic speeds of sound. This work provides insight into understanding of the anisotropic heat transport in vdW materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001093005700001 Publication Date 2023-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access  
  Notes (up) Approved Most recent IF: 11.5; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:201295 Serial 9070  
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. pdf  doi
openurl 
  Title Soliton motion induced along ferromagnetic skyrmion chains in chiral thin nanotracks Type A1 Journal article
  Year 2023 Publication Journal of magnetism and magnetic materials Abbreviated Journal  
  Volume 587 Issue Pages 171280-171289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic magnetic simulations we investigate the soliton motion along a pinned skyrmion chain containing an interstitial skyrmion. We find that the soliton can exhibit stable motion along the chain without a skyrmion Hall effect for an extended range of drives. Under a constant drive the solitons have a constant velocity. We also measure the skyrmion velocity-current curves and identify the signatures of different phases including a pinned phase, stable soliton motion, and quasi-free motion at higher drives where all of the skyrmions depin from the pinning centers and move along the rigid wall. In the quasi-free motion regime, the velocity is oscillatory due to the motion of the skyrmions over the pinning sites. For increasing pinning strength, the onset of soliton motion shifts to higher values of current density. We also find that for stronger pinning, the characteristic velocity-current shape is affected by the annihilation of single or multiple skyrmions in the drive interval over which the soliton motion occurs. Our results indicate that stable skyrmion soliton motion is possible and that the solitons could be used as information carriers instead of the skyrmions themselves for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001086712600001 Publication Date 2023-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access  
  Notes (up) Approved Most recent IF: 2.7; 2023 IF: 2.63  
  Call Number UA @ admin @ c:irua:201139 Serial 9095  
Permanent link to this record
 

 
Author Xiao, H.; Zhang, Z.; Xu, W.; Wang, Q.; Xiao, Y.; Ding, L.; Huang, J.; Li, H.; He, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz optoelectronic properties of synthetic single crystal diamond Type A1 Journal article
  Year 2023 Publication Diamond and related materials Abbreviated Journal  
  Volume 139 Issue Pages 110266-110268  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A systematic investigation is undertaken for studying the optoelectronic properties of single crystal diamond (SCD) grown by microwave plasma chemical vapor deposition (MPCVD). It is indicated that, without intentional doping and surface treatment during the sample growth, the terahertz (THz) optical conduction in SCD is mainly affected by surface H-terminations, -OH-, O- and N-based functional groups. By using THz time-domain spectroscopy (TDS), we measure the transmittance, the complex dielectric constant and optical conductivity σ(ω) of SCD. We find that SCD does not show typical semiconductor characteristics in THz regime, where σ(ω) cannot be described rightly by the conventional Drude formula. Via fitting the real and imaginary parts of σ(ω) to the Drude-Smith formula, the ratio of the average carrier density to the effective electron mass γ = ne/m*, the electronic relaxation time τ and the electronic backscattering or localization factor can be determined optically. The temperature dependence of these parameters is examined. From the temperature dependence of γ, a metallic to semiconductor transition is observed at about T = 10 K. The temperature dependence of τ is mainly induced by electron coupling with acoustic-phonons and there is a significant effect of photon-induced electron backscattering or localization in SCD. This work demonstrates that THz TDS is a powerful technique in studying SCD which contains H-, N- and O-based bonds and has low electron density and high dc resistivity. The results obtained from this study can benefit us to gain an in-depth understanding of SCD and may provide new guidance for the application of SCD as electronic, optical and optoelectronic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record  
  Impact Factor 4.1 Times cited Open Access  
  Notes (up) Approved Most recent IF: 4.1; 2023 IF: 2.561  
  Call Number UA @ admin @ c:irua:200920 Serial 9103  
Permanent link to this record
 

 
Author Yang, C.-Q.; Yin, Z.-W.; Li, W.; Cui, W.-J.; Zhou, X.-G.; Wang, L.-D.; Zhi, R.; Xu, Y.-Y.; Tao, Z.-W.; Sang, X.; Cheng, Y.-B.; Van Tendeloo, G.; Hu, Z.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Atomically deciphering the phase segregation in mixed halide perovskite Type A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mixed-halide perovskites show promising applications in tandem solar cells owing to their adjustable bandgap. One major obstacle to their commercialization is halide phase segregation, which results in large open-circuit voltage deficiency and J-V hysteresis. However, the ambiguous interplay between structural origin and phase segregation often results in aimless and unspecific optimization strategies for the device's performance and stability. An atomic scale is directly figured out the abundant Ruddlesden-Popper anti-phase boundaries (RP-APBs) within a CsPbIBr2 polycrystalline film and revealed that phase segregation predominantly occurs at RP-APB-enriched interfaces due to the defect-mediated lattice strain. By compensating their structural lead halide, such RP-APBs are eliminated, and the decreasing of strain can be observed, resulting in the suppression of halide phase segregation. The present work provides the deciphering to precisely regulate the perovskite atomic structure for achieving photo-stable mixed halide wide-bandgap perovskites of high-efficiency tandem solar cell commercial applications. The phase segregation in mixed halide perovskite film predominantly occurs at Ruddlesden-Popper anti-phase boundaries (RP-APBs)-enriched interfaces due to the defect-mediated lattice strain. The RP-APBs defects can be eliminated by compensating for their structural lead halide deficiency, resulting in the suppression of halide phase segregation. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200673300001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes (up) Approved Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:205509 Serial 9134  
Permanent link to this record
 

 
Author Blagojević, J.; Mijin, S.D.; Bekaert, J.; Opačić, M.; Liu, Y.; Milošević, M.V.; Petrović, C.; Popović, Z.V.; Lazarević, N. url  doi
openurl 
  Title Competition of disorder and electron-phonon coupling in 2H-TaSe2-xSx (0≤x≤2) as evidenced by Raman spectroscopy Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 2 Pages 024004-24008  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of 2H-TaSe<sub>2-x</sub>S<sub>x</sub> (0≤x≤2) single crystals were probed using Raman spectroscopy and density functional theory calculations. The end members revealed two out of four symmetry-predicted Raman active modes, together with the pronounced two-phonon structure, attributable to the enhanced electron-phonon coupling. Additional peaks become observable due to crystallographic disorder for the doped samples. The evolution of the E<sub>2</sub>g<sup>2</sup> mode Fano parameter reveals that the disorder has a weak impact on electron-phonon coupling, which is also supported by the persistence of two-phonon structure in doped samples. As such, this research provides thorough insights into the lattice properties, the effects of crystallographic disorder on Raman spectra, and the interplay of this disorder with the electron-phonon coupling in 2H-TaSe<sub>2-x</sub>S<sub>x</sub> compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001171649400004 Publication Date 2024-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:204404 Serial 9141  
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X. url  doi
openurl 
  Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
  Year 2024 Publication Energy & environment materials Abbreviated Journal  
  Volume Issue Pages e12755-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001204 Publication Date 2024-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205438 Serial 9148  
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B. pdf  url
doi  openurl
  Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
  Year 2024 Publication Advanced materials Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001219658400001 Publication Date 2024-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 29.4; 2024 IF: 19.791  
  Call Number UA @ admin @ c:irua:206037 Serial 9152  
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Sevik, C.; Milošević, M.V. pdf  doi
openurl 
  Title Goodenough-Kanamori-Anderson high-temperature ferromagnetism in tetragonal transition-metal xenes Type A1 Journal article
  Year 2024 Publication 2D materials Abbreviated Journal  
  Volume 11 Issue 3 Pages 035013-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Seminal Goodenough-Kanamori-Anderson (GKA) rules provide an inceptive understanding of the superexchange interaction of two magnetic metal ions bridged with an anion, and suggest fostered ferromagnetic interaction for orthogonal bridging bonds. However, there are no examples of two-dimensional (2D) materials with structure that optimizes the GKA arguments towards enhanced ferromagnetism and its critical temperature. Here we reveal that an ideally planar GKA ferromagnetism is indeed stable in selected tetragonal transition-metal xenes (tTMXs), with Curie temperature above 300 K found in CrC and MnC. We provide the general orbitally-resolved analysis of magnetic interactions that supports the claims and sheds light at the mechanisms dominating the magnetic exchange process in these structures. Furthermore, we propose the set of three GKA-like rules that will guarantee room temperature ferromagetnism. With recent advent of epitaxially-grown tetragonal 2D materials, our findings earmark tTMXs for facilitated spintronic and magnonic applications, or as a desirable magnetic constituent of functional 2D heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001208053200001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.5 Times cited Open Access  
  Notes (up) Approved Most recent IF: 5.5; 2024 IF: 6.937  
  Call Number UA @ admin @ c:irua:205464 Serial 9153  
Permanent link to this record
 

 
Author Wang, G.; Xie, C.; Wang, H.; Li, Q.; Xia, F.; Zeng, W.; Peng, H.; Van Tendeloo, G.; Tan, G.; Tian, J.; Wu, J. pdf  doi
openurl 
  Title Mitigated oxygen loss in lithium-rich manganese-based cathode enabled by strong Zr-O affinity Type A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 2313672  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxygen loss is a serious problem of lithium-rich layered oxide (LLO) cathodes, as the high capacity of LLO relies on reversible oxygen redox. Oxygen release can occur at the surface leading to the formation of spinel or rock salt structures. Also, the lattice oxygen will usually become unstable after long cycling, which remains a major roadblock in the application of LLO. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in LLO due to the high affinity between Zr and O. A simple sol-gel method is used to dope Zr4+ into the LLOs to adjust the local electronic structure and inhibit the diffusion of oxygen anions to the surface during cycling. Compared with untreated LLOs, LLO-Zr cathodes exhibit a higher cycling stability, with 94% capacity retention after 100 cycles at 0.4 C, up to 223 mAh g-1 at 1 C, and 88% capacity retention after 300 cycles. Theoretical calculations show that due to the strong Zr-O covalent bonding, the formation energy of oxygen vacancies has effectively increased and the loss of lattice oxygen under high voltage can be suppressed. This study provides a simple method for developing high-capacity and cyclability Li-rich cathode materials for lithium-ion batteries. Oxygen release can occur at the cathode surface leading to the formation of spinel or rock salt structures. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in lithium-rich layered oxides (LLO) due to the high affinity between Zr and O. LLO-Zr exhibit higher cycling stability, with 88% capacity retention after 300 cycles at 1 C. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001159843800001 Publication Date 2024-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access  
  Notes (up) Approved Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:203812 Serial 9161  
Permanent link to this record
 

 
Author Joy, R.M.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Goerlitz, J.; Herrmann, D.; Noel, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesladek, M.; Haenen, K. pdf  doi
openurl 
  Title Photoluminescence of germanium-vacancy centers in nanocrystalline diamond films : implications for quantum sensing applications Type A1 Journal article
  Year 2024 Publication ACS applied nano materials Abbreviated Journal  
  Volume 7 Issue 4 Pages 3873-3884  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Point defects in diamond, promising candidates for nanoscale pressure- and temperature-sensing applications, are potentially scalable in polycrystalline diamond fabricated using the microwave plasma-enhanced chemical vapor deposition (MW PE CVD) technique. However, this approach introduces residual stress in the diamond films, leading to variations in the characteristic zero phonon line (ZPL) of the point defect in diamond. Here, we report the effect of residual stress on germanium-vacancy (GeV) centers in MW PE CVD nanocrystalline diamond (NCD) films fabricated using single crystal Ge as the substrate and solid dopant source. GeV ensemble formation indicated by the zero phonon line (ZPL) at similar to 602 nm is confirmed by room temperature (RT) photoluminescence (PL) measurements. PL mapping results show spatial nonuniformity in GeV formation along with other defects, including silicon-vacancy centers in the diamond films. The residual stress in NCD results in shifts in the PL peak positions. By estimating a stress shift coefficient of (2.9 +/- 0.9) nm/GPa, the GeV PL peak position in the NCD film is determined to be between 598.7 and 603.2 nm. A larger ground state splitting due to the strain on a GeV-incorporated NCD pillar at a low temperature (10 K) is also reported. We also report the observation of intense ZPLs at RT that in some cases could be related to low Ge concentration and the surrounding crystalline environment. In addition, we also observe thicker microcrystalline diamond (MCD) films delaminate from the Ge substrate due to film residual stress and graphitic phase at the diamond/Ge substrate interface (confirmed by electron energy loss spectroscopy). Using this approach, a free-standing color center incorporated MCD film with dimensions up to 1 x 1 cm(2) is fabricated. Qualitative analysis using time-of-flight secondary ion mass spectroscopy reveals the presence of impurities, including Ge and silicon, in the MCD film. Our experimental results will provide insights into the scalability of GeV fabrication using the MW PE CVD technique and effectively implement NCD-based nanoscale-sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001164609600001 Publication Date 2024-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.9 Times cited Open Access  
  Notes (up) Approved Most recent IF: 5.9; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:204826 Serial 9164  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.; Sorée, B.; Hinkle, C.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Reduction of magnetic interaction due to clustering in doped transition-metal dichalcogenides : a case study of Mn-, V-, and Fe-doped WSe₂ Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 16 Issue 4 Pages 4991-4998  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using Hubbard-U-corrected density functional theory calculations, lattice Monte Carlo simulations, and spin Monte Carlo simulations, we investigate the impact of dopant clustering on the magnetic properties of WSe2 doped with period four transition metals. We use manganese (Mn) and iron (Fe) as candidate n-type dopants and vanadium (V) as the candidate p-type dopant, substituting the tungsten (W) atom in WSe2. Specifically, we determine the strength of the exchange interaction in Fe-, Mn-, and V-doped WSe2 in the presence of clustering. We show that the clusters of dopants are energetically more stable than discretely doped systems. Further, we show that in the presence of dopant clustering, the magnetic exchange interaction significantly reduces because the magnetic order in clustered WSe2 becomes more itinerant. Finally, we show that the clustering of the dopant atoms has a detrimental effect on the magnetic interaction, and to obtain an optimal Curie temperature, it is important to control the distribution of the dopant atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001155511900001 Publication Date 2024-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited Open Access  
  Notes (up) Approved Most recent IF: 9.5; 2024 IF: 7.504  
  Call Number UA @ admin @ c:irua:203830 Serial 9169  
Permanent link to this record
 

 
Author Hassani, N.; Movafegh-Ghadirli, A.; Mahdavifar, Z.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Two new members of the covalent organic frameworks family : crystalline 2D-oxocarbon and 3D-borocarbon structures Type A1 Journal article
  Year 2024 Publication Computational materials science Abbreviated Journal  
  Volume 241 Issue Pages 1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Oxocarbons, known for over two centuries, have recently revealed a long-awaited facet: two-dimensional crystalline structures. Employing an intelligent global optimization algorithm (IGOA) alongside densityfunctional calculations, we unearthed a quasi -flat oxocarbon (C 6 0 6 ), featuring an oxygen -decorated hole, and a novel 3D-borocarbon. Comparative analyses with recently synthesized isostructures, such as 2D -porous carbon nitride (C 6 N 6 ) and 2D -porous boroxine (B 6 0 6 ), highlight the unique attributes of these compounds. All structures share a common stoichiometry of X 6 Y 6 (which we call COF-66), where X = B, C, and Y = B, N, O (with X not equal Y), exhibiting a 2D -crystalline structure, except for borocarbon C 6 B 6 , which forms a 3D crystal. In our comprehensive study, we conducted a detailed exploration of the electronic structure of X 6 Y 6 compounds, scrutinizing their thermodynamic properties and systematically evaluating phonon stability criteria. With expansive surface areas, diverse pore sizes, biocompatibility, pi-conjugation, and distinctive photoelectric properties, these structures, belonging to the covalent organic framework (COF) family, present enticing prospects for fundamental research and hold potential for biosensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001215960700001 Publication Date 2024-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.3 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.3; 2024 IF: 2.292  
  Call Number UA @ admin @ c:irua:206005 Serial 9179  
Permanent link to this record
 

 
Author Kocabas, T.; Samanta, B.; Barboza, E. da S.; Sevik, C.; Milošević, M.V.; Çakir, D. doi  openurl
  Title Electron-phonon coupling and thermal conductivity of MAB compounds Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 5 Pages 055002-55011  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the electron-phonon ( e -ph ) coupling and vibrational thermal conductivity in the representative MAB compounds, namely MoAlB, WAlB, Tc 2 AlB 2 , and Cr 2 AlB 2 . The spectral distribution functions of e -ph interaction, obtained through ab initio linear-response calculations, reveal that the electron-phonon coupling values range from low (0.15) to moderate (0.58). With such e -ph coupling, out of the considered compounds, only Tc 2 AlB 2 exhibits a superconducting transition, at 4 K. We further evaluated the thermal conductivity and associated properties like scattering rates, obtained using ab initio and other methodologies. The latter included the iterative solution of the Peierls-Boltzmann transport equation, using HIPHIVE package for advanced optimization and machine learning techniques, and employing maximum likelihood estimation to approximate scattering rates from a limited set of scattering processes. We found that these methods yield nearly identical predictions for thermal conductivity values, with a significant decrease in the computational cost compared to the first-principles methods. We examined interactions arising from both three-phonon (3 ph ) and four -phonon (4 ph ) scattering processes. The 4 ph interactions demonstrated a smaller yet significant impact on the overall vibrational thermal conductivity, most notably in Tc 2 AlB 2 . Our findings indicate that Cr 2 AlB 2 has the highest thermal conductivity across all considered crystal directions, with the thermal conductivity being spatially anisotropic, most pronouncedly in Tc 2 AlB 2 . Finally, we show that empirical expressions based on Slack models are well suited for screening the thermal conductivity properties of MAB phases, and can be employed to establish upper and lower limits of their thermal conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001231927600005 Publication Date 2024-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206590 Serial 9286  
Permanent link to this record
 

 
Author Huang, S.; Houwman, E.; Gauquelin, N.; Orekhov, A.; Chezganov, D.; Verbeeck, J.; Hu, S.; Zhong, G.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title Enhanced piezoelectricity by polarization rotation through thermal strain manipulation in PbZr0.6Ti0.4O3 thin films Type A1 Journal article
  Year 2024 Publication Advanced Materials Interfaces Abbreviated Journal  
  Volume 11 Issue 19 Pages 2400048-2400049  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lead based bulk piezoelectric materials, e.g., PbZrxTi1-xO3 (PZT), are widely used in electromechanical applications, sensors, and transducers, for which optimally performing thin films are needed. The results of a multi-domain Landau-Ginzberg-Devonshire model applicable to clamped ferroelectric thin films are used to predict the lattice symmetry and properties of clamped PZT thin films on different substrates. Guided by the thermal strain phase diagrams that are produced by this model, experimentally structural transitions are observed. These can be related to changes of the piezoelectric properties in PZT(x = 0.6) thin films that are grown on CaF2, SrTiO3 (STO) and 70% PbMg1/3Nb2/3O3-30% PbTiO3 (PMN-PT) substrates by pulsed laser deposition. Through temperature en field dependent in situ X-ray reciprocal space mapping (RSMs) and piezoelectric force microscopy (PFM), the low symmetry monoclinic phase and polarization rotation are observed in the film on STO and can be linked to the measured enhanced properties. The study identifies a monoclinic -rhombohedral M-C-M-A-R crystal symmetry path as the polarization rotation mechanism. The films on CaF2 and PMN-PT remain in the same symmetry phase up to the ferroelectric-paraelectric phase transition, as predicted. These results support the validity of the multi-domain model which provides the possibility to predict the behavior of clamped, piezoelectric PZT thin films, and design films with enhanced properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001240425700001 Publication Date 2024-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 5.4; 2024 IF: 4.279  
  Call Number UA @ admin @ c:irua:206593 Serial 9287  
Permanent link to this record
 

 
Author Šoškić, B.N.; Bekaert, J.; Sevik, C.; Šljivančanin, Ž.; Milošević, M.V. pdf  doi
openurl 
  Title First-principles exploration of superconductivity in intercalated bilayer borophene phases Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 6 Pages 064803-64811  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the emergence of phonon-mediated superconductivity in bilayer borophenes by controlled intercalation with elements from the groups of alkali, alkaline-earth, and transition metals, using systematic first-principles and Eliashberg calculations. We show that the superconducting properties are primarily governed by the interplay between the out-of-plane (????????) boron states and the partially occupied in-plane (????+????????,????) bonding states at the Fermi level. Our Eliashberg calculations indicate that intercalation with alkaline-earth-metal elements leads to the highest superconducting critical temperatures (????????). Specifically, Be in ????4, Mg in ????3, and Ca in the kagome bilayer borophene demonstrate superior performance with ???????? reaching up to 58 K. Our study therefore reveals that intercalated bilayer borophene phases are not only more resilient to chemical deterioration, but also harbor enhanced ???????? values compared to their monolayer counterparts, underscoring their substantial potential for the development of boron-based two-dimensional superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001254 Publication Date 2024-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206919 Serial 9290  
Permanent link to this record
 

 
Author Folkers, B.; Jansen, T.; Roskamp, T.J.; Reith, P.; Timmermans, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Hilgenkamp, H.; Rosario, C.M.M. doi  openurl
  Title Imaging the suppression of ferromagnetism in LaMnO₃ by metallic overlayers Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 5 Pages 054408-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LaMnO 3 (LMO) thin films epitaxially grown on SrTiO 3 (STO) usually exhibit ferromagnetism above a critical layer thickness. We report the use of scanning SQUID microscopy (SSM) to study the suppression of the ferromagnetism in STO / LMO / metal structures. By partially covering the LMO surface with a metallic layer, both covered and uncovered LMO regions can be studied simultaneously. While Au does not significantly influence the ferromagnetic order of the underlying LMO film, a thin Ti layer induces a strong suppression of the ferromagnetism, over tens of nanometers, which increases with time on a timescale of days. Detailed electron energy loss spectroscopy analysis of the Ti-LaMnO 3 interface reveals the presence of Mn 2 + and an evolution of the Ti valence state from Ti 0 to Ti 4 + over approximately 5 nm. Furthermore, we demonstrate that by patterning Ti / Au overlayers, we can locally suppress the ferromagnetism and define ferromagnetic structures down to sub -micrometer scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001239765800005 Publication Date 2024-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206555 Serial 9297  
Permanent link to this record
 

 
Author Tian, X.; Xie, X.; Li, J.; Kong, X.; Gong, W.-J.; Peeters, F.M.; Li, L. doi  openurl
  Title Multiferroic ScLaX₂ (X = P, As, and Sb) monolayers : bidirectional negative Poisson's ratio effects and phase transformations driven by rare-earth (main-group) elements Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 8 Pages 084407-84411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The combination of auxetic property, ferroelasticity, and ferroelectricity in two-dimensional materials offers new avenues for next-generation multifunctional devices. However, two-dimensional materials that simultaneously exhibit those properties are rarely reported. Here, we present a class of two-dimensional Janus-like structures ScLaX2 X 2 (X X = P, As, and Sb) with a rectangular lattice based on first-principles calculations. We predict that those ScLaX2 X 2 monolayers are stable semiconductors with both intrinsic in-plane and out-of-plane auxetic properties, showing a bidirectional negative Poisson's ratio effect. The value of the out-of-plane negative Poisson's ratio effect can reach – 2.28 /- 3.06 /- 3.89. By applying uniaxial strain engineering, two transition paths can be found, including the VA main group element path and the rare-earth metal element path, corresponding to the ferroelastic and the multiferroic (ferroelastic and ferroelectric) phase transition, respectively. For the ScLaSb2 2 monolayer, the external force field can not only control the ferroelastic phase transition, but it can also lead to the reversal of the out-of-plane polarization, exhibiting potential multiferroicity. The coupling between the bidirectional negative Poisson's ratio effect and multiferroicity makes the ScLaX2 X 2 monolayers promising for future device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001293 Publication Date 2024-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207592 Serial 9306  
Permanent link to this record
 

 
Author Kandemir, Z.; D'Amico, P.; Sesti, G.; Cardoso, C.; Milošević, M.V.; Sevik, C. doi  openurl
  Title Optical properties of metallic MXene multilayers through advanced first-principles calculations Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 7 Pages 075201-75210  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Having a strong electromagnetic absorption, MXene multilayers are readily envisaged for applications in electromagnetic shields and related prospective technology. However, an ab initio characterization of the optical properties of MXenes is still lacking, due in part to major difficulties with the treatment of metallicity in the first-principles approaches. Here we addressed the latter challenge, after a careful treatment of intraband transitions, to present a thorough analysis of the electronic and optical properties of a selected set of metallic MXene layers based on density functional theory (DFT) and many-body perturbation theory calculations. Our results reveal that the GW corrections are particularly important in regions of the band structure where d and p states hybridize. For some systems, we show that GW corrections open a gap between occupied states, resulting in a band structure that closely resembles that of an intrinsic transparent conductor, thereby opening an additional line of prospective applications for the MXenes family. Nevertheless, GW and Bethe-Salpeter corrections have a minimal influence on the absorption spectra, in contrast to what is typically observed in semiconductor layers. Our present results suggest that calculations within the independent particle approximation (IPA) calculations are sufficiently accurate for assessing the optical characteristics of bulk-layered MXene materials. Finally, our calculated dielectric properties and absorption spectra, in agreement with existing experimental data, confirm the potential of MXenes as effective infrared emitters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207597 Serial 9309  
Permanent link to this record
 

 
Author Yari, S.; Bird, L.; Rahimisheikh, S.; Reis, A.C.; Mohammad, M.; Hadermann, J.; Robinson, J.; Shearing, P.R.; Safari, M. pdf  doi
openurl 
  Title Probing charge transport and microstructural attributes in solvent- versus water-based electrodes with a spotlight on Li-S battery cathode Type A1 Journal article
  Year 2024 Publication Advanced energy materials Abbreviated Journal  
  Volume Issue Pages 2402163  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the quest for environmentally benign battery technologies, this study examines the microstructural and transport properties of water-processed electrodes and compares them to conventionally formulated electrodes using the toxic solvent, N-Methyl-2-pyrrolidone (NMP). Special focus is placed on sulfur electrodes utilized in lithium-sulfur batteries for their sustainability and compatibility with diverse binder/solvent systems. The characterization of the electrodes by X-ray micro-computed tomography reveals that in polyvinylidene fluoride (PVDF) Lithium bis(trifluoromethanesulfonyl)imide/NMP, sulfur particles tend to remain in large clusters but break down into finer particles in carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR)/water and lithium polyacrylate (LiPAA)/water dispersions. The findings reveal that in the water-based electrodes, the binder properties dictate the spatial arrangement of carbon particles, resulting in either thick aggregates with short-range connectivity or thin films with long-range connectivity among sulfur particles. Additionally, cracking is found to be particularly prominent in thicker water-based electrodes, propagating especially in regions with larger particle agglomerates and often extending to cause local delamination of the electrodes. These microstructural details are shown to significantly impact the tortuosity and contact resistance of the sulfur electrodes and thereby affecting the cycling performance of the Li-S battery cells. The choice of solvent and binder is crucial in determining particle surface charge, which directly influences active material dispersion and carbon-binder arrangement within the battery porous electrodes. This, in turn, affects ionic and electronic transport properties, ultimately impacting electrochemical performance. Meticulous engineering of the slurry to control these factors is essential for efficient and sustainable water-based electrode processing. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date 2024-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 27.8 Times cited Open Access  
  Notes (up) Approved Most recent IF: 27.8; 2024 IF: 16.721  
  Call Number UA @ admin @ c:irua:207624 Serial 9311  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Bacaksiz, C.; Frauenheim, T.; Milošević, M.V. url  doi
openurl 
  Title Strong spin-lattice coupling and high-temperature magnetic ordering in monolayer chromium dichalcogenides Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 6 Pages 064001-64009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We detail the magnetic properties of monolayer CrX2 and its Janus counterparts CrXY (X, Y = S, Se, Te, with X not equal Y) using ab initio methods and Landau-Lifshitz-Gilbert magnetization dynamics, and uncover the pronouncedly strong interplay between their structure symmetry and the magnetic order. The relaxation of nonmagnetic chalcogen atoms, that carry large spin-orbit coupling, changes the energetically preferential magnetic order between in-plane antiferromagnetic and tilted ferromagnetic one. The considered Janus monolayers exhibit sizable Dzyaloshinskii-Moriya interaction, in some cases above 20% of the isotropic exchange, and critical temperature of the long-range magnetic order in the vicinity or even significantly above the room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001247462600001 Publication Date 2024-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206660 Serial 9317  
Permanent link to this record
 

 
Author Hoekx, S.; Daems, N.; Arenas Esteban, D.; Bals, S.; Breugelmans, T. pdf  doi
openurl 
  Title Toward the rational design of Cu electrocatalysts for improved performance of the NO3RR Type A1 Journal article
  Year 2024 Publication ACS applied energy materials Abbreviated Journal  
  Volume 7 Issue 9 Pages 3761-3775  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Cu is one of the most promising materials as an electrocatalyst for the nitrate reduction reaction (NO3RR) to ammonia, a reaction that can simultaneously remove nitrates from wastewater and produce ammonia, a high-value commodity chemical. However, a rational approach to catalyst design is lacking, limiting efficient catalyst optimization. In this work, we propose a way to synthesize monodisperse, polycrystalline Cu NPs with small variances in size by changing the carbon chain length of the phosphonic acid-based ligand. Cu NPs with 8.3, 10.0, and 11.9 nm diameters are successfully synthesized, and high-resolution electron microscopy and tomography are used to characterize these NPs in depth. By isolating Cu NP size as a parameter, we can unequivocally establish its effect on electrochemical performance for the NO3RR to ammonia under optimal operating conditions for the catalyst (0.1 M KOH electrolyte at -1.25 V vs RHE, as established in the first phase). The smallest Cu NPs (8.3 nm with a TDPA ligand) perform best, achieving Faradaic efficiencies (FEs) of 85.4% and absolute current densities of similar to 250 mA cm(-2), with increasing current densities and constant FEs as the particle size decreases. To allow for a rational approach to Cu-based catalyst design from a stability perspective, this work completed a first study of the main degradation pathway that the Cu NPs undergo during NO3RR. High-resolution electron microscopy and tomography are used to characterize the particles at various stages of the reaction. The NPs undergo agglomeration, pulverization, and particle detachment due to the reaction, starting at a particle size of 8.3 nm and progressively getting smaller, but leveling off, until a NP size of 2.6 nm is reached after 2 h of electrolysis. This decrease in NP size goes paired with a decrease in FE from 83% after the first 15 min to 74% after 2 h at -0.75 V vs RHE, despite the increase in active surface area. These insights into the most prominent degradation mechanisms allow for rational adjustments to future catalysts to combat these changes; for example, by embedding NPs in a tailored support, morphological degradation could be impeded. Therefore, these insights allow for a rational approach to the improvement of the stability of Cu-based catalysts for the NO3RR, a very important but often an overlooked aspect of catalyst design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001228056800001 Publication Date 2024-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 6.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206469 Serial 9323  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Tuning the quantum phase transition of an ultrathin magnetic topological insulator Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 7 Pages 074201-74208  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the effect of thickness, magnetization direction, strain, and gating on the topological quantum phase transition of a thin-film magnetic topological insulator. Reducing the film thickness to the ultrathin regime couples the edge states on the two surfaces, opening a gap known as the hybridization gap, and causing a phase transition from a topological insulator to a normal insulator (NI). An out-of-plane/in-plane magnetization of size proportional to the hybridization gap triggers a phase transition from a normal insulator state to a quantum anomalous Hall (QAH)/semimetal state. A magnetization tilt by angle 0 from the out-of-plane axis influences the topological phase transition in a way that for sufficiently large 0, no phase transition from NI to QAH can be observed regardless of the sample thickness or magnetization, and for 0 close to pi /2 the system transits to a semimetal phase. Furthermore, we demonstrate that compressive/tensile strain can be used to decrease/increase the magnetization threshold for the topological phase transition. Finally, we reveal the effect of a vertical potential acting on the film, be it due to the substrate or applied gating, which breaks inversion symmetry and raises the magnetization threshold for the transition from NI to QAH state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001281 Publication Date 2024-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes (up) Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207598 Serial 9324  
Permanent link to this record
 

 
Author Vávra, O.; Gaži, S.; Golubović, D.S.; Vávra, I.; Dérer, J.; Verbeeck, J.; Van Tendeloo, G.; Moshchalkov, V.V. doi  openurl
  Title 0 and π phase Josephson coupling through an insulating barrier with magnetic impurities Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 2 Pages 020502  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the temperature and field dependencies of the critical current I(C) in the Nb-Fe(0.1)Si(0.9)-Nb Josephson junction with a tunneling barrier formed by a paramagnetic insulator. We demonstrate that in these junctions coexistence of both the 0 and the pi states within one tunnel junction occurs, and leads to the appearance of a sharp cusp in the temperature dependence I(C)(T), similar to the I(C)(T) cusp found for the 0-pi transition in metallic pi junctions. This cusp is not related to the 0-pi temperature-induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and pi supercurrents through the barrier.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000239426600010 Publication Date 2006-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes (up) Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:60087 c:irua:60087 c:irua:60087 c:irua:60087UA @ admin @ c:irua:60087 Serial 1  
Permanent link to this record
 

 
Author Peirs, J.; Verleysen, P.; Tirry, W.; Rabet, L.; Schryvers, D.; Degrieck, J. doi  openurl
  Title Dynamic shear localization in Ti6Al4V Type P1 Proceeding
  Year 2011 Publication Procedia Engineering T2 – 11th International Conference on the Mechanical Behavior of Materials, (ICM), 2011, Como, ITALY (ICM11) Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The alloy Ti6Al4V is known to be prone to the formation of adiabatic shear bands when dynamically loaded in shear. This causes a catastrophic decrease of the load carrying capacity and is usually followed by fracture. Although, the main mechanism is recognized to be the competition between strain hardening and thermal softening, a detailed understanding of the role of microstructural plasticity mechanisms and macroscopic loading conditions does not exist yet. To study strain localization and shear fracture, different high strain rate shear tests have been carried out: compression of hat-shaped specimens, torsion of thin walled tubular specimens and in-plane shear tests. The value of the three techniques in studying shear localization is evaluated. Post-mortem analysis of the fracture surface and the materials' microstructure is performed with optical and electron microscopy. In all cases a ductile fracture is observed. SEM and TEM techniques are used to study the local microstructure and composition in the shear band and as such the driving mechanism for the ASB formation. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000300451302060 Publication Date 2011-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 10 Series Issue Edition  
  ISSN 1877-7058; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113069 Serial 767  
Permanent link to this record
 

 
Author Hamon, A.-L.; Verbeeck, J.; Schryvers, D.; Benedikt, J.; van den Sanden, R.M.C.M. pdf  doi
openurl 
  Title ELNES study of carbon K-edge spectra of plasma deposited carbon films Type A1 Journal article
  Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 14 Issue Pages 2030-2035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron energy loss spectroscopy was used to investigate the bonding of plasma deposited carbon films. The experimental conditions include the use of a specific collection angle for which the shape of the spectra is free of the orientation dependency usually encountered in graphite due to its anisotropic structure. The first quantification process of the energy loss near-edge structure was performed by a standard fit of the collected spectrum, corrected for background and multiple scattering, with three Gaussian functions followed by a comparison with the graphite spectrum obtained under equivalent experimental conditions. In a second approach a fitting model directly incorporating the background subtraction and multiple scattering removal was applied. The final numerical results are interpreted in view of the deposition conditions of the films and the actual fitting procedure with the related choice of parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000222312500017 Publication Date 2004-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.626 Times cited 61 Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48782UA @ admin @ c:irua:48782 Serial 1025  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. pdf  doi
openurl 
  Title Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
  Year 2014 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 1 Issue 1 Pages 011010  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000353649900011 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 49 Open Access  
  Notes (up) Approved Most recent IF: 6.937; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:126032 Serial 1048  
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 59 Issue Pages 6039-6042  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000079254300016 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 59 Open Access  
  Notes (up) Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:24156 Serial 1545  
Permanent link to this record
 

 
Author Li, Z.Z.; Raffy, H.; Bals, S.; Van Tendeloo, G.; Megtert, S. doi  openurl
  Title Interplay of doping and structural modulation in superconducting Bi2Sr2-xLaxCuO6+\delta thin films Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue 17 Pages 174503,1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the evolution of the structural modulation in epitaxial, c-axis-oriented, Bi2Sr2-xLaCuO6+delta thin films when varying the La content x and for a given x as a function of oxygen content. A series of thin films with 0 <= x <= 0.8 has been prepared in situ by rf-magnetron sputtering and characterized by R(T) measurements, Rutherford backscattering spectroscopy, transmission electron microscopy, and x-ray diffraction techniques. The oxygen content of each individual film was varied by thermal annealing across the phase diagram. The evolution of the structural modulation has been thoroughly studied by x-ray diffraction in determining the variation of the amplitude of satellite reflections in special two axes 2 theta/theta-theta scans (reciprocal space scans). It is shown that the amplitude of the modulation along the c axis decreases strongly when x increases from 0 to 0.2. It is demonstrated that this variation is essentially governed by La content x and that changing the oxygen content by thermal treatments has a much lower influence, even becoming negligible for x > 0.2. Such study is important to understand the electronical properties of Bi2Sr2-xLaxCuO6+gamma thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000229935000092 Publication Date 2005-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes (up) Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:54746 Serial 1707  
Permanent link to this record
 

 
Author Müller, E.; Kruse, P.; Gerthsen, D.; Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kling, R. pdf  openurl
  Title Measurement of the mean inner potential of ZnO nanorods by transmission electron holography Type A1 Journal article
  Year 2005 Publication Microscopy of Semiconducting Materials Abbreviated Journal  
  Volume 107 Issue Pages 303-306  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title SPRINGER PROCEEDINGS IN PHYSICS Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:72914 Serial 1962  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: