toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Hoekx, S.; Daems, N.; Arenas Esteban, D.; Bals, S.; Breugelmans, T. pdf  doi
openurl 
  Title Toward the rational design of Cu electrocatalysts for improved performance of the NO3RR Type A1 Journal article
  Year (down) 2024 Publication ACS applied energy materials Abbreviated Journal  
  Volume 7 Issue 9 Pages 3761-3775  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Cu is one of the most promising materials as an electrocatalyst for the nitrate reduction reaction (NO3RR) to ammonia, a reaction that can simultaneously remove nitrates from wastewater and produce ammonia, a high-value commodity chemical. However, a rational approach to catalyst design is lacking, limiting efficient catalyst optimization. In this work, we propose a way to synthesize monodisperse, polycrystalline Cu NPs with small variances in size by changing the carbon chain length of the phosphonic acid-based ligand. Cu NPs with 8.3, 10.0, and 11.9 nm diameters are successfully synthesized, and high-resolution electron microscopy and tomography are used to characterize these NPs in depth. By isolating Cu NP size as a parameter, we can unequivocally establish its effect on electrochemical performance for the NO3RR to ammonia under optimal operating conditions for the catalyst (0.1 M KOH electrolyte at -1.25 V vs RHE, as established in the first phase). The smallest Cu NPs (8.3 nm with a TDPA ligand) perform best, achieving Faradaic efficiencies (FEs) of 85.4% and absolute current densities of similar to 250 mA cm(-2), with increasing current densities and constant FEs as the particle size decreases. To allow for a rational approach to Cu-based catalyst design from a stability perspective, this work completed a first study of the main degradation pathway that the Cu NPs undergo during NO3RR. High-resolution electron microscopy and tomography are used to characterize the particles at various stages of the reaction. The NPs undergo agglomeration, pulverization, and particle detachment due to the reaction, starting at a particle size of 8.3 nm and progressively getting smaller, but leveling off, until a NP size of 2.6 nm is reached after 2 h of electrolysis. This decrease in NP size goes paired with a decrease in FE from 83% after the first 15 min to 74% after 2 h at -0.75 V vs RHE, despite the increase in active surface area. These insights into the most prominent degradation mechanisms allow for rational adjustments to future catalysts to combat these changes; for example, by embedding NPs in a tailored support, morphological degradation could be impeded. Therefore, these insights allow for a rational approach to the improvement of the stability of Cu-based catalysts for the NO3RR, a very important but often an overlooked aspect of catalyst design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001228056800001 Publication Date 2024-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access  
  Notes The author was supported by the Research Foundation of Flanders (FWO) in the frame of a doctoral grant (1S42623N). The funder played no role in the study design, data collection, analysis, and interpretation of data, or the writing of the manuscript. S.H. acknowledges Thomas Kenis for the configuration of analytical equipment (ICP-MS and UV-vis), Hannelore Andries and Mathias van der Veer for ICP-MS measurements, and Dr Lars Riekehr for configuration of and assistance with the electron microscopes. Approved Most recent IF: 6.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206469 Serial 9323  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: