toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Huang, S.; Houwman, E.; Gauquelin, N.; Orekhov, A.; Chezganov, D.; Verbeeck, J.; Hu, S.; Zhong, G.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title Enhanced piezoelectricity by polarization rotation through thermal strain manipulation in PbZr0.6Ti0.4O3 thin films Type A1 Journal article
  Year (down) 2024 Publication Advanced Materials Interfaces Abbreviated Journal  
  Volume 11 Issue 19 Pages 2400048-2400049  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Lead based bulk piezoelectric materials, e.g., PbZrxTi1-xO3 (PZT), are widely used in electromechanical applications, sensors, and transducers, for which optimally performing thin films are needed. The results of a multi-domain Landau-Ginzberg-Devonshire model applicable to clamped ferroelectric thin films are used to predict the lattice symmetry and properties of clamped PZT thin films on different substrates. Guided by the thermal strain phase diagrams that are produced by this model, experimentally structural transitions are observed. These can be related to changes of the piezoelectric properties in PZT(x = 0.6) thin films that are grown on CaF2, SrTiO3 (STO) and 70% PbMg1/3Nb2/3O3-30% PbTiO3 (PMN-PT) substrates by pulsed laser deposition. Through temperature en field dependent in situ X-ray reciprocal space mapping (RSMs) and piezoelectric force microscopy (PFM), the low symmetry monoclinic phase and polarization rotation are observed in the film on STO and can be linked to the measured enhanced properties. The study identifies a monoclinic -rhombohedral M-C-M-A-R crystal symmetry path as the polarization rotation mechanism. The films on CaF2 and PMN-PT remain in the same symmetry phase up to the ferroelectric-paraelectric phase transition, as predicted. These results support the validity of the multi-domain model which provides the possibility to predict the behavior of clamped, piezoelectric PZT thin films, and design films with enhanced properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001240425700001 Publication Date 2024-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.4 Times cited Open Access  
  Notes Approved Most recent IF: 5.4; 2024 IF: 4.279  
  Call Number UA @ admin @ c:irua:206593 Serial 9287  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: