|   | 
Details
   web
Records
Author Homm, P.; Dillemans, L.; Menghini, M.; Van Bilzen, B.; Bakalov, P.; Su, C.Y.; Lieten, R.; Houssa, M.; Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.; Seo, J.W.; Locquet, J.P.;
Title Collapse of the low temperature insulating state in Cr-doped V2O3 thin films Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 107 Issue 107 Pages 111904
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have grown epitaxial Cr-doped V2O3 thin films with Cr concentrations between 0% and 20% on (0001)-Al2O3 by oxygen-assisted molecular beam epitaxy. For the highly doped samples (>3%), a regular and monotonous increase of the resistance with decreasing temperature is measured. Strikingly, in the low doping samples (between 1% and 3%), a collapse of the insulating state is observed with a reduction of the low temperature resistivity by up to 5 orders of magnitude. A vacuum annealing at high temperature of the films recovers the low temperature insulating state for doping levels below 3% and increases the room temperature resistivity towards the values of Cr-doped V2O3 single crystals. It is well-know that oxygen excess stabilizes a metallic state in V2O3 single crystals. Hence, we propose that Cr doping promotes oxygen excess in our films during deposition, leading to the collapse of the low temperature insulating state at low Cr concentrations. These results suggest that slightly Cr-doped V2O3 films can be interesting candidates for field effect devices. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000361639200020 Publication Date 2015-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes (down) ; The authors acknowledge financial support from the FWO Project No. G052010N10 as well as the EU-FP7 SITOGA Project. P.H. acknowledges support from Becas Chile-CONICYT. ; Approved Most recent IF: 3.411; 2015 IF: 3.302
Call Number UA @ lucian @ c:irua:128728 Serial 4149
Permanent link to this record
 

 
Author de Oliveira, E.L.; Albuquerque, E.L.; de Sousa, J.S.; Farias, G.A.; Peeters, F.M.
Title Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 7 Pages 4399-4407
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals (NC's) with diameters of similar to 1.9 nm are investigated using a combination density functional ab initio method to obtain the single particle wave functions and a configuration interaction method to compute the exciton fine structure and absorption coefficient. These core/shell structures exhibit type II confinement, which is more pronounced for the Si/Ge NC as a consequence of strain. The absorption coefficients of these NC's exhibit a single dominant peak, which has a much larger oscillator strength than the multipeaks found for pure Si and Ge NC's. The exciton lifetime in Si, Ge, and Ge/Si shows a small i:emperature dependence in the range 10-300 K, whereas in Si/Ge, the exciton lifetime decreases more than an order of magnitude in the same temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301156500007 Publication Date 2012-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 44 Open Access
Notes (down) ; The authors acknowledge financial support from CNPq and the bilateral program between Flanders and Brazil and the Belgian Science Foundation (IAP). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:113045 Serial 482
Permanent link to this record
 

 
Author Piacente, G.; Hai, G.Q.; Peeters, F.M.
Title Continuous structural transitions in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 2 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landaus theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single- and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000274002100035 Publication Date 2010-01-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes (down) ; The authors acknowledge FAPESP and CNPq (Brazil), the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl) (Belgium) for financial support. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:81243 Serial 493
Permanent link to this record
 

 
Author Martens, K.; Jeong, J.W.; Aetukuri, N.; Rettner, C.; Shukla, N.; Freeman, E.; Esfahani, D.N.; Peeters, F.M.; Topuria, T.; Rice, P.M.; Volodin, A.; Douhard, B.; Vandervorst, W.; Samant, M.G.; Datta, S.; Parkin, S.S.P.
Title Field Effect and Strongly Localized Carriers in the Metal-Insulator Transition Material VO(2) Type A1 Journal article
Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 115 Issue 115 Pages 196401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The intrinsic field effect, the change in surface conductance with an applied transverse electric field, of prototypal strongly correlated VO(2) has remained elusive. Here we report its measurement enabled by epitaxial VO(2) and atomic layer deposited high-kappa dielectrics. Oxygen migration, joule heating, and the linked field-induced phase transition are precluded. The field effect can be understood in terms of field-induced carriers with densities up to approximately 5x10(13) cm(-2) which are trongly localized, as shown by their low, thermally activated mobility ( approximately 1x10(-3) cm(2)/V s at 300 K). These carriers show behavior consistent with that of Holstein polarons and strongly impact the (opto)electronics of VO(2).
Address IBM Research-Almaden, San Jose, California 95120, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000364024800013 Publication Date 2015-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 28 Open Access
Notes (down) ; The authors acknowledge B. Hughes, K. Roche, L. Gao, C. Lada, J. Van Houdt, M. Heyns, J. P. Locquet, J. Delmotte, L. Krupp, L. Clark, and FWO (K. M.). S. D. and N. S. acknowledge LEAST (Low Energy Systems Technology), one of six SRC STARnet Centers, sponsored by MARCO/DARPA, for financial support. ; Approved Most recent IF: 8.462; 2015 IF: 7.512
Call Number c:irua:129547 Serial 4051
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Kang, J.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Moreschini, L.; Chang, Y.J.; Peeters, F.M.; Horn, K.; Rotenberg, E.;
Title New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 075439
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of similar to 5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half-fluorinated carbon on Sic(0001), i.e., the (6 root 3 x 6 root 3) R30 degrees C/SiC “buffer layer,” graphene on this (6 root 3 x 6 root 3) R30 degrees C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (similar to 2.5-eV band gap) and metallic regions, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371398000007 Publication Date 2016-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes (down) ; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the DFG through SPP 1459 “Graphene” and SFB 953 “Synthetic Carbon Allotropes” and by the ESF through the EURO-Graphene project GraphicRF. A.L.W. acknowledges support from the Max-Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain, and Brookhaven National Laboratory under US Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-SC0012704. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. Y.J.C. acknowledges support from the National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The authors gratefully acknowledge the work of T. Seyller's group at the Institut fur Physik, Technische Universitat Chemnitz, Germany for providing the samples. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:132352 Serial 4213
Permanent link to this record
 

 
Author Wu, K.; Torun, E.; Sahin, H.; Chen, B.; Fan, X.; Pant, A.; Wright, D.P.; Aoki, T.; Peeters, F.M.; Soignard, E.; Tongay, S.
Title Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3 Type A1 Journal article
Year 2016 Publication Nature communications Abbreviated Journal Nat Commun
Volume 7 Issue Pages 12952
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the A(g)(S-S) S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385444300004 Publication Date 2016-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 50 Open Access
Notes (down) ; S.T. acknowledges support from the National Science Foundation (DMR-1552220) and (CMMI-1561839). F.M.P., H.S. and E.T. were supported by the Flemish Science Foundation (FWO-Vl). Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP programme. F.P. acknowledges the funding from Flemish Science Foundation (FWO-Vl). K.W. acknowledges helpful discussions with H. Cai, W. Kong and X. Meng. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. ; Approved Most recent IF: 12.124
Call Number UA @ lucian @ c:irua:144662 Serial 4700
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H.
Title Quantum properties and applications of 2D Janus crystals and their superlattices Type A1 Journal article
Year 2020 Publication Applied Physics Reviews Abbreviated Journal Appl Phys Rev
Volume 7 Issue 1 Pages 011311-11316
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) Janus materials are a new class of materials with unique physical, chemical, and quantum properties. The name “Janus” originates from the ancient Roman god which has two faces, one looking to the future while the other facing the past. Janus has been used to describe special types of materials which have two faces at the nanoscale. This unique atomic arrangement has been shown to present rather exotic properties with applications in biology, chemistry, energy conversion, and quantum sciences. This review article aims to offer a comprehensive review of the emergent quantum properties of Janus materials. The review starts by introducing 0D Janus nanoparticles and 1D Janus nanotubes, and highlights their difference from classical ones. The design principles, synthesis, and the properties of graphene-based and chalcogenide-based Janus layers are then discussed. A particular emphasis is given to colossal built-in potential in 2D Janus layers and resulting quantum phenomena such as Rashba splitting, skyrmionics, excitonics, and 2D magnetic ordering. More recent theoretical predictions are discussed in 2D Janus superlattices when Janus layers are stacked onto each other. Finally, we discuss the tunable quantum properties and newly predicted 2D Janus layers waiting to be experimentally realized. The review serves as a complete summary of the 2D Janus library and predicted quantum properties in 2D Janus layers and their superlattices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519611500001 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 158 Open Access
Notes (down) ; S.T. acknowledges support from NSF Contract Nos. DMR 1552220, DMR 1904716, and NSF CMMI 1933214. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. Part of this work was supported by the FLAG-ERA project TRANS2D-TMD. ; Approved Most recent IF: 15; 2020 IF: 13.667
Call Number UA @ admin @ c:irua:167712 Serial 6591
Permanent link to this record
 

 
Author Milovanović, S.P.; Andelkovic, M.; Covaci, L.; Peeters, F.M.
Title Band flattening in buckled monolayer graphene Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 24 Pages 245427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The strain fields of periodically buckled graphene induce a periodic pseudomagnetic field (PMF) that modifies the electronic band structure. From the geometry, amplitude, and period of the periodic pseudomagnetic field, we determine the necessary conditions to access the regime of correlated phases by examining the band flattening. As compared to twisted bilayer graphene the proposed system has the advantages that (1) only a single layer of graphene is needed, (2) one is not limited to hexagonal superlattices, and (3) narrower flat bandwidth and larger separation between flat bands can be induced. We, therefore, propose that periodically strained graphene single layers can become a platform for the exploration of exotic many-body phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000602844600007 Publication Date 2020-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 27 Open Access OpenAccess
Notes (down) ; S.P.M. is supported by the Flemish Science Foundation (FWO). We thank E. Y. Andrei, Y. Jiang, and J. Mao for fruitful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:175021 Serial 6684
Permanent link to this record
 

 
Author Milovanović, S.P.; Covaci, L.; Peeters, F.M.
Title Strain fields in graphene induced by nanopillar mesh Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 125 Issue 8 Pages 082534
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The mechanical and electronic properties of a graphene membrane placed on top of a triangular superlattice of nanopillars are investigated. We use molecular dynamics simulations to access the deformation fields and the tight-binding approaches to calculate the electronic properties. Ripples form in the graphene layer that span across the unit cell, connecting neighboring pillars, in agreement with recent experiments. We find that the resulting pseudo-magnetic field (PMF) varies strongly across the unit cell. We investigate the dependence of PMF on unit cell boundary conditions, height of the pillars, and the strength of the van der Waals interaction between graphene and the substrate. We find direct correspondence with typical experiments on pillars, showing intrinsic “slack” in the graphene membrane. PMF values are confirmed by the local density of states calculations performed at different positions of the unit cell showing pseudo-Landau levels with varying spacings. Our findings regarding the relaxed membrane configuration and the induced strains are transferable to other flexible 2D membranes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460033800038 Publication Date 2019-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 9 Open Access
Notes (down) ; S.P.M. is supported by the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:158605 Serial 5231
Permanent link to this record
 

 
Author Pant, A.; Torun, E.; Chen, B.; Bhat, S.; Fan, X.; Wu, K.; Wright, D.P.; Peeters, F.M.; Soignard, E.; Sahin, H.; Tongay, S.
Title Strong dichroic emission in the pseudo one dimensional material ZrS3 Type A1 Journal article
Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 8 Issue 8 Pages 16259-16265
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Zirconium trisulphide (ZrS3), a member of the layered transition metal trichalcogenides (TMTCs) family, has been studied by angle-resolved photoluminescence spectroscopy (ARPLS). The synthesized ZrS3 layers possess a pseudo one-dimensional nature where each layer consists of ZrS3 chains extending along the b-lattice direction. Our results show that the optical properties of few-layered ZrS3 are highly anisotropic as evidenced by large PL intensity variation with the polarization direction. Light is efficiently absorbed when the E-field is polarized along the chain (b-axis), but the field is greatly attenuated and absorption is reduced when it is polarized vertical to the 1D-like chains as the wavelength of the exciting light is much longer than the width of each 1D chain. The observed PL variation with polarization is similar to that of conventional 1D materials, i.e., nanowires, and nanotubes, except for the fact that here the 1D chains interact with each other giving rise to a unique linear dichroism response that falls between the 2D (planar) and 1D (chain) limit. These results not only mark the very first demonstration of PL polarization anisotropy in 2D systems, but also provide novel insight into how the interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of pseudo-1D materials. Results are anticipated to have an impact on optical technologies such as polarized detectors, near-field imaging, communication systems, and bio-applications relying on the generation and detection of polarized light.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384531600018 Publication Date 2016-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 54 Open Access
Notes (down) ; S. Tongay gratefully acknowledges support from NSF DMR-1552220. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO postdoctoral fellowship. ; Approved Most recent IF: 7.367
Call Number UA @ lucian @ c:irua:144656 Serial 4116
Permanent link to this record
 

 
Author Chen, Q.; Wang, W.; Peeters, F.M.
Title Magneto-polarons in monolayer transition-metal dichalcogenides Type A1 Journal article
Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 123 Issue 21 Pages 214303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Landau levels (LLs) are modified by the Frohlich interaction which we investigate within the improved Wigner-Brillouin theory for energies both below and above the longitudinal-optical-continuum in monolayer MoS2.., WS2, MoSe2, and WSe2. Polaron corrections to the LLs are enhanced in monolayer MoS2 as compared to WS2. A series of levels are found at h omega(LO) + lh omega(c), and in addition, the Frohlich interaction lifts the degeneracy between the levels nh omega(c) and h omega(LO) + lh omega(c) resulting in an anticrossing. The screening effect due to the environment plays an important role in the polaron energy corrections, which are also affected by the effective thickness r(eff) parameter. The polaron anticrossing energy gap E-gap decreases with increasing effective thickness r(eff). Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000434775500014 Publication Date 2018-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes (down) ; Q. Chen and W. Wang acknowledge the financial support from the China Scholarship Council (CSC). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040), by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042), and by the National Natural Science Foundation of China (Grant No. 11404214). ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:151985UA @ admin @ c:irua:151985 Serial 5031
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M.
Title Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 8 Pages 085437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000426042800009 Publication Date 2018-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes (down) ; Q. Chen acknowledges financial support from the (China Scholarship Council (CSC)). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040) and by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042). Additional support from the FLAG-ERA TRANS-2D-TMD is acknowledged. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:149905UA @ admin @ c:irua:149905 Serial 4941
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M.
Title Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers Type A1 Journal article
Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 2 Issue 46 Pages 9842-9849
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344998700007 Publication Date 2014-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 22 Open Access
Notes (down) ; Part of this work is supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish Government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. C. S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK 113F096), Anadolu University (BAP-1306F281, -1404F158) and Turkish Academy of Science (TUBA). ; Approved Most recent IF: 5.256; 2014 IF: 4.696
Call Number UA @ lucian @ c:irua:122157 Serial 1046
Permanent link to this record
 

 
Author Xu, P.; Qi, D.; Schoelz, J.K.; Thompson, J.; Thibado, P.M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Neek-Amal, M.; Peeters, F.M.;
Title Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 80 Issue Pages 75-81
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Epitaxial graphene is grown on a non-polar n(+) 6H-SiC m-plane substrate and studied using atomic scale scanning tunneling microscopy. Multilayer graphene is found throughout the surface and exhibits rotational disorder. Moire patterns of different spatial periodicities are found, and we found that as the wavelength increases, so does the amplitude of the modulations. This relationship reveals information about the interplay between the energy required to bend graphene and the interaction energy, i.e. van der Waals energy, with the graphene layer below. Our experiments are supported by theoretical calculations which predict that the membrane topographical amplitude scales with the Moire pattern wavelength, L as L-1 + alpha L-2. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000344132400009 Publication Date 2014-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 14 Open Access
Notes (down) ; P.X. and P.M.T. gratefully acknowledge the financial support of ONR under grant N00014-10-1-0181 and NSF under grant DMR-0855358. L.O.N. acknowledges the support of American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, and the EUROgraphene project CONGRAN. M.N.-A was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:121194 Serial 2221
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M.
Title Integer and half-integer quantum Hall effect in silicene: Influence of an external electric field and impurities Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 23 Pages 235423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of silicene's strong spin-orbit interaction and of an external electric field E-z on the transport coefficients are investigated in the presence of a perpendicular magnetic field B. For finite E-z the spin and valley degeneracy of the Landau levels is lifted and leads to additional plateaus in the Hall conductivity, at half-integer values of 4e(2)/h, due to spin intra-Landau-level transitions that are absent in graphene. These plateaus are more sensitive to disorder and thermal broadening than the main plateaus, occurring at integral values of 4e(2)/h, when the Fermi level passes through the Landau levels. We also evaluate the Hall and longitudinal resistivities and critically contrast the results with those for graphene on a substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346377400004 Publication Date 2014-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes (down) ; Our work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122771 Serial 1678
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M.
Title Spin- and valley-dependent magnetotransport in periodically modulated silicene Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 12 Pages 125444
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The low-energy physics of silicene is described by Dirac fermions with a strong spin-orbit interaction and its band structure can be controlled by an external perpendicular electric field E-z. We investigate the commensurability oscillations in silicene modulated by a weak periodic potential V = V-0 cos(2 pi y/a(0)) with a(0) as its period, in the presence of a perpendicular magnetic field B and of a weak sinusoidal electric field E-z = E-0 cos(2 pi y/b(0)), where b(0) is its period. We show that the spin and valley degeneracy of the Landau levels is lifted, due to the modulation, and that the interplay between the strong spin-orbit interaction and the potential and electric field modulations can result in spin- and valley-resolved magnetotransport. At very weak magnetic fields the commensurability oscillations induced by a weak potential modulation can exhibit a beating pattern depending on the strength of the homogenous electric field Ez but this is not the case when only Ez is modulated. The Hall conductivity plateaus acquire a step structure, due to spin and valley intra-Landau-level transitions, that is absent in unmodulated silicene. The results are critically contrasted with those for graphene and the two-dimensional electron gas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342497700008 Publication Date 2014-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes (down) ; Our work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119946 Serial 3079
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Peeters, F.M.
Title Electrical generation of terahertz blackbody radiation from graphene Type A1 Journal article
Year 2018 Publication Optics express Abbreviated Journal Opt Express
Volume 26 Issue 19 Pages 24621-24626
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experimental work on the application of graphene for novel illumination motivated us to present a theoretical study of the blackbody radiation emission from a freely suspended graphene driven by a dc electric field. Strong terahertz (THz) emission, with intensity up to mW/cm(2), can be generated with increasing electric field strength due to the heating of electrons in graphene. We show that the intensity of the THz emission generated electrically from graphene depends rather sensitively on the lattice temperature in relatively weak electric fields, whereas it is less sensitive to the lattice temperature in relative strong electric fields. Our study highlights the practical application of graphene as intense THz source where the radiation is generated electrically. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444705000026 Publication Date 2018-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 14 Open Access
Notes (down) ; National Natural Science Foundation of China (NSFC) (11604380, 11574319); Center of Science and Technology of Hefei Academy of Science (2016FXZY002); Department of Science and Technology of Yunnan Province (2016FC001). ; Approved Most recent IF: 3.307
Call Number UA @ lucian @ c:irua:153632UA @ admin @ c:irua:153632 Serial 5095
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 24860
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We predict enhanced electron-hole superfluidity in two coupled electron-hole armchair-edge terminated graphene nanoribbons separated by a thin insulating barrier. In contrast to graphene monolayers, the multiple subbands of the nanoribbons are parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus boosting the pairing strength and enhancing the superfluid properties. The pairing strength is further boosted by the quasi one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each subband. The latter magnifies superfluid shape resonances caused by the quantum confinement. Several superfluid partial condensates are present for finite-width nanoribbons with multiple subbands. We find that superfluidity is predominately in the strongly-coupled BEC and BCS-BEC crossover regimes, with large superfluid gaps up to 100 meV and beyond. When the gaps exceed the subband spacing, there is significant mixing of the subbands, a rounding of the shape resonances, and a resulting reduction in the one-dimensional nature of the system.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000374654500002 Publication Date 2016-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 7 Open Access
Notes (down) ; M.Z. acknowledges support by the Flemish Science Foundation (FWO-Vl), the University Research Fund (BOF), and the European Science Foundation (POLATOM). A.P. and D.N. acknowledge support by the University of Camerino FAR project CESEMN. The authors thank the colleagues involved in the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions for this work. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:133619 Serial 4201
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K.
Title Commensurability Effects in Viscosity of Nanoconfined Water Type A1 Journal article
Year 2016 Publication ACS nano Abbreviated Journal Acs Nano
Volume 10 Issue 10 Pages 3685-3692
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.
Address School of Physics and Astronomy, University of Manchester , Manchester M13 9PL, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000372855400073 Publication Date 2016-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 160 Open Access
Notes (down) ; M.N.A. was support by Shahid Rajaee Teacher Training University under contract number 29605. ; Approved Most recent IF: 13.942
Call Number c:irua:133237 Serial 4012
Permanent link to this record
 

 
Author Xu, P.; Dong, L.; Neek-Amal, M.; Ackerman, M.L.; Yu, J.; Barber, S.D.; Schoelz, J.K.; Qi, D.; Xu, F.; Thibado, P.M.; Peeters, F.M.;
Title Self-organized platinum nanoparticles on freestanding graphene Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 3 Pages 2697-2703
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). High-resolution transmission electron microscopy revealed a homogeneous distribution of single-crystal Pt NPs that tend to exhibit a preferred orientation. Unexpectedly, the NPs were also found to be partially exposed to the vacuum with the top Pt surface raised above the graphene substrate, as deduced from atomic-scale scanning tunneling microscopy images and detailed molecular dynamics simulations. Local strain accumulation during the growth process is thought to be the origin of the NP self-organization. These findings are expected to shape future approaches in developing Pt NP catalysts for fuel cells as well as NP-functionalized graphene-based high-performance electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000333539400085 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 38 Open Access
Notes (down) ; M.N.A. acknowledges financial support by the EU-Marie Curie IIF postdoc Fellowship/299855. F.M.P. acknowledges financial support by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. L.D. acknowledges financial support by the Taishan Overseas Scholar program (tshw20091005), the International Science & Technology Cooperation Program of China (2014DFA60150), the National Natural Science Foundation of China (51172113), the Shandong Natural Science Foundation (JQ201118), the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz), and the National Science Foundation (DMR-0821159). P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. ; Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:116881 Serial 2978
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M.
Title Thermal properties of fluorinated graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 10 Pages 104114-104116
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316933500002 Publication Date 2013-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes (down) ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108495 Serial 3629
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Mehmood, U.; Peeters, F.M.; Tabet, N.; Zhang, J.; Hussein, I.A.; McLachlan, M.A.
Title Derivatization and diffusive motion of molecular fullerenes : ab initio and atomistic simulations Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 025101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C-60 fullerene. As a typical example, we consider [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C-60 and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C-60 is an order of magnitude larger than the one for PCBM. (c) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000357961000036 Publication Date 2015-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access
Notes (down) ; K.H., U.M. and I.A.H. would like to thank the National Science, Technology and Innovation Program of KACST for funding this research under Project No. 12-ENE2379-04. They also acknowledge support from KFUPM and Research Institute. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:127098 Serial 652
Permanent link to this record
 

 
Author Abdullah, H.M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
Title Confined states in graphene quantum blisters Type A1 Journal article
Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 30 Issue 38 Pages 385301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer graphene samples may exhibit regions where the two layers are locally delaminated forming a so-called quanttun blister in the graphene sheet. Electron and hole states can be confined in this graphene quantum blisters (GQB) by applying a global electrostatic bias. We scrutinize the electronic properties of these confined states under the variation of interlayer bias, coupling, and blister's size. The spectra display strong anti-crossings due to the coupling of the confined states on upper and lower layers inside the blister. These spectra are layer localized where the respective confined states reside on either layer or equally distributed. For finite angular momentum, this layer localization can be at the edge of the blister and corresponds to degenerate modes of opposite momenta. Furthermore, the energy levels in GQB exhibit electron-hole symmetry that is sensitive to the electrostatic bias. Finally, we demonstrate that confinement in GQB persists even in the presence of a variation in the interlayer coupling.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000443135000001 Publication Date 2018-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 6 Open Access
Notes (down) ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:153620UA @ admin @ c:irua:153620 Serial 5086
Permanent link to this record
 

 
Author Abdullah, H.M.; Van Duppen, B.; Zarenia, M.; Bahlouli, H.; Peeters, F.M.
Title Quantum transport across van der Waals domain walls in bilayer graphene Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 29 Issue 42 Pages 425303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer graphene can exhibit deformations such that the two graphene sheets are locally detached from each other resulting in a structure consisting of domains with different van der Waals inter-layer coupling. Here we investigate how the presence of these domains affects the transport properties of bilayer graphene. We derive analytical expressions for the transmission probability, and the corresponding conductance, across walls separating different inter-layer coupling domains. We find that the transmission can exhibit a valley-dependent layer asymmetry and that the domain walls have a considerable effect on the chiral tunnelling properties of the charge carriers. We show that transport measurements allow one to obtain the strength with which the two layers are coupled. We perform numerical calculations for systems with two domain walls and find that the availability of multiple transport channels in bilayer graphene significantly modifies the conductance dependence on inter-layer potential asymmetry.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000410958400001 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 15 Open Access
Notes (down) ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-VI) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:146664 Serial 4793
Permanent link to this record
 

 
Author Abdullah, H.M.; da Costa, D.R.; Bahlouli, H.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title Electron collimation at van der Waals domain walls in bilayer graphene Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 4 Pages 045137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that a domain wall separating single-layer graphene and AA-stacked bilayer graphene (AA-BLG) can be used to generate highly collimated electron beams which can be steered by a magnetic field. Two distinct configurations are studied, namely, locally delaminated AA-BLG and terminated AA-BLG whose terminal edge types are assumed to be either zigzag or armchair. We investigate the electron scattering using semiclassical dynamics and verify the results independently with wave-packet dynamics simulations. We find that the proposed system supports two distinct types of collimated beams that correspond to the lower and upper cones in AA-BLG. Our computational results also reveal that collimation is robust against the number of layers connected to AA-BLG and terminal edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477892800005 Publication Date 2019-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes (down) ; H.M.A. and H.B. acknowledge the support of King Fahd University of Petroleum and Minerals under research group Project No. RG181001. D.R.C and A.C. were financially supported by the Brazilian Council for Research (CNPq) and CAPES foundation. B.V.D. is supported by a postdoctoral fellowship by the Research Foundation Flanders (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161887 Serial 5410
Permanent link to this record
 

 
Author Abdullah, H.M.; Van der Donck, M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
Title Graphene quantum blisters : a tunable system to confine charge carriers Type A1 Journal article
Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 112 Issue 21 Pages 213101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000433140900025 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 9 Open Access
Notes (down) ; H.M.A. and H.B. acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group Project Nos. RG1502-1 and RG1502-2. This work was supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (B.V.D.) and a doctoral fellowship (M.V.d.D.). ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:151505UA @ admin @ c:irua:151505 Serial 5027
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Bahlouli, H.; Peeters, F.M.
Title Effect of substitutional impurities on the electronic transport properties of graphene Type A1 Journal article
Year 2016 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 84 Issue 84 Pages 22-26
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Density-functional theory in combination with the nonequilibrium Green's function formalism is used to study the effect of substitutional doping on the electronic transport properties of hydrogen passivated zig-zag graphene nanoribbon devices. B, N and Si atoms are used to substitute carbon atoms located at the center or at the edge of the sample. We found that Si -doping results in better electronic transport as compared to the other substitutions. The transmission spectrum also depends on the location of the substitutional dopants: for single atom doping the largest transmission is obtained for edge substitutions, whereas substitutions in the middle of the sample give larger transmission for double carbon substitutions. The obtained results are explained in terms of electron localization in the system due to the presence of impurities. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000382489600004 Publication Date 2016-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 17 Open Access
Notes (down) ; H.B. and F.M.P. acknowledge the support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under research group project RG1329-1 and RG1329-2. G.R.B. acknowledges fruitful discussions with Dr. M.E. Madjet from Qatar Environment and Energy Research Institute. ; Approved Most recent IF: 2.221
Call Number UA @ lucian @ c:irua:135699 Serial 4301
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Bahlouli, H.; Peeters, F.M.
Title Theoretical study of electronic transport properties of a graphene-silicene bilayer Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages 225101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000356176100040 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes (down) ; H. B. and F. M. P. acknowledge support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under the RG1329-1 and RG1329-2 DSR Projects. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:127075 Serial 3611
Permanent link to this record
 

 
Author Mao, J.; Jiang, Y.; Moldovan, D.; Li, G.; Watanabe, K.; Taniguchi, T.; Masir, M.R.; Peeters, F.M.; Andrei, E.Y.
Title Realization of a tunable artificial atom at a supercritically charged vacancy in graphene Type A1 Journal article
Year 2016 Publication Nature physics Abbreviated Journal Nat Phys
Volume 12 Issue 12 Pages 545-549
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphene’s remarkable electronic properties have fuelled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor graphene’s electronic properties and to control its charge carriers. Here we show that a single-atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunnelling microscope. The response of the conduction electrons in graphene to the local charge is monitored with scanning tunnelling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states within a disc centred on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a mechanism to control and guide electrons in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377475700011 Publication Date 2016-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 93 Open Access
Notes (down) ; Funding was provided by DOE-FG02-99ER45742 (STM/STS), NSF DMR 1207108 (fabrication and characterization). Theoretical work supported by ESF-EUROCORES-EuroGRAPHENE, FWO-VI and Methusalem programme of the Flemish government. We thank V. F. Libisch, M. Pereira and E. Rossi for useful discussions. ; Approved Most recent IF: 22.806
Call Number c:irua:134210 Serial 4011
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 23 Pages 11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279336000001 Publication Date 2010-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes (down) ; Financial support was provided by the Hungarian Research Foundation (Contracts No. OTKA K68312, No. K77771, No. K73361, and No. F68726). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83857 Serial 1820
Permanent link to this record