|   | 
Details
   web
Records
Author van Oers, C.J.; Kurttepeli, M.; Mertens, M.; Bals, S.; Meynen, V.; Cool, P.
Title Zeolite \beta nanoparticles based bimodal structures : mechanism and tuning of the porosity and zeolitic properties Type A1 Journal article
Year 2014 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 185 Issue Pages 204-212
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Despite great efforts in the research area of zeolite nanoparticles and their use in the synthesis of bimodal materials, still little is known about the impact of the synthesis conditions of the zeolite nanoparticles on its own characteristics, and on the properties and the formation mechanism of the final bimodal materials. A zeolite β nanoparticles solution is applied in a mesotemplate-free synthesis method, and the influence of the hydrothermal ageing temperature of the nanoparticles solution on both the zeolitic and porosity characteristics of the final bimodal material has been studied. Transmission electron microscopy in combination with 3-dimensional reconstructions obtained by electron tomography revealed that the zeolite β nanoparticles are connected by neck-like structures, thus creating a wormhole-like mesoporous material. Considering the zeolitic properties, a clear threshold is observed in the synthesis temperature series at 413 K. Below and at this threshold, the biporous materials show no apparent zeolitic characteristics, although these materials exhibit a more condensed and uniform SiOSi network in comparison to Al-MCF. Synthesis temperatures above the threshold lead to bimodal structures with defined zeolitic properties. Moreover, the dimensions of the nanoparticles are studied by TEM, revealing an increasing particle size with increasing temperature under the threshold of 413 K, which is in agreement with a sol-mechanism. This mechanism is disturbed after the threshold due to the start of the crystallisation process.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000330930400025 Publication Date 2013-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 10 Open Access OpenAccess
Notes (up) 262348 Esmi Approved Most recent IF: 3.615; 2014 IF: 3.453
Call Number UA @ lucian @ c:irua:112501 Serial 3930
Permanent link to this record
 

 
Author Oh, H.; Gennett, T.; Atanassov, P.; Kurttepeli, M.; Bals, S.; Hurst, K.E.; Hirscher, M.
Title Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons Type A1 Journal article
Year 2013 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 177 Issue Pages 66-74
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this report, the possibility of Pt catalytic activity for the dissociation of hydrogen molecules and subsequent hydrogen adsorption on sucrose templated carbon at ambient temperature has been studied. In order to investigate Pt catalytic effect for hydrogen storage solely, 6.8 wt.% Pt-doped (Pt/TC) and pure templated carbon (TC) possessing almost identical specific surface area (SSA) and pore volume (Vp) have been successfully synthesized. Since both Pt/TC and TC shares for their textural properties (e.g. SSA and Vp), any difference of hydrogen adsorption characteristic and storage capacity can be ascribed to the presence of Pt nanoparticles. Both samples are characterized by various techniques such as powder Xray diffraction, ICP-OES, Raman spectroscopy, transmission electron microscopy, cryogenic thermal desorption spectroscopy, low-pressure high-resolution hydrogen and nitrogen BET and high-pressure hydrogen adsorption isotherms in a Sieverts' apparatus. By applying hydrogen and deuterium isotope mixture, cryogenic thermal desorption spectroscopy point to a Pt catalytic activity for the dissociation of hydrogen molecules. Furthermore, the hydrogen adsorption isotherms at RT indicate an enhancement of the initial hydrogen adsorption kinetics in Pt-doped system. However, the hydrogen storage capacity of Pt/TC exhibits a negligible enhancement with a strong hysteresis, suggesting no connection between the spillover effect and a feasible hydrogen storage enhancement. (C) 2013 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000322293000012 Publication Date 2013-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 25 Open Access
Notes (up) 262348 ESMI; COST Action MP1103 Approved Most recent IF: 3.615; 2013 IF: 3.209
Call Number UA @ lucian @ c:irua:109758 Serial 1532
Permanent link to this record
 

 
Author Cabana, L.; Ke, X.; Kepić, D.; Oro-Solé, J.; Tobías-Rossell, E.; Van Tendeloo, G.; Tobias, G.
Title The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes Type A1 Journal article
Year 2015 Publication Carbon Abbreviated Journal Carbon
Volume 93 Issue 93 Pages 1059-1067
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Purification and shortening of carbon nanotubes have attracted a great deal of attention to increase the biocompatibility and performance of the material in several applications. Steam treatment has been employed to afford both purification and shortening of multi-walled carbon nanotubes (MWCNTs). Steam removes the amorphous carbon and the graphitic particles that sheath catalytic nanoparticles, facilitating their removal by a subsequent acidic wash. The amount of metal impurities can be reduced in this manner below 0.01 wt.%. The length distribution of MWCNTs after different steam treatment times (from 1 h to 15 h) was assessed by box plot analysis of the electron microscopy data. Samples with a median length of 0.57 μm have been prepared with the reported methodology while preserving the integrity of the tubular wall structure.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000360292100108 Publication Date 2015-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 17 Open Access
Notes (up) 312483 Esteem2; 290023 Raddel; esteem2_ta Approved Most recent IF: 6.337; 2015 IF: 6.196
Call Number c:irua:127691 c:irua:127691 Serial 2921
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Peeters, F.M.
Title Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane Type A1 Journal article
Year 2011 Publication Carbon Abbreviated Journal Carbon
Volume 49 Issue 10 Pages 3258-3266
Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES)
Abstract Chemisorption of hydrogen on graphene is studied using atomistic simulations with the second generation of reactive empirical bond order Brenner inter-atomic potential. The lowest energy adsorption sites and the most important metastable sites are determined. The H concentration is varied from a single H atom, to clusters of H atoms up to full coverage. We found that when two or more H atoms are present, the most stable configurations of H chemisorption on a single graphene layer are ortho hydrogen pairs adsorbed on one side or on both sides of the graphene sheet. The latter has the highest hydrogen binding energy. The next stable configuration is the orthopara pair combination, and then para hydrogen pairs. The structural changes of graphene caused by chemisorbed hydrogen are discussed and are compared with existing experimental data and other theoretical calculations. The obtained results will be useful for nanoengineering of graphene by hydrogenation and for hydrogen storage.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000291959300014 Publication Date 2011-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 46 Open Access
Notes (up) ; A.D. thanks M.W. Zhao for a useful correspondence. This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378
Call Number UA @ lucian @ c:irua:90877 Serial 3275
Permanent link to this record
 

 
Author Verberck, B.; Cambedouzou, J.; Vliegenthart, G.A.; Gompper, G.; Launois, P.
Title Monte Carlo studies of C60- and C70-peapods Type A1 Journal article
Year 2012 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N
Volume 20 Issue 4/7 Pages 371-377
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We present results of Monte Carlo simulations of chains of C-60 and chains of C-70 molecules encapsulated in a single-walled carbon nanotube (SWCNT). We observe the changes in the configuration of the fullerene molecules when varying tube radius and temperature. In particular, the evolution of the pair correlation functions reveal a transition from linear harmonic chain behavior to a hard-sphere liquid upon heating, demonstrating the possibility of tuning properties of C-60- and C-70@SWCNT peapods with radius and temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304297500015 Publication Date 2012-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.35 Times cited 1 Open Access
Notes (up) ; Helpful discussions with K. H. Michel, P.-A. Albouy and C. Bousige are gratefully acknowledged. This work was financially supported by the Research Foundation-Flanders (FWO-Vl). ; Approved Most recent IF: 1.35; 2012 IF: 0.764
Call Number UA @ lucian @ c:irua:99003 Serial 2200
Permanent link to this record
 

 
Author Verberck, B.; Cambedouzou, J.; Vliegenthart, G.A.; Gompper, G.; Launois, P.
Title A Monte Carlo study of C70 molecular motion in C70@SWCNT peapods Type A1 Journal article
Year 2011 Publication Carbon Abbreviated Journal Carbon
Volume 49 Issue 6 Pages 2007-2021
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present Monte Carlo simulations of chains of C70 molecules encapsulated in a single-walled carbon nanotube (SWCNT). For various tube radii R (6.5 Å less-than-or-equals, slant R less-than-or-equals, slant 7.5 Å), we analyze rotational and translational motion of the C70 molecules, as a function of temperature. Apart from reproducing the experimentally well-established lying and standing molecular orientations for small and large tube radii, respectively, we observe, depending on the tube diameter, a variety of molecular motions, orientational flipping of lying molecules, and the migration of molecules resulting in a continual rearrangement of the C70 molecules in clusters of varying lengths. With increasing temperature, the evolution of the pair correlation functions reveals a transition from linear harmonic chain behavior to a hard-sphere liquid, making C70@SWCNT peapods tunable physical realizations of two well-known one-dimensional model systems.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000288689900025 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 10 Open Access
Notes (up) ; Helpful discussions with K.H. Michel, P.-A. Albouy and C. Bousige are greatly acknowledged. This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378
Call Number UA @ lucian @ c:irua:89660 Serial 2201
Permanent link to this record
 

 
Author Xu, P.; Qi, D.; Schoelz, J.K.; Thompson, J.; Thibado, P.M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Neek-Amal, M.; Peeters, F.M.;
Title Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 80 Issue Pages 75-81
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Epitaxial graphene is grown on a non-polar n(+) 6H-SiC m-plane substrate and studied using atomic scale scanning tunneling microscopy. Multilayer graphene is found throughout the surface and exhibits rotational disorder. Moire patterns of different spatial periodicities are found, and we found that as the wavelength increases, so does the amplitude of the modulations. This relationship reveals information about the interplay between the energy required to bend graphene and the interaction energy, i.e. van der Waals energy, with the graphene layer below. Our experiments are supported by theoretical calculations which predict that the membrane topographical amplitude scales with the Moire pattern wavelength, L as L-1 + alpha L-2. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000344132400009 Publication Date 2014-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 14 Open Access
Notes (up) ; P.X. and P.M.T. gratefully acknowledge the financial support of ONR under grant N00014-10-1-0181 and NSF under grant DMR-0855358. L.O.N. acknowledges the support of American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, and the EUROgraphene project CONGRAN. M.N.-A was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:121194 Serial 2221
Permanent link to this record
 

 
Author Huybrechts, W.; Mali, G.; Kuśtrowski, P.; Willhammar, T.; Mertens, M.; Bals, S.; Van Der Voort, P.; Cool, P.
Title Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material Type A1 Journal article
Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 236 Issue 236 Pages 244-249
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Periodic mesoporous organosilicas provide the best of two worlds: the strength and porosity of an inorganic framework combined with the infinite possibilities created by the organic bridging unit. In this work we focus on post-synthetical modification of benzene bridged PMO, in order to create bromobenzene PMO. In the past, this proved to be very challenging due to unwanted structural deterioration. However, now we have found a way to brominate this material whilst keeping the structure intact. In-depth structural analysis by solid state NMR and XPS shows both vast progress over previous attempts as well as potential for improvement.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000385899600028 Publication Date 2016-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 7 Open Access OpenAccess
Notes (up) ; The authors would like to thank financial support from the FWO-Flanders (project no G.0068.13). The authors further acknowledge financial support of the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: 3.615
Call Number UA @ lucian @ c:irua:135274 Serial 4228
Permanent link to this record
 

 
Author Kurttepeli, M.; Locus, R.; Verboekend, D.; de Clippel, F.; Breynaert, E.; Martens, J.; Sels, B.; Bals, S.
Title Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly Type A1 Journal article
Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 234 Issue 234 Pages 186-195
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The incorporation of aluminum into the silica columns of hierarchical mesoporous materials (HMMs) was studied. The HMMs were synthesized by a combination of hard and soft templating methods, forming mesoporous SBA-15-type silica columns inside the pores of anodic aluminum oxide membranes via evaporation induced self-assembly (EISA). By adding Al-isopropoxide to the EISA-mixture a full tetrahedral incorporation of Al and thus the creation of acid sites was achieved, which was proved by nuclear magnetic resonance spectroscopy. Electron microscopy showed that the use of Al-isopropoxide as an Al source for the HMMs led to a change in the mesopore ordering of silica material from circular hexagonal (donut-like) to columnar hexagonal and a 37% increase in specific surface (BET surface). These results were confirmed by a combination of nitrogen physisorption and small-angle X-ray scattering experiments and can be attributed to a swelling of the P123 micelles with isopropanol. The columnar mesopore ordering of silica is advantageous towards the pore accessibility and therefore preferential for many possible applications including catalysis and adsorption on the acid tetrahedral Al-sites. (C) 2016 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000383291400020 Publication Date 2016-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access OpenAccess
Notes (up) ; The Belgian government (Belgian Science Policy Office, Belspo) is acknowledged for financing the Interuniversity Attraction Poles (IAP-PAI). S. B. acknowledges the financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). D. V. acknowledges the Flanders Research Foundation (FWO). ; ecas_Sara Approved Most recent IF: 3.615
Call Number UA @ lucian @ c:irua:137108 Serial 4404
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Peeters, F.M.
Title Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 171 Issue Pages 551-559
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The flexoelectric and electronic properties of zig-zag graphene nanoribbons are explored under mechanical bending using state of the art first principles calculations. A linear dependence of the bending induced out of plane polarization on the applied strain gradient is found. The inferior flexoelectric properties of graphene nanoribbons can be improved by more than two orders of magnitude by hydrogen and fluorine functionalization (CH and CF nanoribbons). A large out of plane flexoelectric effect is predicted for CF nanoribbons. The origin of this enhancement lies in the electro-negativity difference between carbon and fluorine atoms, which breaks the out of plane charge symmetry even for a small strain gradient. The flexoelectric effect can be further improved by co-functionalization with hydrogen and fluorine (CHF Janus-type nanoribbon), where a spontaneous out of plane dipole moment is formed even for flat nanoribbons. We also find that bending can control the charge localization of valence band maxima and therefore enables the tuning of the hole effective masses and band gaps. These results present an important advance towards the understanding of flexoelectric and electronic properties of hydrogen and fluorine functionalized graphene nanoribbons, which can have important implications for flexible electronic applications. (C) 2020 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598371500058 Publication Date 2020-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 11 Open Access OpenAccess
Notes (up) ; The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Flemish Science Foundation (FWO-VI). T. P. is supported by a postdoctoral research fellowship from BOF-UAntwerpen. ; Approved Most recent IF: 6.337
Call Number UA @ admin @ c:irua:175014 Serial 6700
Permanent link to this record
 

 
Author Lin, F.; Meng, X.; Kukueva, E.; Kus, M.; Mertens, M.; Bals, S.; Van Doorslaer, S.; Cool, P.
Title Novel method to synthesize highly ordered ethane-bridged PMOs under mild acidic conditions : taking advantages of phosphoric acid Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 207 Issue 207 Pages 61-70
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Highly ordered SBA-15-type ethane-bridged PMOs have been obtained by employing H3PO4 as acid to tune the pH in the presence of copolymer surfactant P123. The effects of the acidity and the addition of inorganic salt on the formation of the mesostructure are investigated. It is found that, compared with HCl, the polyprotic weak acid H3PO4 is preferable for the synthesis of highly ordered SBA-15-type ethane-bridged PMOs with larger pore size and surface areas under mild acidic conditions. Moreover, taking the advantages of the mild acidic condition, vanadium-containing SBA-15-type ethane-bridged PMOs were successfully prepared through a direct synthesis approach. The XRD, N2-sorption, UVVis and CW-EPR studies of the V-PMO show that part of the vanadium species are present in polymeric (VOV)n clusters, while part of the vanadium centers are well-dispersed and immobilized on the inner surface of the mesopores.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000350518600009 Publication Date 2015-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access OpenAccess
Notes (up) ; The Erasmus Mundus CONNEC program is acknowledged for PhD funding of F.Lin. Furthermore, the authors acknowledge support by the GOA-BOF project 'Optimization of the structure-activity relation in nanoporous materials', funded by the University of Antwerp. ; Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:123910 Serial 2379
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Analytical study of the energy levels in bilayer graphene quantum dots Type A1 Journal article
Year 2014 Publication Carbon Abbreviated Journal Carbon
Volume 78 Issue Pages 392-400
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the four-band continuum model we derive a general expression for the infinite-mass boundary condition in bilayer graphene. Applying this new boundary condition we analytically calculate the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our results for the energy spectrum show an energy gap between the electron and hole states at small magnetic fields. Furthermore the electron (e) and hole (h) energy levels corresponding to the K and K' valleys exhibit the E-K(e(h)) (m) = E-K'(e(h)) (m) symmetry, where m is the angular momentum quantum number. (C) 2014 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000341463900042 Publication Date 2014-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 35 Open Access
Notes (up) ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program Euro-GRAPHENE (project CONGRAN), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). We thank M. Ramezani Masir and M. Grujic for helpful comments and discussions. ; Approved Most recent IF: 6.337; 2014 IF: 6.196
Call Number UA @ lucian @ c:irua:119280 Serial 109
Permanent link to this record
 

 
Author Tarakina, N.V.; Verberck, B.
Title Tubular fullerenes in carbon nanotubes Type A1 Journal article
Year 2012 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N
Volume 20 Issue 4-7 Pages 538-542
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We investigate the optimal orientations and positions of tubular fullerene molecules C-70, C-80 and C-90 encapsulated in single-walled carbon nanotubes (SWCNTs). We find that increasing the tube radius leads to the following succession of energetically stable regimes: 1) lying molecules positioned on the tube's long axis, 2) tilted molecules on the tube's long axis and 3) lying molecules shifted away from the tube's long axis. In the case of C-70 and C-80 molecules, standing on-axis configurations also occur. Our findings are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304297500045 Publication Date 2012-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.35 Times cited Open Access
Notes (up) ; This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B. V. is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO-Vl). ; Approved Most recent IF: 1.35; 2012 IF: 0.764
Call Number UA @ lucian @ c:irua:99004 Serial 3737
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Peeters, F.M.
Title New nanoporous graphyne monolayer as nodal line semimetal : double Dirac points with an ultrahigh Fermi velocity Type A1 Journal article
Year 2019 Publication Carbon Abbreviated Journal Carbon
Volume 141 Issue 141 Pages 712-718
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) carbon materials play an important role in nanomaterials. We propose a new carbon monolayer, named hexagonal-4,4,4-graphyne (H-4,H-4,H-4-graphyne), which is a nanoporous structure composed of rectangular carbon rings and triple bonds of carbon. Using first-principles calculations, we systematically studied the structure, stability, and band structure of this new material. We found that its total energy is lower than that of experimentally synthesized beta-graphdiyne and it is stable at least up to 1500 K. In contrast to the single Dirac point band structure of other 2D carbon monolayers, the band structure of H-4,H-4,H-4-graphyne exhibits double Dirac points along the high-symmetry points and the corresponding Fermi velocities (1.04-1.27 x 10(6) m/s) are asymmetric and higher than that of graphene. The origin of these double Dirac points is traced back to the nodal line states, which can be well explained by a tight-binding model. The H-4,H-4,H-4-graphyne forms a moire superstructure when placed on top of a hexagonal boron nitride substrate. These properties make H-4,H-4,H-4-graphyne a promising semimetal material for applications in high-speed electronic devices. (C) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450312600072 Publication Date 2018-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 38 Open Access
Notes (up) ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA project TRANS2DTMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government -department EWI. ; Approved Most recent IF: 6.337
Call Number UA @ admin @ c:irua:155364 Serial 5222
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.
Title Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
Year 2020 Publication Carbon Abbreviated Journal Carbon
Volume 168 Issue Pages 220-229
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000565900900008 Publication Date 2020-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited 21 Open Access
Notes (up) ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
Call Number UA @ admin @ c:irua:171914 Serial 6500
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M.; Shayesteh, S.F.
Title A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet Type A1 Journal article
Year 2020 Publication Carbon Abbreviated Journal Carbon
Volume 157 Issue 157 Pages 371-384
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the first-principles calculations, we explore the structural and novel electronic/optical properties of the C2N nanosheet. To this goal, we systematically investigate the affect of layer thickness, electrical field and strain on the electronic properties of the C2N nanosheet. By increasing the thickness of C2N, we observed that the band gap decreases. Moreover, by applying an electrical field to bilayer C2N, the band gap decreases and a semiconductor-to-metal transition can occur. Our results also confirm that uniaxial and biaxial strain can effectively alter the band gap of C2N monolayer. Furthermore, we show that the electronic and magnetic properties of C2N can be modified by the adsorption and substitution of various atoms. Depending on the species of embedded atoms, they may induce semiconductor (O, C, Si and Be), metal (S, N, P, Na, K, Mg and Ca), dilute-magnetic semiconductor (H, F, B), or ferro-magnetic-metal (Cl, Li) character in C2N monolayer. It was also found that the inclusion of hydrogen or oxygen impurities and nitrogen vacancies, can induce magnetism in the C2N monolayer. These extensive calculations can be useful to guide future studies to modify the electronic/optical properties of two-dimensional materials. (C) 2019 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000502548500044 Publication Date 2019-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited 49 Open Access
Notes (up) ; This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). We are thankful for comments by Meysam Baghery Tagani from department of physics in University of Guilan and Bohayra Mortazavi from Gottfried Wilhelm Leibniz Universitat Hannover, Hannover, Germany. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
Call Number UA @ admin @ c:irua:165024 Serial 6283
Permanent link to this record
 

 
Author Chen, X.; Bouhon, A.; Li, L.; Peeters, F.M.; Sanyal, B.
Title PAI-graphene : a new topological semimetallic two-dimensional carbon allotrope with highly tunable anisotropic Dirac cones Type A1 Journal article
Year 2020 Publication Carbon Abbreviated Journal Carbon
Volume 170 Issue Pages 477-486
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using evolutionary algorithm for crystal structure prediction, we present a new stable two-dimensional (2D) carbon allotrope composed of polymerized as-indacenes (PAI) in a zigzag pattern, namely PAI-graphene whose energy is lower than most of the reported 2D allotropes of graphene. Crucially, the crystal structure realizes a nonsymmorphic layer group that enforces a nontrivial global topology of the band structure with two Dirac cones lying perfectly at the Fermi level. The absence of electron/hole pockets makes PAI-graphene a pristine crystalline topological semimetal having anisotropic Fermi velocities with a high value of 7.0 x 10(5) m/s. We show that while the semimetallic property of the allotrope is robust against the application of strain, the positions of the Dirac cone and the Fermi velocities can be modified significantly with strain. Moreover, by combining strain along both the x- and y-directions, two band inversions take place at G leading to the annihilation of the Dirac nodes demonstrating the possibility of strain-controlled conversion of a topological semimetal into a semiconductor. Finally we formulate the bulk-boundary correspondence of the topological nodal phase in the form of a generalized Zak-phase argument finding a perfect agreement with the topological edge states computed for different edge-terminations. (C) 2020 The Author(s). Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000579779800047 Publication Date 2020-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited 27 Open Access
Notes (up) ; We thank S. Nahas, for helpful discussions. This work is supported by the project grant (2016e05366) and Swedish Research Links program grant (2017e05447) from the Swedish Research Council, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), the FLAG-ERA project TRANS 2D TMD. Linyang Li acknowledges financial support from the Natural Science Foundation of Hebei Province (Grant No. A2020202031). X.C. thanks China scholarship council for financial support (No. 201606220031). X.C. and B.S. acknowledge SNIC-UPPMAX, SNIC-HPC2N, and SNIC-NSC centers under the Swedish National Infrastructure for Computing (SNIC) resources for the allocation of time in high-performance supercomputers. Moreover, supercomputing resources from PRACE DECI-15 project DYNAMAT are gratefully acknowledged. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
Call Number UA @ admin @ c:irua:173513 Serial 6577
Permanent link to this record
 

 
Author Launois, P.; Chorro, M.; Verberck, B.; Albouy, P.-A.; Rouzière, S.; Colson, D.; Forget, A.; Noé, L.; Kataura, H.; Monthioux, M.; Cambedouzou, J.
Title Transformation of C70 peapods into double walled carbon nanotubes Type A1 Journal article
Year 2010 Publication Carbon Abbreviated Journal Carbon
Volume 48 Issue 1 Pages 89-98
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract X-ray diffraction studies comparing the transformation of C(60) and C(70) peapods into double walled carbon nanotubes are presented. The structures of the as-formed DWCNTs are strikingly similar, showing that they are not dependent on the nature of the fullerene precursor. High temperature X-ray diffraction measurements of C(70) peapods below the coalescence temperature show that confined C(70) molecules in large tubes undergo an orientational. transition to free rotations. Fast re-orientations of C(70) molecules allow cyclo-addition between adjacent fullerenes to form, in good agreement with the mechanism of coalescence proposed in the literature for C(60) molecules. (C) 2009 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000272018800012 Publication Date 2009-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 27 Open Access
Notes (up) ; ; Approved Most recent IF: 6.337; 2010 IF: 4.896
Call Number UA @ lucian @ c:irua:94389 Serial 3696
Permanent link to this record
 

 
Author van Oers, C.J.; Stevens, W.J.J.; Bruijn, E.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Meynen, V.; Cool, P.
Title Formation of a combined micro- and mesoporous material using zeolite Beta nanoparticles Type A1 Journal article
Year 2009 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 120 Issue 1/2 Pages 29-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Composite micro- and mesoporous materials are synthesized using zeolite Beta nanoparticles without the need for a structure directing agent to form the mesopores. This leads to important ecological and economical advantages. The influence of the way of cooling the aged nanoparticles solution on the formation of the composite materials has been studied. The materials have been characterized towards porosity by N2-sorption, towards zeolitic properties by TGA, DRIFT, XRD and TEM, towards aluminium content by EPMA. All prepared structures possess zeolitic properties. However, the method of cooling down of the aged seeds leads to differences in the porosity and intensity of the zeolitic characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000264619200006 Publication Date 2008-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 42 Open Access
Notes (up) Crp; Sfr Ua Approved Most recent IF: 3.615; 2009 IF: 2.652
Call Number UA @ lucian @ c:irua:74950 Serial 1254
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K.M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
Title Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux Type A1 Journal article
Year 2018 Publication Carbon Abbreviated Journal Carbon
Volume 137 Issue Pages 527-532
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to optimize the plasma-synthesis and modification process of carbon nanomaterials for applications such as nanoelectronics and energy storage, a deeper understanding of fundamental hydrogengraphite/graphene interactions is required. Atomistic simulations by Molecular Dynamics have proven to be indispensable to illuminate these phenomena. However, severe time-scale limitations restrict them to very fast processes such as reflection, while slow thermal processes such as surface diffusion and molecular desorption are commonly inaccessible. In this work, we could however reach these thermal processes for the first time at time-scales and surface temperatures (1000 K) similar to high-flux plasma exposure experiments during the simulation of multilayer graphene etching by 5 eV H ions. This was achieved by applying the Collective Variable-Driven Hyperdynamics biasing technique, which extended the inter-impact time over a range of six orders of magnitude, down to a more realistic ion-flux of 1023m2s1. The results show that this not only causes a strong shift from predominant ion-to thermally induced interactions, but also significantly affects the hydrogen uptake and surface evolution. This study thus elucidates H ion-graphite/graphene interaction mechanisms and stresses the importance of including long time-scales in atomistic simulations at high surface temperatures to understand the dynamics of the ion-surface system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440661700056 Publication Date 2018-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 4 Open Access Not_Open_Access: Available from 25.05.2020
Notes (up) DIFFER is part of the Netherlands Organisation for Scientific Research (NWO). K.M.B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientific Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government e department EWI. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:152172 Serial 4993
Permanent link to this record
 

 
Author Khalilov, U.; Vets, C.; Neyts, E.C.
Title Catalyzed growth of encapsulated carbyne Type A1 Journal article
Year 2019 Publication Carbon Abbreviated Journal Carbon
Volume 153 Issue Pages 1-5
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbyne is a novel material of current interest in nanotechnology. As is typically the case for nanomaterials, the growth process determines the resulting properties. While endohedral carbyne has been successfully synthesized, its catalyst and feedstock-dependent growth mechanism is still elusive. We here study the nucleation and growth mechanism of different carbon chains in a Ni-containing double walled carbon nanotube using classical molecular dynamics simulations and first-principles calculations. We find that the understanding the competitive role of the metal catalyst and the hydrocarbon is important to control the growth of 1-dimensional carbon chains, including Ni or H-terminated carbyne. Also, we find that the electronic property of the Ni-terminated carbyne can be tuned by steering the H concentration along the chain. These results suggest catalyst-containing carbon nanotubes as a possible synthesis route for carbyne formation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000485054200001 Publication Date 2019-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited Open Access Not_Open_Access
Notes (up) Fund of Scientific Research Flanders (FWO), Belgium, 12M1318N 1S22516N ; Flemish Supercomputer Centre VSC; Hercules Foundation; Flemish Government; University of Antwerp; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant numbers 12M1318N and 1S22516N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:160695 Serial 5187
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.
Title Mechanisms of selective nanocarbon synthesis inside carbon nanotubes Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 171 Issue Pages 72-78
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The possibility of confinement effects inside a carbon nanotube provides new application opportunities, e.g., growth of novel carbon nanostructures. However, the understanding the precise role of catalystfeedstock in the nanostructure synthesis is still elusive. In our simulation-based study, we investigate the Ni-catalyzed growth mechanism of encapsulated carbon nanostructures, viz. double-wall carbon nanotube and graphene nanoribbon, from carbon and hydrocarbon growth precursors, respectively. Specifically, we find that the tube and ribbon growth is determined by a catalyst-vs-feedstock competition effect. We compare our results, i.e., growth mechanism and structure morphology with all available theoretical and experimental data. Our calculations show that all encapsulated nanostructures contain metal (catalyst) atoms and such structures are less stable than their pure counterparts. Therefore, we study the purification mechanism of these structures. In general, this study opens a possible route to the controllable synthesis of tubular and planar carbon nanostructures for today’s nanotechnology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598371500009 Publication Date 2020-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.337 Times cited Open Access OpenAccess
Notes (up) Fund of Scientific Research Flanders, 12M1318N ; Universiteit Antwerpen; Flemish Supercomputer Centre; Hercules Foundation; Flemish Government; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1318N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA, Belgium. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @c:irua:172459 Serial 6414
Permanent link to this record
 

 
Author He, Z.; Ke, X.; Bals, S.; Van Tendeloo, G.
Title Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections Type A1 Journal article
Year 2012 Publication Carbon Abbreviated Journal Carbon
Volume 50 Issue 7 Pages 2524-2529
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon nanotubes (CNTs) with a polygonal cross-section have been paid increasing attention since their three-dimensional structure is related to specific physical properties, which are found to be different in comparison to CNTs with a circular cross-section. Here, we report the existence of novel multi-walled CNTs yielding walls with a rounded-hexagonal configuration. This structure was directly confirmed for the first time by both cross-sectional transmission electron microscopy and electron tomography. The morphology of the Fe catalytic particle also exhibits hexagonal characteristics, and is proposed as the origin of the formation of the rounded-hexagonal walls of the CNT. This observation is of great importance with respect to the design of polygonal (such as pentagonal or hexagonal) cross-sectional CNTs. By controlling the morphology of the catalytic nanoparticles it will be possible to grow CNTs with desired electronic and mechanical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000303038400015 Publication Date 2012-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 8 Open Access
Notes (up) Fwo Approved Most recent IF: 6.337; 2012 IF: 5.868
Call Number UA @ lucian @ c:irua:96956 Serial 711
Permanent link to this record
 

 
Author Wiktor, C.; Turner, S.; Zacher, D.; Fischer, R.A.; Van Tendeloo, G.
Title Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid Type A1 Journal article
Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 162 Issue Pages 131-135
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract First results on the imaging of intact metalorganic framework (MOF) pores in MOF-5 nanocrystals by aberration corrected transmission electron microscopy (TEM) under liquid nitrogen conditions are presented. The applied technique is certainly transferable to other MOF systems, permitting detailed studies of MOF interfaces, MOFnanoparticle interaction and MOF thin films.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308284800018 Publication Date 2012-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 30 Open Access
Notes (up) Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365
Call Number UA @ lucian @ c:irua:100467 Serial 1554
Permanent link to this record
 

 
Author Hens, S.C.; Shenderova, O.; Turner, S.
Title Producing photoluminescent species from Sp2 carbons Type A1 Journal article
Year 2012 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N
Volume 20 Issue 4/7 Pages 502-509
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The treatment of sp2 carbon materials, including micrographite, nanographite, HOPG, onion-like-carbon, and single-walled carbon nanotubes, in a 3:1 sulfuric to nitric acid mixture produced photoluminescent reaction solutions. These colloidal, aqueous solutions appeared photoluminescently stable under a UV lamp and ranged in color from red to blue. The photoluminescent wavelength shifted to shorter wavelength with increasing reaction time or increasing reaction temperature. Raman spectroscopy showed evidence of defect structures in graphitic residue, and transmission electron microscopy showed unusual structures present in the supernatant including graphitic balls.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304297500039 Publication Date 2012-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.35 Times cited 4 Open Access
Notes (up) Fwo Approved Most recent IF: 1.35; 2012 IF: 0.764
Call Number UA @ lucian @ c:irua:98375 Serial 2719
Permanent link to this record
 

 
Author Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P.
Title Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity Type A1 Journal article
Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 156 Issue Pages 62-72
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract The effect of thermal treatment and mechanical stress on the structural and photocatalytic properties of eight different (synthetic and commercial) photocatalysts has been thoroughly investigated. Different mesoporous Ti-based materials were prepared via surfactant based synthesis routes (e.g. Pluronic 123, CTMABr = Cetyltrimethylammonium bromide) or via template-free synthesis routes (e.g. trititanate nanotubes). Also, the stabilizing effect of the NaOH/NH4OH post-treatment on the templated mesoporous materials and their photocatalytic activity was investigated. Furthermore, the thermal and mechanical properties of commercially available titanium dioxides such as P25 Evonik® and Millenium PC500® were studied. The various photocatalysts were analyzed with N2-sorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) to obtain information concerning the specific surface area, pore volume, crystal structure, morphology, phase transitions, etc. In general, results show that the NaOH post-treatment leads to an increased control of the crystallization process during calcination resulting in a higher thermal stability, but at the same time diminishes the photocatalytic activity. Mesoporous materials in which pre-synthesized nanoparticles are used as titania source have the best mechanical stability whereas the mechanical stability of the nanotubes is the most limited. At increased temperatures and pressures, the tested commercial titanium dioxides lose their superior photocatalytic activity caused by a decreased accessibility of the active sites. The observed changes in adsorption capacities and photocatalytic activities cannot be assigned to one single phenomenon. In this respect, it shows the need to define a general/standard method to compare different photocatalysts. Furthermore, it is shown that the photocatalytic properties do not necessarily deteriorate under thermal stress, but can be improved due to crystallization, even though the initial material is (partially) destroyed. It is shown that the usefulness of a specific type of photocatalyst strongly depends on the application and the temperature/pressure to which it needs to resist.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000303625200010 Publication Date 2012-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 8 Open Access
Notes (up) Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365
Call Number UA @ lucian @ c:irua:96910 Serial 3466
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Density-functional theory calculations of the electron energy-loss near-edge structure of Li-intercalated graphite Type A1 Journal article
Year 2009 Publication Carbon Abbreviated Journal Carbon
Volume 47 Issue 10 Pages 2501-2510
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the structural and electronic properties of lithium-intercalated graphite (LIG) for various Li content. Atomic relaxation shows that Li above the center of the carbon hexagon in a AAAA stacked graphite is the only stable Li configuration in stage 1 intercalated graphite. Lithium and Carbon 1s energy-loss near-edge structure (ELNES) calculations are performed on the Li-intercalated graphite using the core-excited density-functional theory formulation. Several features of the Li 1s ELNES are correlated with reported experimental features. The ELNES spectra of Li is found to be electron beam orientation sensitive and this property is used to assign the origin of the various Li 1s ELNES features. Information about core-hole screening by the valence electrons and charge transfer in the LIG systems is obtained from the C 1s ELNES and valence charge density difference calculations, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000268429000025 Publication Date 2009-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 12 Open Access
Notes (up) Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 6.337; 2009 IF: 4.504
Call Number UA @ lucian @ c:irua:77973 Serial 638
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Ekimov, E.A.; Verbeeck, J.; Van Tendeloo, G.
Title Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond Type A1 Journal article
Year 2015 Publication Carbon Abbreviated Journal Carbon
Volume 86 Issue 86 Pages 156-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline boron-doped superconducting diamond, synthesized at high pressure and high temperature (HPHT) via a reaction of a single piece of crystalline boron with monolithic graphite, has been investigated by analytical transmission electron microscopy. The local boron distribution and boron environment have been studied by a combination of (scanning) transmission electron microscopy ((S)TEM) and spatially resolved electron energy-loss spectroscopy (EELS). High resolution TEM imaging and EELS elemental mapping have established, for the first time, the presence of largely crystalline diamond-diamond grain boundaries within the material and have evidenced the presence of substitutional boron dopants within individual diamond grains. Confirmation of the presence of substitutional B dopants has been obtained through comparison of acquired boron K-edge EELS fine structures with known references. This confirmation is important to understand the origin of superconductivity in polycrystalline B-doped diamond. In addition to the substitutional boron doping, boron-rich inclusions and triple-points, both amorphous and crystalline, with chemical compositions close to boron carbide B4C, are evidenced. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000352922700019 Publication Date 2015-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 20 Open Access
Notes (up) FWO; 246791 COUNTATOMS; 278510 VORTEX; Hercules ECASJO_; Approved Most recent IF: 6.337; 2015 IF: 6.196
Call Number c:irua:125994UA @ admin @ c:irua:125994 Serial 250
Permanent link to this record
 

 
Author Ribbens, S.; Meynen, V.; Van Tendeloo, G.; Ke, X.; Mertens, M.; Maes, B.U.W.; Cool, P.; Vansant, E.F.
Title Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies Type A1 Journal article
Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 114 Issue 1/3 Pages 401-409
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)
Abstract Titanate nanotubes were prepared via a hydrothermal treatment of TiO2 powders (Riedel De Haen) in a basic solution. Morphology and structure of the prepared samples were characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), XRD, FT-Raman spectroscopy, nitrogen sorption and DSC. The photocatalytic activity was evaluated by photocatalytic oxidation of rhodamine 6G. Trititanate nanotubes (TTNT) with inner pore diameters between 4 and 4.2 nm and surface areas up till 360 m(2)/g could be synthesized. The synthesis route was modified by introduction of a calcination step, by applying a lower hydrothermal temperature and microwave irradiation in order to increase the photocatalytic activity of the porous photoactive nanotubular materials. Calcination and a softer hydrothermal treatment led to the formation of anatase without affecting the surface area and nanotubular shape of the samples. In this way, the photocatalytic activity of the original trititanate nanotubes could be significantly increased. By making use of microwave assisted synthesis, the photocatalytic activity call also be increased due to the presence of anatase. However, by applying microwave synthesis, a different structure was obtained, nanoribbons (NR) instead of nanotubcs, resulting in a decrease in surface area and porosity.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000258432100040 Publication Date 2008-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 47 Open Access
Notes (up) Fwo; Crp (Ua) Approved Most recent IF: 3.615; 2008 IF: 2.555
Call Number UA @ lucian @ c:irua:69696 Serial 683
Permanent link to this record
 

 
Author Stevens, W.J.J.; Meynen, V.; Bruijn, E.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P.; Vansant, E.F.
Title Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates Type A1 Journal article
Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 110 Issue 1 Pages 77-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000254056200010 Publication Date 2007-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 21 Open Access
Notes (up) Fwo; Crp; Inside-Pores Approved Most recent IF: 3.615; 2008 IF: 2.555
Call Number UA @ lucian @ c:irua:68229 Serial 1998
Permanent link to this record