toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jones, E.; Cooper, D.; Rouvière, J.-L.; Béché, A.; Azize, M.; Palacios, T.; Gradecak, S. doi  openurl
  Title Towards rapid nanoscale measurement of strain in III-nitride heterostructures Type A1 Journal article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue Pages 231904  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the structural and compositional nanoscale characterization of InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the use of geometric phase analysis (GPA) and nanobeam electron diffraction (NBED). The strain distribution in the HEMT layer is quantified and compared to the expected strain profile for the nominal structure predicted by finite element analysis (FEA). Using the experimental strain results, the actual structure is determined and used to modify the FEA model. The improved fit of the model demonstrates that GPA and NBED provide a powerful platform for routine and rapid characterization of strain in III-V semiconducting device systems leading to insights into device evolution during processing and future device optimization.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328634900025 Publication Date 2013-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 6 Open Access  
  Notes (up) Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136443 Serial 4513  
Permanent link to this record
 

 
Author Denneulin, T.; Rouvière, J.L.; Béché, A.; Py, M.; Barnes, J.P.; Rochat, N.; Hartmann, J.M.; Cooper, D. pdf  doi
openurl 
  Title The reduction of the substitutional C content in annealed Si/SiGeC superlattices studied by dark-field electron holography Type A1 Journal article
  Year 2011 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 26 Issue 12 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si/Si(1 − x − y)GexCy superlattices are used in the construction of new microelectronic architectures such as multichannel transistors. The introduction of carbon in SiGe allows for compensation of the strain and to avoid plastic relaxation. However, the formation of incoherent β-SiC clusters during annealing limits the processability of SiGeC. This precipitation leads to a modification of the strain in the alloy due to the reduction of the substitutional carbon content. Here, we investigated the strain in annealed Si/Si0.744Ge0.244C0.012 superlattices grown by reduced pressure chemical vapour deposition using dark-field electron holography. The variation of the substitutional C content was calculated by correlating the results with finite-element simulations. The obtained values were then compared with Fourier-transformed infrared spectrometry measurements. It was shown that after annealing for 2 min at 1050 °C carbon no longer has any influence on strain in the superlattice, which behaves like pure SiGe. However, a significant proportion of substitutional C atoms remain in a third-nearest neighbour (3nn) configuration. It was deduced that the influence of 3nn C on strain is negligible and that only isolated atoms have a significant contribution. It was also proposed that the 3nn configuration is an intermediary step during the formation of SiC clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000300151300010 Publication Date 2011-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited Open Access  
  Notes (up) Approved Most recent IF: 2.305; 2011 IF: 1.723  
  Call Number UA @ lucian @ c:irua:136427 Serial 4508  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue Pages 124505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312829400128 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes (up) Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136433 Serial 4510  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C. doi  openurl
  Title Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 29 Pages 15687-15695  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain insight into the nature of the adhesion mechanism between hydroxyapatite (HA) and rutile (rTiO(2)), the mutual affinity between their surfaces was systematically studied using density functional theory (DFT). We calculated both bulk and surface properties of HA and rTiO(2), and explored the interfacial bonding mechanism of amorphous HA (aHA) surface onto amorphous as well as stoichiometric and nonstoichiometric crystalline rTiO(2). Formation energies of bridging and subbridging oxygen vacancies considered in the rTiO(2)(110) surface were evaluated and compared with other theoretical and experimental results. The interfacial interaction was evaluated through the work of adhesion. For the aHA/rTiO(2)(110) interfaces, the work of adhesion is found to depend strongly on the chemical environment of the rTiO(2)(110) surface. Electronic analysis indicates that the charge transfer is very small in the case of interface formation between aHA and crystalline rTiO(2)(110). In contrast, significant charge transfer occurs between aHA and amorphous rTiO(2) (aTiO(2)) slabs during the formation of the interface. Charge density difference (CDD) analysis indicates that the dominant interactions in the interface have significant covalent character, and in particular the Ti-O and Ca-O bonds. Thus, the obtained results reveal that the aHA/aTiO(2) interface shows a more preferable interaction and is thermodynamically more stable than other interfaces. These results are particularly important for improving the long-term stability of HA-based implants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000406726200022 Publication Date 2017-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:145195 Serial 4715  
Permanent link to this record
 

 
Author Bal, K.M.; Cautereels, J.; Blockhuys, F. pdf  url
doi  openurl
  Title Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains : R2P-N=S=N-PR2 and R2P-N=S=N-AsR2 Type A1 Journal article
  Year 2017 Publication Journal of molecular structure Abbreviated Journal J Mol Struct  
  Volume 1132 Issue Pages 102-108  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conformational and configurational preferences of Me2PNSNPMe2 (3) and Me2PNSNAsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000393254400015 Publication Date 2016-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.753 Times cited Open Access Not_Open_Access: Available from 03.10.2019  
  Notes (up) Approved Most recent IF: 1.753  
  Call Number UA @ lucian @ c:irua:145533 Serial 4726  
Permanent link to this record
 

 
Author Chirumamilla, C.S.; Palagani, A.; Kamaraj, B.; Declerck, K.; Verbeek, M.W.C.; Ryabtsova, O.; De Bosscher, K.; Bougarne, N.; Ruttens, B.; Gevaert, K.; Houtman, R.; De Vos, W.H.; Joossens, J.; van der Veken, P.; Augustyns, K.; van Ostade, X.; Bogaerts, A.; De Winter, H.; Vanden Berghe, W. url  doi
openurl 
  Title Selective glucocorticoid receptor properties of GSK866 analogs with cysteine reactive warheads Type Administrative Services
  Year 2017 Publication Frontiers in immunology Abbreviated Journal Front Immunol  
  Volume 8 Issue Pages 1324  
  Keywords Administrative Services; A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Medicinal Chemistry (UAMC)  
  Abstract Synthetic glucocorticoids (GC) are the mainstay therapy for treatment of acute and chronic inflammatory disorders. Due to the high adverse effects associated with long-term use, GC pharmacology has focused since the nineties on more selective GC ligand-binding strategies, classified as selective glucocorticoid receptor (GR) agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). In the current study, GSK866 analogs with electrophilic covalent-binding warheads were developed with potential SEGRA properties to improve their clinical safety profile for long-lasting topical skin disease applications. Since the off-rate of a covalently binding drug is negligible compared to that of a non-covalent drug, its therapeutic effects can be prolonged and typically, smaller doses of the drug are necessary to reach the same level of therapeutic efficacy, thereby potentially reducing systemic side effects. Different analogs of SEGRA GSK866 coupled to cysteine reactive warheads were characterized for GR potency and selectivity in various biochemical and cellular assays. GR- and NFκB-dependent reporter gene studies show favorable anti-inflammatory properties with reduced GR transactivation of two non-steroidal GSK866 analogs UAMC-1217 and UAMC-1218, whereas UAMC-1158 and UAMC-1159 compounds failed to modulate cellular GR activity. These results were further supported by GR immuno-localization and S211 phospho-GR western analysis, illustrating significant GR phosphoactivation and nuclear translocation upon treatment of GSK866, UAMC-1217, or UAMC-1218, but not in case of UAMC-1158 or UAMC-1159. Furthermore, mass spectrometry analysis of tryptic peptides of recombinant GR ligand-binding domain (LBD) bound to UAMC-1217 or UAMC-1218 confirmed covalent cysteine-dependent GR binding. Finally, molecular dynamics simulations, as well as glucocorticoid receptor ligand-binding domain (GR-LBD) coregulator interaction profiling of the GR-LBD bound to GSK866 or its covalently binding analogs UAMC-1217 or UAMC-1218 revealed subtle conformational differences that might underlie their SEGRA properties. Altogether, GSK866 analogs UAMC-1217 and UAMC-1218 hold promise as a novel class of covalent-binding SEGRA ligands for the treatment of topical inflammatory skin disorders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Place of publication unknown Editor  
  Language Wos 000414136300001 Publication Date 2017-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-3224 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.429 Times cited 2 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 6.429  
  Call Number UA @ lucian @ c:irua:146485 Serial 4750  
Permanent link to this record
 

 
Author Mirzakhani, M. url  openurl
  Title Electronic properties and energy levels of graphene quantum dots Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:147179 Serial 4781  
Permanent link to this record
 

 
Author Klinkhammer, C.; Verlackt, C.; Smilowicz, D.; Kogelheide, F.; Bogaerts, A.; Metzler-Nolte, N.; Stapelmann, K.; Havenith, M.; Lackmann, J.-W. url  doi
openurl 
  Title Elucidation of plasma-induced chemical modifications on glutathione and glutathione disulphide Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 13828  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000413401300003 Publication Date 2017-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 17 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146666 Serial 4783  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Luisier, M.; Pourtois, G. url  doi
openurl 
  Title Impact of layer alignment on the behavior of MoS2-ZrS2 tunnel field-effect transistors : an ab initio study Type A1 Journal article
  Year 2017 Publication Physical review applied Abbreviated Journal Phys Rev Appl  
  Volume 8 Issue 3 Pages 034017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Tunnel field-effect transistors based on van der Waals heterostructures are emerging device concepts for low-power applications, auguring sub-60 mV/dec subthreshold swing values. In these devices, the channel is built from a stack of several different two-dimensional materials whose nature allows tailoring the band alignments and enables a good electrostatic control of the device. In this work, we propose a theoretical study of the variability of the performances of a MoS2-ZrS2 tunnel field-effect transistor induced by fluctuations of the relative position or the orientation of the layers. Our results indicate that although a steep subthreshold slope (20 mV/dec) is achievable, fluctuations in the relative orientation of the ZrS2 layer with respect to the MoS2 one lead to a significant variability in the tunneling current by about one decade. This arises from changes in the orbital overlap between the layers and from the modulation of the transport direction.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000411460400001 Publication Date 2017-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited 6 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.808  
  Call Number UA @ lucian @ c:irua:146741 Serial 4785  
Permanent link to this record
 

 
Author Torfs, E.; Vajs, J.; Bidart de Macedo, M.; Cools, F.; Vanhoutte, B.; Gorbanev, Y.; Bogaerts, A.; Verschaeve, L.; Caljon, G.; Maes, L.; Delputte, P.; Cos, P.; Komrlj, J.; Cappoen, D. pdf  url
doi  openurl
  Title Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds Type A1 Journal article
  Year 2017 Publication Chemical biology and drug design Abbreviated Journal Chem Biol Drug Des  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The diverse pharmacological properties of the diaryltriazenes have sparked the interest to investigate their potential to be repurposed as antitubercular drug candidates. In an attempt to improve the antitubercular activity of a previously constructed diaryltriazene library, eight new halogenated nitroaromatic triazenides were synthesized and underwent biological evaluation. The potency of the series was confirmed against the Mycobacterium tuberculosis lab strain H37Ra, and for the most potent derivative, we observed a minimal inhibitory concentration of 0.85 μm. The potency of the triazenide derivatives against M. tuberculosis H37Ra was found to be highly dependent on the nature of the halogenated phenyl substituent and less dependent on cationic species used for the preparation of the salts. Although the inhibitory concentration against J774A.1 macrophages was observed at 3.08 μm, the cellular toxicity was not mediated by the generation of nitroxide intermediate as confirmed by electron paramagnetic resonance spectroscopy, whereas no in vitro mutagenicity could be observed for the new halogenated nitroaromatic triazenides when a trifluoromethyl substituent was present on both the aryl moieties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000422952300027 Publication Date 2017-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1747-0277; 1747-0285; 1397-002x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.396 Times cited 5 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 2.396  
  Call Number UA @ lucian @ c:irua:147182 Serial 4794  
Permanent link to this record
 

 
Author Clima, S.; Belmonte, A.; Degraeve, R.; Fantini, A.; Goux, L.; Govoreanu, B.; Jurczak, M.; Ota, K.; Redolfi, A.; Kar, G.S.; Pourtois, G. pdf  doi
openurl 
  Title Kinetic and thermodynamic heterogeneity : an intrinsic source of variability in Cu-based RRAM memories Type A1 Journal article
  Year 2017 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 16 Issue 4 Pages 1011-1016  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The resistive random-access memory (RRAM) device concept is close to enabling the development of a new generation of non-volatile memories, provided that their reliability issues are properly understood. The design of a RRAM operating with extrinsic defects based on metallic inclusions, also called conductive bridge RAM, allows the use of a large spectrum of solid electrolytes. However, when scaled to device dimensions that meet the requirements of the latest technological nodes, the discrete nature of the atomic structure of the materials impacts the device operation. Using density functional theory simulations, we evaluated the migration kinetics of Cu conducting species in amorphous and solid electrolyte materials, and established that atomic disorder leads to a large variability in terms of defect stability and kinetic barriers. This variability has a significant impact on the filament resistance and its dynamics, as evidenced during the formation step of the resistive filament. Also, the atomic configuration of the formed filament can age/relax to another metastable atomic configuration, and lead to a modulation of the resistivity of the filament. All these observations are qualitatively explained on the basis of the computed statistical distributions of the defect stability and on the kinetic barriers encountered in RRAM materials.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Place of publication unknown Editor  
  Language Wos 000417598100004 Publication Date 2017-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 2 Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 1.526  
  Call Number UA @ lucian @ c:irua:148569 Serial 4883  
Permanent link to this record
 

 
Author Mehta, A.N.; Zhang, H.; Dabral, A.; Richard, O.; Favia, P.; Bender, H.; Delabie, A.; Caymax, M.; Houssa, M.; Pourtois, G.; Vandervorst, W. pdf  doi
openurl 
  Title Structural characterization of SnS crystals formed by chemical vapour deposition Type A1 Journal article
  Year 2017 Publication Journal of microscopy T2 – 20th International Conference on Microscopy of Semiconducting Materials, (MSM), APR 09-13, 2017, Univ Oxford, Univ Oxford, Oxford, ENGLAND Abbreviated Journal J Microsc-Oxford  
  Volume 268 Issue 3 Pages 276-287  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The crystal and defect structure of SnS crystals grown using chemical vapour deposition for application in electronic devices are investigated. The structural analysis shows the presence of two distinct crystal morphologies, that is thin flakes with lateral sizes up to 50 m and nanometer scale thickness, and much thicker but smaller crystallites. Both show similar Raman response associated with SnS. The structural analysis with transmission electron microscopy shows that the flakes are single crystals of -SnS with [010] normal to the substrate. Parallel with the surface of the flakes, lamellae with varying thickness of a new SnS phase are observed. High-resolution transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), first-principles simulations (DFT) and nanobeam diffraction (NBD) techniques are employed to characterise this phase in detail. DFT results suggest that the phase is a strain stabilised \u0027 one grown epitaxially on the -SnS crystals. TEM analysis shows that the crystallites are also -SnS with generally the [010] direction orthogonal to the substrate. Contrary to the flakes the crystallites consist of two to four grains which are tilted up to 15 degrees relative to the substrate. The various grain boundary structures and twin relations are discussed. Under high-dose electron irradiation, the SnS structure is reduced and -Sn formed. It is shown that this damage only occurs for SnS in direct contact with SiO2. Lay description SnS is a p-type semiconductor, which has attracted significant interest for electronic devices due to its unique properties, low-toxicity and abundance of Sn in nature. Although in the past it has been most extensively studied as the absorber material in solar cells, it has recently garnered interest for application as a p-type two-dimensional semiconductor in nanoelectronic devices due to its anisotropic layered structure similar to the better known phosphorene. Tin sulphide can take the form of several phases and the electronic properties of the material depend strongly on its crystal structure. It is therefore crucial to study the crystal structure of the material in order to predict the electronic properties and gain insight into the growth mechanism. In this work, SnS crystals deposited using a chemical vapour deposition technique are investigated extensively for their crystal and defect structure using transmission electron microscopy (TEM) and related techniques. We find the presence of two distinct crystal morphologies, that is thin flakes with lateral sizes up to 50 m and nm scale thickness, and much thicker but smaller crystallites. The flakes are single crystals of -SnS and contain lamellae with varying thickness of a different phase which appear to be -SnS at first glance. High-resolution scanning transmission electron microscopy is used to characterise these lamellae where the annular bright field (ABF) mode better reveals the position of the sulphur columns. The sulphur columns in the lamellae are found to be shifted relative to the -SnS structure which indicates the formation of a new phase which is a distorted version of the phase which we tentatively refer to as \u0027-SnS. Simulations based on density functional theory (DFT) are used to model the interface and a similar shift of sulphur columns in the -SnS layer is observed which takes place as a result of strong interaction at the interface between the two phases resulting in strain transfer. Nanobeam electron diffraction (NBD) is used to map the lattice mismatch in the thickness of the flakes which reveals good in-plane matching and some expansion out-of-plane in the lamellae. Contrary to the flakes the crystallites are made solely of -SnS and consist of two to four grains which are tilted up to 15 degrees relative to the substrate. The various grain boundary structures and twin relations are discussed. At high electron doses, SnS is reduced to -Sn, however the damage occurs only for SnS in direct contact with SiO2.'));  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Hoboken Editor  
  Language Wos 000415900300009 Publication Date 2017-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 2 Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 1.692  
  Call Number UA @ lucian @ c:irua:147692 Serial 4898  
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
  Year 2018 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 262 Issue 262 Pages 74-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.364  
  Call Number UA @ lucian @ c:irua:149854 Serial 4938  
Permanent link to this record
 

 
Author Yadav, D.K.; Kumar, S.; Saloni; Misra, S.; Yadav, L.; Teli, M.; Sharma, P.; Chaudhary, S.; Kumar, N.; Choi, E.H.; Kim, H.S.; Kim, M.-hyun url  doi
openurl 
  Title Molecular Insights into the Interaction of RONS and Thieno[3,2-c]pyran Analogs with SIRT6/COX-2: A Molecular Dynamics Study Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 8 Pages 4777  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract SIRT6 and COX-2 are oncogenes target that promote the expression of proinflammatory and pro-survival proteins through a signaling pathway, which leads to increased survival and proliferation of tumor cells. However, COX-2 also suppresses skin tumorigenesis and their relationship with SIRT6, making it an interesting target for the discovery of drugs with anti-inflammatory and anti-cancer properties. Herein, we studied the interaction of thieno[3,2-c] pyran analogs and RONS species with SIRT6 and COX-2 through the use of molecular docking and molecular dynamic simulations. Molecular docking studies revealed the importance of hydrophobic and hydrophilic amino acid residues for the stability. The molecular dynamics study examined conformational changes in the enzymes caused by the binding of the substrates and how those changes affected the stability of the protein-drug complex. The average RMSD values of the backbone atoms in compounds 6 and 10 were calculated from 1000 ps to 10000 ps and were found to be 0.13 nm for both compounds. Similarly, the radius of gyration values for compounds 6 and 10 were found to be 1.87 +/- 0.03 nm and 1.86 +/- 0.02 nm, respectively. The work presented here, will be of great help in lead identification and optimization for early drug discovery.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000427685200002 Publication Date 2018-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 10 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:150841 Serial 4974  
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P. url  doi
openurl 
  Title Self-assembly and clustering of magnetic peapod-like rods with tunable directional interaction Type A1 Journal article
  Year 2018 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 13 Issue 4 Pages e0195552  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Based on extensive Langevin Dynamics simulations we investigate the structural properties of a two-dimensional ensemble of magnetic rods with a peapod-like morphology, i.e, rods consisting of aligned single dipolar beads. Self-assembled configurations are studied for different directions of the dipole with respect to the rod axis. We found that with increasing misalignment of the dipole from the rod axis, the smaller the packing fraction at which the percolation transition is found. For the same density, the system exhibits different aggregation states for different misalignment. We also study the stability of the percolated structures with respect to temperature, which is found to be affected by the microstructure of the assembly of rods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited Open Access  
  Notes (up) Approved Most recent IF: 2.806  
  Call Number UA @ lucian @ c:irua:150778UA @ admin @ c:irua:150778 Serial 4977  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G. pdf  openurl
  Title Self-consistent 30-band simulation approach for (non-)uniformly strained confined heterostructure tunnel field-effect transistors Type P1 Proceeding
  Year 2017 Publication Simulation of Semiconductor Processes and, Devices (SISPAD)AND DEVICES (SISPAD 2017) Abbreviated Journal  
  Volume Issue Pages 29-32  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract Heterostructures of III-V materials under a mechanical strain are being actively researched to enhance the performance of the tunnel field-effect transistor (TFET). In scaled III-V device structures, however, the interplay between the effects of strain and quantum confinement on the semiconductor band structure and hence the performance is highly non-trivial. We have therefore developed a computationally efficient quantum mechanical simulator Pharos, which enables self-consistent full-zone k.p-based simulations of III-V TFETs under a general non-uniform strain. We present the self-consistent procedure and demonstrate it on confined staggered bandgap GaAs0.5Sb0.5/In0.53Ga0.47As TFETs. We find a large performance degradation due to size-induced quantum confinement compared to non-confined devices. We show that some performance can be regained either by applying a uniform biaxial tensile strain or through the non-uniform strain profile at a lattice-mismatched heterostructure.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-610-2 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149949 Serial 4978  
Permanent link to this record
 

 
Author Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X. pdf  url
doi  openurl
  Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 345 Issue 345 Pages 67-78  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Sequoia Place of Publication Lausanne Editor  
  Language Wos 000430696500008 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 25 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:151450 Serial 5036  
Permanent link to this record
 

 
Author Nematollahi, P.; Esrafili, M.D.; Neyts, E.C. pdf  url
doi  openurl
  Title The role of healed N-vacancy defective BC2N sheet and nanotube by NO molecule in oxidation of NO and CO gas molecules Type A1 Journal article
  Year 2018 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 672-673 Issue 672-673 Pages 39-46  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study, the healing of N-vacancy boron carbonitride nanosheet (NV-BC2NNS) and nanotube (NV-BC2NNT) by NO molecule is studied by means of density functional theory calculations. Two different N-vacancies are considered in each of these structures in which the vacancy site is surrounded by either three B-atoms (NB) or by two B- and one C-atom (NBC). By means of the healed BC2NNS and BC2NNT as a support, the removal of two toxic gas molecules (NO and CO) are applicable. It should be noted that the obtained energy barriers of both healing and oxidizing processes are significantly lower than those of graphene, carbon nanotubes or boron nitride nanostructures. Also, at the end of the oxidation process, the pure BC2NNS or BC2NNT is obtained without any additional defects. Therefore, by using this method, we can considerably purify the defective BC2NNS/BC2NNT. Moreover, according to the thermochemistry calculations we can further confirm that the healing process of the NV-BC2NNS and NV-BC2NNT by NO are feasible at room temperature. So, we can claim that this study could be very helpful in both purifying the defective BC2NNS/BC2NNT while in the same effort removing toxic NO and CO gases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000432614700007 Publication Date 2018-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.062 Times cited 1 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 2.062  
  Call Number UA @ lucian @ c:irua:151478 Serial 5044  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Radu, I.; Neyts, E.C.; De Gendt, S. pdf  doi
openurl 
  Title Thermal recrystallization of short-range ordered WS2 films Type A1 Journal article
  Year 2018 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 36 Issue 5 Pages 05g501  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The integration of van der Waals materials in nanoelectronic devices requires the deposition of few-layered MX2 films with excellent quality crystals covering a large area. In recent years, astonishing progress in the monolayer growth of WS2 and MoS2 was demonstrated, but multilayer growth resulted often in separated triangular or hexagonal islands. These polycrystalline films cannot fully employ the specific MX2 properties since they are not connected in-plane to the other domains. To coalesce separated islands, ultrahigh-temperature postdeposition anneals in H2S are applied, which are not compatible with bare silicon substrates. Starting from the deposition of stoichiometric short-ordered films, the present work studies different options for subsequent high-temperature annealing in an inert atmosphere to form crystalline films with large grains from stoichiometric films with small grains. The rapid thermal annealing, performed over a few seconds, is compared to excimer laser annealing in the nanosecond range, which are both able to crystallize the thin WS2. The WS2 recrystallization temperature can be lowered using metallic crystallization promoters (Co and Ni). The best result is obtained using a Co cap, due to the circumvention of Co and S binary phase formation below the eutectic temperature. The recrystallization above a critical temperature is accompanied by sulfur loss and 3D regrowth. These undesired effects can be suppressed by the application of a dielectric capping layer prior to annealing. A SiO2 cap can suppress the sulfur loss successfully during annealing and reveals improved material quality in comparison to noncapped films Published by the AVS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000444033200002 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 2 Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 1.374  
  Call Number UA @ lucian @ c:irua:153671 Serial 5134  
Permanent link to this record
 

 
Author Heyne, M.H.; Marinov, D.; Braithwaite, N.; Goodyear, A.; de Marneffe, J.-F.; Cooke, M.; Radu, I.; Neyts, E.C.; De Gendt, S. pdf  doi
openurl 
  Title A route towards the fabrication of 2D heterostructures using atomic layer etching combined with selective conversion Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 3 Pages 035030  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Heterostructures of low-dimensional semiconducting materials, such as transition metal dichalcogenides (MX2), are promising building blocks for future electronic and optoelectronic devices. The patterning of one MX2 material on top of another one is challenging due to their structural similarity. This prevents an intrinsic etch stop when conventional anisotropic dry etching processes are used. An alternative approach consist in a two-step process, where a sacrificial silicon layer is pre-patterned with a low damage plasma process, stopping on the underlying MoS2 film. The pre-patterned layer is used as sacrificial template for the formation of the top WS2 film. This study describes the optimization of a cyclic Ar/Cl-2 atomic layer etch process applied to etch silicon on top of MoS2, with minimal damage, followed by a selective conversion of the patterned Si into WS2. The impact of the Si atomic layer etch towards the MoS2 is evaluated: in the ion energy range used for this study, MoS2 removal occurs in the over-etch step over 1-2 layers, leading to the appearance of MoOx but without significant lattice distortions to the remaining layers. The combination of Si atomic layer etch, on top of MoS2, and subsequent Si-to-WS2 selective conversion, allows to create a WS2/MoS2 heterostructure, with clear Raman signals and horizontal lattice alignment. These results demonstrate a scalable, transfer free method to achieve horizontally individually patterned heterostacks and open the route towards wafer-level processing of 2D materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468335500004 Publication Date 2019-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:160229 Serial 5266  
Permanent link to this record
 

 
Author Dabral, A.; Lu, A.K.A.; Chiappe, D.; Houssa, M.; Pourtois, G. pdf  doi
openurl 
  Title A systematic study of various 2D materials in the light of defect formation and oxidation Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 3 Pages 1089-1099  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The thermodynamic aspects of various 2D materials are explored using Density Functional Theory (DFT). Various metal chalcogenides (MX2, M = metal, chalcogen X = S, Se, Te) are investigated with respect to their interaction and stability under different ambient conditions met in the integration process of a transistor device. Their interaction with high- dielectrics is also addressed, in order to assess their possible integration in Complementary Metal Oxide Semiconductor (CMOS) field effect transistors. 2D materials show promise for high performance nanoelectronic devices, but the presence of defects (vacancies, grain boundaries,...) can significantly impact their electronic properties. To assess the impact of defects, their enthalpies of formation and their signature levels in the density of states have been studied. We find, consistently with literature reports, that chalcogen vacancies are the most likely source of defects. It is shown that while pristine 2D materials are in general stable whenever set in contact with different ambient atmospheres, the presence of defective sites affects the electronic properties of the 2D materials to varying degrees. We observe that all the 2D materials studied in the present work show strong reactivity towards radical oxygen plasma treatments while reactivity towards other common gas phase chemical such as O-2 and H2O and groups present at the high- surface varies significantly between species. While energy band-gaps, effective masses and contact resistivities are key criteria in selection of 2D materials for scaled CMOS and tunneling based devices, the phase and ambient stabilities might also play a very important role in the development of reliable nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456147000009 Publication Date 2018-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:156715 Serial 5267  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C. pdf  doi
openurl 
  Title Effects of silicon doping on strengthening adhesion at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2019 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 159 Issue 159 Pages 228-234  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper we employ first-principles calculations to investigate the effect of substitutional Si doping in the amorphous calcium-phosphate (a-HAP) structure on the work of adhesion, integral charge transfer, charge density difference and theoretical tensile strengths between an a-HAP coating and amorphous titanium dioxide (a-TiO2) substrate systemically. Our calculations demonstrate that substitution of a P atom by a Si atom in a-HAP (a-Si-HAP) with the creation of OH-vacancies as charge compensation results in a significant increase of the bonding strength of the coating to the substrate. The work of adhesion of the optimized Si-doped interfaces reaches a value of up to -2.52 J m(-2), which is significantly higher than for the stoichiometric a-HAP/a-TiO2. Charge density difference analysis indicates that the dominant interactions at the interface have significant covalent character, and in particular two Ti-O and three Ca-O bonds are formed for a-Si-HAP/a-TiO2 and one Ti-O and three Ca-O bonds for a-HAP/a-TiO2. From the stress-strain curve, the Young's modulus of a-Si-HAP/a-TiO2 is calculated to be about 25% higher than that of the a-HAP/a-TiO2, and the yielding stress is about 2 times greater than that of the undoped model. Our calculations therefore demonstrate that the presence of Si in the a-HAP structure strongly alters not only the bioactivity and resorption rates, but also the mechanical properties of the a-HAP/a-TiO2 interface. The results presented here provide an important theoretical insight into the nature of the chemical bonding at the a-HAP/a-TiO2 interface, and are particularly significant for the practical medical applications of HAP-based biomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457856900023 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 1 Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 2.292  
  Call Number UA @ admin @ c:irua:157480 Serial 5272  
Permanent link to this record
 

 
Author Gu, J.-G.; Zhang, Y.; Gao, M.-X.; Wang, H.-Y.; Zhang, Q.-Z.; Yi, L.; Jiang, W. pdf  doi
openurl 
  Title Enhancement of surface discharge in catalyst pores in dielectric barrier discharges Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 15 Pages 153303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The generation of high-density plasmas on the surface of porous catalysts is very important for plasma catalysis, as it determines the active surface of the catalyst that is available for the reaction. In this work, we investigate the mechanism of surface and volume plasma streamer formation and propagation near micro-sized pores in dielectric barrier discharges operating in air at atmospheric pressure. A two-dimensional particle-in-cell/ Monte Carlo collision model is used to model the individual kinetic behavior of plasma species. Our calculations indicate that the surface discharge is enhanced on the surface of the catalyst pores compared with the microdischarge inside the catalyst pores. The reason is that the surface ionization wave induces surface charging along the catalyst pore sidewalls, leading to a strong electric field along the pore sidewalls, which in turn further enhances the surface discharge. Therefore, highly concentrated reactive species occur on the surfaces of the catalyst pores, indicating high-density plasmas on the surface of porous catalysts. Indeed, the maximum electron impact excitation and ionization rates occur on the pore surface, indicating the more pronounced production of excited state and electron-ion pairs on the pore surface than inside the pore, which may profoundly affect the plasma catalytic process. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465441200022 Publication Date 2019-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:160397 Serial 5273  
Permanent link to this record
 

 
Author Brault, P.; Chamorro-Coral, W.; Chuon, S.; Caillard, A.; Bauchire, J.-M.; Baranton, S.; Coutanceau, C.; Neyts, E. pdf  doi
openurl 
  Title Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source Type A1 Journal article
  Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 13 Issue 2 Pages 324-329  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468848400009 Publication Date 2019-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited 3 Open Access Not_Open_Access  
  Notes (up) Approved Most recent IF: 1.712  
  Call Number UA @ admin @ c:irua:160278 Serial 5276  
Permanent link to this record
 

 
Author Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title CO2 activation on TiO2-supported Cu5 and Ni5 nanoclusters : effect of plasma-induced surface charging Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 11 Pages 6516-6525  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Surface charging is an often overlooked factor in many plasma-surface interactions and in particular in plasma catalysis. In this study, we investigate the effect of excess electrons induced by a plasma on the adsorption properties of CO2 on titania-supported Cu-5 and Ni-5 clusters using spin-polarized and dispersion-corrected density functional theory calculations. The effect of excess electrons on the adsorption of Ni and Cu pentamers as well as on CO2 adsorption on a pristine anatase TiO2(101) slab is studied. Our results indicate that adding plasma-induced excess electrons to the system leads to further stabilization of the bent CO2 structure. Also, dissociation of CO2 on charged clusters is energetically more favorable than on neutral clusters. We hypothesize that surface charge is a plausible cause for the synergistic effects sometimes observed in plasma catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462260700024 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 4 Open Access OpenAccess  
  Notes (up) Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:159422 Serial 5281  
Permanent link to this record
 

 
Author Ramakers, M. openurl 
  Title Using a gliding arc plasmatron for CO2 conversion : the future in industry? Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 235 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record;  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158254 Serial 5282  
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H. pdf  doi
openurl 
  Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
  Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469200401163 Publication Date 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160468 Serial 5365  
Permanent link to this record
 

 
Author Vervaet, B.A.; Nast, C.C.; Jayasumana, C.; Schreurs, G.; Roels, F.; Herath, C.; Kojc, N.; Samaee, V.; Rodrigo, S.; Gowrishankar, S.; Mousson, C.; Dassanayake, R.; Orantes, C.M.; Vuiblet, V.; Rigothier, C.; d' Haese, P.C.; de Broe, M.E. url  doi
openurl 
  Title Chronic interstitial nephritis in agricultural communities is a toxin induced proximal tubular nephropathy Type A1 Journal article
  Year 2019 Publication Kidney international Abbreviated Journal Kidney Int  
  Volume 97 Issue 97 Pages 350-369  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory Experimental Medicine and Pediatrics (LEMP); Pathophysiology  
  Abstract Almost 30 years after the detection of chronic interstitial nephritis in agricultural communities (CINAC) its etiology remains unknown. To help define this we examined 34 renal biopsies from Sri Lanka, El Salvador, India and France of patients with chronic kidney disease 2-3 and diagnosed with CINAC by light and electron microscopy. In addition to known histopathology, we identified a unique constellation of proximal tubular cell findings including large dysmorphic lysosomes with a light-medium electron-dense matrix containing dispersed dark electron-dense non-membrane bound “aggregates”. These aggregates associated with varying degrees of cellular/tubular atrophy, apparent cell fragment shedding and no-weak proximal tubular cell proliferative capacity. Identical lysosomal lesions, identifiable by electron microscopy, were observed in 9% of renal transplant implantation biopsies, but were more prevalent in six month (50%) and 12 month (67%) protocol biopsies and in indication biopsies (76%) of calcineurin inhibitor treated transplant patients. The phenotype was also found associated with nephrotoxic drugs (lomustine, clomiphene, lithium, cocaine) and in some patients with light chain tubulopathy, all conditions that can be directly or indirectly linked to calcineurin pathway inhibition or modulation. One hundred biopsies of normal kidneys, drug/toxin induced nephropathies, and overt proteinuric patients of different etiologies to some extent could demonstrate the light microscopic proximal tubular cell changes, but rarely the electron microscopic lysosomal features. Rats treated with the calcineurin inhibitor cyclosporine for four weeks developed similar proximal tubular cell lysosomal alterations, which were absent in a dehydration group. Overall, the finding of an identical proximal tubular cell (lysosomal) lesion in CINAC and calcineurin inhibitor nephrotoxicity in different geographic regions suggests a common paradigm where CINAC patients undergo a tubulotoxic mechanism similar to calcineurin inhibitor nephrotoxicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508449300020 Publication Date 2019-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0085-2538; 1523-1755 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.395 Times cited Open Access  
  Notes (up) Approved Most recent IF: 8.395  
  Call Number UA @ admin @ c:irua:164305c:irua:166544 Serial 5384  
Permanent link to this record
 

 
Author Van der Donck, M. url  openurl
  Title Excitonic complexes in transition metal dichalcogenides and related materials Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 224 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:162525 Serial 5412  
Permanent link to this record
 

 
Author Šmit, Ž.; Janssens, K.; Schalm, O.; Kos, M. openurl 
  Title Analysis of façon-de-Venise glass originating from Central and Western Europe Type H3 Book chapter
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 165-176  
  Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (up) Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:52705 Serial 5467  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: