|   | 
Details
   web
Records
Author Cotte, M.; Susini, J.; Dik, J.; Janssens, K.
Title Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward Type A1 Journal article
Year 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 43 Issue 6 Pages 705-714
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the objects history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered alteration phenomena and can dramatically alter the objects original visual properties. In such cases, the bulk elemental composition is usually unchanged. Hence, monitoring oxidation state (or, more generally, other chemical modifications) can be of great importance. Recent applications of XAS in art conservation are reviewed and new trends are discussed, highlighting the value (and future possibilities) of XAS, which remains, given its potential, underutilized in the CH community.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278842500003 Publication Date 2010-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 74 Open Access
Notes ; ; Approved Most recent IF: 20.268; 2010 IF: 21.852
Call Number UA @ admin @ c:irua:83982 Serial 5861
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Cotte, M.; Romani, A.; Sorace, L.; Grazia, C.; Brunetti, B.G.; Miliani, C.
Title Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light Type A1 Journal article
Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 30 Issue 7 Pages 1500-1510
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Light-induced redox processes have been established as the cause of the chromatic alterations of a number of artists' pigments used from the 15th to the 20th century. Despite the fact that a general comprehension of the mechanisms has been provided through the characterization of photo-degraded compounds, both exhaustive information on the wavelength-dependence of the alteration process of the pigments and experimental evidence in how visible light may influence the formation pathways of specific secondary compounds are still lacking. Establishing an analytical protocol for the study of wavelength-dependence of pigments on photo-redox pathways is relevant for the safe illumination of paintings, especially in view of the possible use of spectrally tunable light sources such as white light emitting diodes (WLEDs). In this work, we propose an integrated approach based on a combination of diffuse reflectance UV-visible, synchrotron radiation (SR)-based micro X-ray fluorescence (m-XRF)/X-ray absorption near edge structure (m-XANES) and electron paramagnetic resonance (EPR) spectroscopies to study the photo-redox process of Cr(VI) -> Cr(III) for lead chromate yellows (PbCr1-xSxO4, 0 <= x <= 0.8) under exposure to different monochromatic light. In view of the thin (3-5 mm) alteration layer that is formed at the paint surface after light exposure, SR-based Cr K-edge mu-XANES/mu-XRF analysis was employed to obtain information on the abundance, nature and distribution of the alteration of Cr(III)-compounds at the micrometricscale level. On the other hand, EPR spectroscopy was used as a complementary tool to the SR-based X-ray methods due to its sensitivity for revealing species containing one or more unpaired electrons and for distinguishing different coordination geometries of paramagnetic centers, such as Cr(V)-species. Semi-quantitative indications about the darkening of the paint surface were obtained by UV-Vis spectroscopy. An abundance of reduced Cr down to around 50% was detected at the aged surface of chrome yellow paints. The reduction process was favored not only by wavelengths shorter than 460 nm (i.e., where the pigment shows its maximum absorption) but also by light in the 490-530 nm range. The first evidence of the presence of Cr(V)-intermediates in the Cr(VI) -> Cr(III) reduction reaction allowed the risks of inducing photo-degradation of the 490-530 nm wavelength range to be explained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000356971900004 Publication Date 2015-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 17 Open Access
Notes ; This research was supported by the Italian projects PRIN-(SICH) and PON- (ITACHA) and by Belgian Science Policy project S2-ART (BELSPO S4DA), the GOA “SOLARPAINT” (Research Fund Antwerp University, Belgium) and FWO (Brussels, Belgium) projects no. G.0C12.13, G.0704.08 and G.01769.09. ESRF is acknowledged for the grants received (experiments HG18 and HG26). L.S. and L.M. acknowledge the financial support of Ente-CRF and CNR-Short Term Mobility Programme 2013, respectively. ; Approved Most recent IF: 3.379; 2015 IF: 3.466
Call Number UA @ admin @ c:irua:127059 Serial 5862
Permanent link to this record
 

 
Author Janssens, K.; Vincze, L.; Adams, F.; Jones, K.W.
Title Synchrotron radiation-induced X-ray microanalysis Type A1 Journal article
Year 1993 Publication Analytica chimica acta Abbreviated Journal
Volume 283 Issue Pages 98-119
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1993MK02800009 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:6107 Serial 5865
Permanent link to this record
 

 
Author Janssens, K.; Vincze, L.; Vekemans, B.; Aerts, A.; Adams, F.; Jones, K.W.; Knöchel, A.
Title Synchrotron radiation induced X-ray microfluorescence analysis Type A1 Journal article
Year 1996 Publication Microchimica acta T2 – 4th Workshop of the European-Microanalysis-Society on Modern, Developments and Applications in Microbeam Analysis, MAY, 1995, ST MALO, FRANCE Abbreviated Journal 4th Workshop of the European-Microanalysis-Society on Modern, Developments and Applications in Micro
Volume Issue s:[13] Pages 87-115
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract mu-XRF is the microscopic equivalent of the well-established multielement analytical technique. In this paper, after comparing the interaction of X-ray photons, electrons and protons with matter and an introduction to synchrotron rings and microfocussing of X-rays, the instrumentation for mu-XRF is discussed, both for laboratory source and synchrotron based setups and the analytical characteristics of mu-XRF are contrasted to that of other microanalytical techniques, Also, this issue of quantification of mu-XRF data is addressed; the applicability of the method in archeological and geological analysis is illustrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1996VT82300006 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:104410 Serial 5866
Permanent link to this record
 

 
Author Kuckova, S.; Hamidi-Asl, E.; Matulkova, I.; Hynek, R.; De Wael, K.; Sanyova, J.; Janssens, K.
Title Technoques and applications of Surface-Enhanced Raman Scattering Spectroscopy (SERSS) focused on cultural heritage Type A1 Journal article
Year 2018 Publication Chemické listy Abbreviated Journal Chem Listy
Volume 112 Issue 5 Pages 312-316
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The review is devoted to a modern method of vibrational spectroscopy – surface enhanced Raman spectroscopy Its principle and some of its special variants (imunnoSERS and TERS (Tip-Enhanced Raman Spectroscopy)) are described m a simpinified manner Wide application possibilities are demonstrated on selected examples from its application m culturinl heritage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2770; 1213-7103 ISBN Additional Links UA library record; WoS full record
Impact Factor 0.387 Times cited Open Access
Notes ; ; Approved Most recent IF: 0.387
Call Number UA @ admin @ c:irua:151616 Serial 5869
Permanent link to this record
 

 
Author Cotte, M.; Pouyet, E.; Salome, M.; Rivard, C.; De Nolf, W.; Castillo-Michel, H.; Fabris, T.; Monico, L.; Janssens, K.; Wang, T.; Sciau, P.; Verger, L.; Cormier, L.; Dargaud, O.; Brun, E.; Bugnazet, D.; Fayard, B.; Hesse, B.; del Real, A.E.P.; Veronesi, G.; Langlois, J.; Balcar, N.; Vandenberghe, Y.; Sole, V.A.; Kieffer, J.; Barrett, R.; Cohen, C.; Cornu, C.; Baker, R.; Gagliardini, E.; Papillon, E.; Susini, J.
Title The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials Type A1 Journal article
Year 2017 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 32 Issue 3 Pages 477-493
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The ID21 beamline (European Synchrotron Radiation facility, France) is a multi micro-analytical platform combining X-ray and infrared micro-probes, for characterization of elements, species, molecular groups and crystalline structures in complex materials. Applications are mainly in the fields of cultural heritage, life science, environmental and earth sciences, materials sciences. Here, we first present the status of instruments: (i) the scanning micro-spectroscopy end-station, operating from 2.0 to 9.2 keV, under vacuum and offering cryo conditions, for the acquisition of 2D micro X-ray fluorescence (mu XRF) maps, single point micro X-ray Absorption Near Edge Structure (mu XANES) spectra and speciation maps with sub-micrometric resolution; (ii) the XANES full-field end-station, operating in the same vacuum and energy conditions, for the acquisition of hyper-spectral radiographs of thin concentrated samples, resulting in speciation maps with micrometric resolution and millimetric field of view; (iii) the scanning micro-X-ray diffraction (mu XRD)/mu XRF end-station, operating at 8.5 keV, in air, for the acquisition of 2D crystalline phase maps, with micrometric resolution; and (iv) the scanning infrared microscope, operating in the mid-infrared range for the acquisition of molecular maps and some structural maps with micrometric resolution. Recent hardware and software developments are presented, as well as new protocols for improved sample preparation of thin sections. Secondly, a review of recent applications for the study of cultural heritage is presented, illustrated by various examples: determination of the origin of the color in blue Chinese porcelains and in brown Sevres porcelains; detection of lead in ink on Herculaneum papyri; identification and degradation of modeling materials used by Auguste Rodin and of chrome yellow pigments used by Vincent van Gogh. Cryo capabilities are illustrated by the analysis of plants exposed to chromate solutions. These examples show the variety of materials analyzed, of questions tackled, and particularly the multiple advantages of the ID21 analytical platform for the analysis of ancient and artistic materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396286900002 Publication Date 2016-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 39 Open Access
Notes ; ; Approved Most recent IF: 3.379
Call Number UA @ admin @ c:irua:142493 Serial 5874
Permanent link to this record
 

 
Author Cagno, S.; Cosyns, P.; Ceglia, A.; Nys, K.; Janssens, K.
Title The use of vitrum obsianum in the Roman Empire: some new insights and future prospects Type A1 Journal article
Year 2015 Publication Periodico di mineralogia Abbreviated Journal Period Mineral
Volume 84 Issue 3a Pages 465-482
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The research on the use of obsidian in the Mediterranean is extensive but concerns almost exclusively volcanic glass from prehistoric and Bronze Age contexts. The consumption of obsidian during the Roman imperial period, however, has only occasionally received attention. Never a comprehensive account on what the Romans made in vitrum obsianum has been set up, nor have the sources exploited by them been examined. This paper provides a concise overview of the current knowledge on obsidian during the Roman imperial period and offers an introductory outline on potential research. The ancient writers inform us about the use of volcanic glass to create exclusive vessels, gemstones, mirrors and sculpture, but also about the creation of black appearing man-made glass initiated as a cheap and easier workable substitute of obsidian. The archaeological data on the other hand propose a more complex story with the occurrence of obsidian chunks in early Roman secondary glass workshops, and the bulky use of obsidian in late Antiquity to produce tesserae for the creation of wall and vault mosaics. Because it is extremely difficult to visually distinguish natural obsidian from man-made glass imitations we present in this paper data collected by means of non-destructive chemico-physical analyses SEM-EDX, portable X-ray fluorescence (p-XRF) and Raman spectroscopy to easily distinguish man-made glass from natural obsidian. In particular the use of portable instruments makes possible in situ analysis of objects in archaeological depots or museum collections to help defining distribution networks to better understand the shifting consumption patterns in Antiquity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000365632500007 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0369-8963 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.883 Times cited 2 Open Access
Notes ; Our sincere gratitude goes to Cecile Evers and Natacha Masar to have granted permission for studying and analysing various obsidian artefacts within the collections of the Royal Museums of Art and History, Brussels (Belgium). We are also very grateful to Roald Doctor, Daniele Foy and Laudine Robin, respectively for having provided the material from Carthage, for the Sidi Jdidi tessera and Lyon. Our appreciation also goes to Ian Freestone and Andrew Meek respectively for having worked out and provided the internal report on the horse foreleg in the British Museum. Finally we wish to thank Jennifer Price, Maria Grazia Diani respectively for the information on the Stanwick fragment and the piece in the Pogliaghi-Varesse collection. This research was supported by the Hercules Foundation (Brussels) with the grant AUHA09004 and FWO (Brussels, Belgium) projects no. G.0C12.13 and G.01769.09 and partly by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223268/ F50. ; Approved Most recent IF: 0.883; 2015 IF: 0.464
Call Number UA @ admin @ c:irua:130244 Serial 5876
Permanent link to this record
 

 
Author Radepont, M.; Coquinot, Y.; Janssens, K.; Ezrati, J.-J.; de Nolf, W.; Cotte, M.
Title Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide Type A1 Journal article
Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 30 Issue 3 Pages 599-612
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The red pigment mercury sulfide, called cinnabar or vermilion, is well known to suffer from an alteration giving rise to a grey, grey-white or black color at the surface of degraded works of art. This phenomenon can dramatically affect the esthetical value of artworks. This work aims at assessing the factors (light, halides) influencing the instability of red mercury sulfide and understanding (by combining thermodynamic and experimental approaches) the chemical equilibria governing the formation and evolution of the different degradation compounds. From the thermodynamic study of the Hg-S-Cl-H2O system, it was concluded that Hg(0), Hg3S2Cl2, and Hg2Cl2 can be formed from the reaction of alpha-HgS with ClO(g). In the second part, the artificial ageing experiments presented were carried out on model samples following the conditions assessed in the first part, in order to reproduce natural ageing observed on red mercury sulfide. Similarly to degradation compounds detected on original works of art, mercury chlorine compounds such as calomel (Hg2Cl2) and corderoite (alpha-Hg3S2Cl2) were identified on the surface of alpha-HgS model samples, when exposed to light and a sodium hypochlorite solution. Sulfates were detected as well, and more particularly gypsum (CaSO4 center dot 2H(2)O) when Ca was originally present in the model sample. The relationship between color and composition is discussed as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000350650800005 Publication Date 2015-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 26 Open Access
Notes ; The authors gratefully acknowledge the ESRF for granting beamtime under proposal no. EC720. Michel Dubus is thanked for providing precious advices concerning ageing protocols. This research was supported by Belgian Science Policy project S2-ART (BELSPO S4DA), the GOA “SOLARPAINT” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) projects no. G.0C12.13, G.0704.08 and G.01769.09. ; Approved Most recent IF: 3.379; 2015 IF: 3.466
Call Number UA @ admin @ c:irua:125474 Serial 5877
Permanent link to this record
 

 
Author de Raedt, I.; Janssens, K.; Veeckman, J.; Vincze, L.; Vekemans, B.; Jeffries, T.
Title Trace analysis allows to distinguish between Venetian and facon-de-Venise glass vessels of the 16th and 17th century Type A1 Journal article
Year 2001 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 16 Issue 9 Pages 1012-1017
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000171287600020 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 49 Open Access
Notes Approved Most recent IF: 3.379; 2001 IF: 3.305
Call Number UA @ admin @ c:irua:34090 Serial 5878
Permanent link to this record
 

 
Author Šmit, Ž.; Bulska, E.; Janssens, K.; Bulska, E.; Wagner, B.; Kos, M.; Lazar, I.
Title Trace element fingerprinting of façon-de-Venise glass Type A1 Journal article
Year 2005 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B
Volume 239 Issue 1/2 Pages 94-99
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000233514700012 Publication Date 2005-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.109 Times cited 27 Open Access
Notes Approved Most recent IF: 1.109; 2005 IF: 1.181
Call Number UA @ admin @ c:irua:56067 Serial 5879
Permanent link to this record
 

 
Author Aerts, A.; Janssens, K.; Adams, F.
Title Trace-level microanalysis of Roman glass from Khirbet Qumran, Israel Type A1 Journal article
Year 1999 Publication Journal of archaeological science Abbreviated Journal J Archaeol Sci
Volume 26 Issue Pages 883-891
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000082470800005 Publication Date 2002-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-4403 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.602 Times cited Open Access
Notes Approved Most recent IF: 2.602; 1999 IF: NA
Call Number UA @ admin @ c:irua:25299 Serial 5881
Permanent link to this record
 

 
Author Vanmeert, F.; De Keyser, N.; van Loon, A.; Klaassen, L.; Noble, P.; Janssens, K.
Title Transmission and reflection mode macroscopic x-ray powder diffraction imaging for the noninvasive visualization of paint degradation in still life paintings by Jan Davidsz. de Heem Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 11 Pages 7153-7161
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The use of noninvasive chemical imaging techniques is becoming more widespread for the study of cultural heritage artifacts. Recently a mobile instrument for macroscopic X-ray powder diffraction (MA-XRPD) scanning was developed, which is capable of visualizing the distribution of crystalline (pigment) phases in quasi-flat-painted artifacts. In this study, MA-XRPD is used in both transmission and reflection mode for the analysis of three 17th century still life paintings, two paintings by Jan Davidsz. de Heem (1606-1684) and one copy painting after De Heem by an unknown artist. MA-XRPD allowed to reveal and map the presence of in situ-formed alteration products. In the works examined, two rare lead arsenate minerals, schultenite (PbHAsO4) and mimetite (Pb-5(AsO4)(3)Cl), were encountered, both at and below the paint surface; they are considered to be degradation products of the pigments realgar (alpha-As4S4) and orpiment (As2S3). In transmission mode, the depletion of lead white, present in the (second) ground layer, could be seen, illustrating the intrusive nature of this degradation process. In reflection mode, several sulfate salts, palmierite (K2Pb(SO4)(2)), syngenite (K2Ca(SO4)(2)center dot H2O), and gypsum (CaSO4 center dot 2H(2)O), could be detected, in particular, at the (top) surface of the copy painting. Estimates for the information depth and sensitivity of both transmission and reflection mode MA-XRPD for various pigments have been made. The possibility of MA-XRPD to allow for noninvasive identification and visualization of alteration products is considered a significant advantage and unique feature of this method. MA-XRPD can thus provide highly relevant information for assessing the conservation state of artworks and could guide possible future restoration treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000470793800031 Publication Date 2019-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 5 Open Access
Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART and METOX projects, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, and the GOA Project Solarpaint (University of Antwerp Research Council). The authors thank the Rijksmuseum, the Royal Museum of Fine Arts Antwerp, and their staff for the collaborations. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:160245 Serial 5882
Permanent link to this record
 

 
Author Cosyns, P.; Vanderhoeven, A.; Vynckier, G.; Janssens, K.; Schalm, O.; Vanderlinden, V.
Title Two fragments of mold-blown glass beakers with Greek inscriptions from Tongeren (Belgium) Type A1 Journal article
Year 2005 Publication Journal of glass studies Abbreviated Journal
Volume 47 Issue Pages 179-183
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0075-4250 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:56123 Serial 5883
Permanent link to this record
 

 
Author Ayalew, E.; Janssens, K.; De Wael, K.
Title Unraveling the reactivity of minium towards bicarbonate and the role of lead oxides therein Type A1 Journal article
Year 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 88 Issue 3 Pages 1564-1569
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Understanding the reactivity of (semiconductor) pigments provides vital information on how to improve conservation strategies for works of art in order to avoid rapid degradation of the pigments. This study focuses on the photoactivity of minium (Pb3O4), a semiconductor pigment, that gives rise to strong discoloration phenomena upon exposure to various environmental conditions. To demonstrate its photoactivity, an electrochemical setup with minium-modified graphite electrode (C|Pb3O4) was used. It is confirmed that minium is a p-type semiconductor which is photoactive during illumination and becomes inactive in the dark. Raman measurements confirm the formation of the degradation products. The photoactivity of a semiconductor pigment is partly defined by the presence of lead oxide (PbO) impurities; these introduce new states in the original band gap. It will be experi-mentally evidenced that the presence of PbO particles in minium leads to an upward shift of the valence band that reduces the band gap. Thus, upon photoexcitation, the electron/hole separation is more easily initialized. The PbO/Pb3O4 composite electrodes demonstrate a higher reductive photocurrent compared to the photocurrent registered at pure PbO or Pb3O4 modified electrodes. Upon exposure to light with energy close to and above the band gap, electrons are excited from the valence band to the conduction band to initialize the reduction of Pb(IV) to Pb(II), resulting in the initial formation of PbO. However in the presence of bicarbonate ions, a significantly higher photoreduction current is recorded since the PbO reacts further to form hydrocerussite. Therefore the presence of bicarbonates in the environment stimulates the photodecomposition process of minium and plays an important role in the degradation process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369471100014 Publication Date 2015-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 9 Open Access
Notes ; The authors acknowledge Sanne Aerts from the Laboratory of Adsorption and Catalysis (LADCA) of the University of Antwerp for her help with the UV-vis-DR. Financial support from the SOLARPAINT BOF-GOA project (University of Antwerp Research Council) is acknowledged. The authors are also indebted to F. Vanmeert for performing the XRD measurements. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:129963 Serial 5888
Permanent link to this record
 

 
Author Kempenaers, L.; Bings, N.H.; Jeffries, T.E.; Vekemans, B.; Janssens, K.
Title The use of LA-ICP-MS for the characterization of the micro-heterogeneity of heavy metals in BCR CRM 680 Type A1 Journal article
Year 2001 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 16 Issue 9 Pages 1006-1011
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000171287600019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 23 Open Access
Notes Approved Most recent IF: 3.379; 2001 IF: 3.305
Call Number UA @ admin @ c:irua:34091 Serial 5893
Permanent link to this record
 

 
Author Janssens, K.; Vincze, L.; Vekemans, B.; Adams, F.; Haller, M.; Knöchel, A.
Title The use of lead-glass capillaries for microfocusing of highly energetic (0-60 KeV) synchrotron radiation Type A1 Journal article
Year 1998 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 13 Issue 5 Pages 339-350
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000073808900004 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited Open Access
Notes Approved Most recent IF: 3.379; 1998 IF: 3.845
Call Number UA @ admin @ c:irua:19321 Serial 5895
Permanent link to this record
 

 
Author Radepont, M.; de Nolf, W.; Janssens, K.; van der Snickt, G.; Coquinot, Y.; Klaassen, L.; Cotte, M.
Title The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (\alpha-Hg3S2Cl2), kenhsuite (\gamma-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings Type A1 Journal article
Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 26 Issue 5 Pages 959-968
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Since antiquity, the red pigment mercury sulfide (α-HgS), called cinnabar in its natural form or vermilion red when synthetic, was very often used in frescoes and paintings, even if it was known to suffer occasionally from degradation. The paint hereby acquires a black or silver-grey aspect. The chemical characterization of these alteration products is rather challenging mainly because of the micrometric size and heterogeneity of the surface layers that develop and that are responsible for the color change. Methods such as electron microscopy, synchrotron-based microscopic X-ray fluorescence, microscopic X-ray absorption near edge spectroscopy, Raman microscopy and secondary ion microscopy have been previously employed to identify the (Hg- and S-) compounds present and to study their co-localization. Next to these, also microscopic X-ray diffraction (XRD) (either by making use of laboratory X-ray sources or when used at a synchrotron facility) allows the identification of the crystal phases that are present in degraded HgS paint layers. In this paper we employ these various forms of micro-XRD to analyze degraded red paint in different paintings and compare the results with other X-ray based methods. Whereas the elemental analyses of the degradation products revealed, next to mercury and sulfur, the presence of chlorine, X-ray diffraction allowed the identification, next to α-HgS, of the Hg and S-containing compound calomel (Hg2Cl2) but also of the Hg, S and Cl-containing minerals corderoite (α-Hg3S2Cl2) and kenhsuite (γ-Hg3S2Cl2). These observations are consistent with X-ray absorption spectroscopy measurements performed at the S- and Cl-edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000289731900011 Publication Date 2011-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 40 Open Access
Notes ; The authors gratefully acknowledge GOA programme “XANES meets EELS'' (University of Antwerp Research Council), the IUAP VI/P16 programme ”Nacho'' (BELSPO, Brussels, Belgium) and FWO (Brussels, Belgium) projects no. G.0689.06, G.0704.08 and G017909N for financial support, the ESRF for granting beamtime under proposals no. EC442 and EC720, and Gema Martinez-Criado for practical help on ID18F. The KMSKA staff is also gratefully acknowledged for their help and interest. Javier Chillida is thanked for providing us with the Pedralbes samples. The authors are also indebted to the CHARISMA project (grant agreement 228330) for financial support. ; Approved Most recent IF: 3.379; 2011 IF: 3.220
Call Number UA @ admin @ c:irua:89927 Serial 5896
Permanent link to this record
 

 
Author Janssens, K.; Vittiglio, G.; Deraedt, I.; Aerts, A.; Vekemans, B.; Vincze, L.; Wei, F.; de Ryck, I.; Schalm, O.; Adams, F.; Rindby, A.; Knöchel, A.; Simionovici, A.S.; Snigirev, A.
Title Use of microscopic XRF for non-destructive analysis in art an archaeometry Type A1 Journal article
Year 2000 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom
Volume 29 Issue Pages 73-91
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000085107800010 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.298 Times cited Open Access
Notes Approved Most recent IF: 1.298; 2000 IF: 1.478
Call Number UA @ admin @ c:irua:27561 Serial 5897
Permanent link to this record
 

 
Author Kempenaers, L.; Vincze, L.; Janssens, K.
Title The use of synchrotron micro-XRF for characterisation of the micro-heterogeneity of low-Z reference materials Type A1 Journal article
Year 2000 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 55 Issue Pages 651-669
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000087765700008 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited Open Access
Notes Approved Most recent IF: 3.241; 2000 IF: 2.608
Call Number UA @ admin @ c:irua:28445 Serial 5900
Permanent link to this record
 

 
Author Janssens, K.; Alfeld, M.; van der Snickt, G.; de Nolf, W.; Vanmeert, F.; Radepont, M.; Monico, L.; et al.
Title The use of synchrotron radiation for the characterization of artists' pigments and paintings Type A1 Journal article
Year 2013 Publication Annual review of analytical chemistry Abbreviated Journal Annu Rev Anal Chem
Volume 6 Issue Pages 399-425
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We review methods and recent studies in which macroscopic to (sub)microscopic X-ray beams were used for nondestructive analysis and characterization of pigments, paint microsamples, and/or entire paintings. We discuss the use of portable laboratory- and synchrotron-based instrumentation and describe several variants of X-ray fluorescence (XRF) analysis used for elemental analysis and imaging and combined with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Macroscopic and microscopic (μ-)XRF variants of this method are suitable for visualizing the elemental distribution of key elements in paint multilayers. Technical innovations such as multielement, large-area XRF detectors have enabled such developments. The use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that take place during natural pigment alteration processes. However, synchrotron-based combinations of μ-XRF, μ-XAS, and μ-XRD are suitable for such studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000323887500019 Publication Date 2013-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-1327 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.435 Times cited 46 Open Access
Notes ; ; Approved Most recent IF: 7.435; 2013 IF: 7.814
Call Number UA @ admin @ c:irua:111315 Serial 5902
Permanent link to this record
 

 
Author Janssens, K.; Legrand, S.; van der Snickt, G.; Vanmeert, F.
Title Virtual archaeology of altered paintings : multiscale chemical imaging tools Type A1 Journal article
Year 2016 Publication Elements Abbreviated Journal Elements
Volume 12 Issue 1 Pages 39-44
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint's optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artefacts for future generations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370987700007 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1811-5209 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.038 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 4.038
Call Number UA @ admin @ c:irua:132301 Serial 5904
Permanent link to this record
 

 
Author Dik, J.; Janssens, K.; van der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M.
Title Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping Type A1 Journal article
Year 2008 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 80 Issue 16 Pages 6436-6442
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Vincent van Gogh (1853−1890), one of the founding fathers of modern painting, is best known for his vivid colors, his vibrant painting style, and his short but highly productive career. His productivity is even higher than generally realized, as many of his known paintings cover a previous composition. This is thought to be the case in one-third of his early period paintings. Van Gogh would often reuse the canvas of an abandoned painting and paint a new or modified composition on top. These hidden paintings offer a unique and intimate insight into the genesis of his works. Yet, current museum-based imaging tools are unable to properly visualize many of these hidden images. We present the first-time use of synchrotron radiation based X-ray fluorescence mapping, applied to visualize a womans head hidden under the work Patch of Grass by Van Gogh. We recorded decimeter-scale, X-ray fluorescence intensity maps, reflecting the distribution of specific elements in the paint layers. In doing so we succeeded in visualizing the hidden face with unprecedented detail. In particular, the distribution of Hg and Sb in the red and light tones, respectively, enabled an approximate color reconstruction of the flesh tones. This reconstruction proved to be the missing link for the comparison of the hidden face with Van Goghs known paintings. Our approach literally opens up new vistas in the nondestructive study of hidden paint layers, which applies to the oeuvre of Van Gogh in particular and to old master paintings in general.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000258448100039 Publication Date 2008-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 178 Open Access
Notes Approved Most recent IF: 6.32; 2008 IF: 5.712
Call Number UA @ admin @ c:irua:74466 Serial 5906
Permanent link to this record
 

 
Author Vermeulen, M.; Nuyts, G.; Sanyova, J.; Vila, A.; Buti, D.; Suuronen, J.-P.; Janssens, K.
Title Visualization of As(III) and As(V) distributions in degraded paint micro-samples from Baroque- and Rococo-era paintings Type A1 Journal article
Year 2016 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 31 Issue 9 Pages 1913-1921
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Orpiment and realgar, both arsenic sulfide pigments respectively used for their vivid yellow and red-orange hues, are two of many artists' pigments that appear not to be stable upon light exposure, quickly degrading to arsenic trioxide and arsenate. This often results in whitening or transparency in the painted surfaces. While conventional techniques such as microscopic Raman (mu-RS) and microscopic Fourier transform infrared (mu-FTIR) spectroscopies can allow a quick and relatively easy identification of the orpiment, realgar, artificial arsenic sulfide glass and, to some extent, arsenic oxide, the identification and visualization of distributions of the degradation products – and especially arsenate compounds – in the paint micro-samples is generally more challenging. This challenge is due to the rather unfavorable limit of detection and low spectral resolution of such conventional spectroscopic techniques. This restricts the conclusions that can be drawn regarding the conservation state of valuable works of art. In this paper, we present how synchrotron radiation (SR) based techniques can overcome this challenge while working on painting cross-sections taken from a 17th-century painting by the Flemish artist Daniel Seghers (oil on canvas, Statens Museum for Kunst, Denmark) and an 18th-century French Chinoiserie (private collection, France). SR micro-X-ray fluorescence (m-XRF) mapping analysis performed on a visually degraded orpiment-containing paint stratigraphy reveals that arsenic is distributed throughout the entire cross-section, while X-ray absorption near edge structure (mu-XANES) demonstrated that the arsenic is present in both arsenite (As-III) and arsenate (As-V) forms. The latter compound(s), despite being barely identifiable by means of FTIR, were not only located at the surface of large and partially altered grains of arsenic sulfide but also spread throughout the entire paint stratigraphy. Their presence and distribution are attributed either to the complete degradation of smaller arsenic sulfide grains or to migration of the arsenates within the paint layer away from their original location of formation. The combination of mu-XRF and mu-XANES was very useful for the characterization of the advanced degradation state of the arsenic-containing pigments in paint systems; this type of information could not be obtained by means of conventional spectroscopic methods of microanalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382071200017 Publication Date 2016-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 20 Open Access
Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (SD/RI/04A). The CATS gratefully acknowledge VILLUM FONDEN and VELUX FONDEN for infra-structural financial support as well as Anne Haack Christensen, Hannah Tempest and Johanne M. Nielsen for their help and suggestions. The European Synchrotron Radiation Facility is acknowledged for provision of synchrotron radiation facilities. ; Approved Most recent IF: 3.379
Call Number UA @ admin @ c:irua:135691 Serial 5907
Permanent link to this record
 

 
Author Alfeld, M.; Siddons, D.P.; Janssens, K.; Dik, J.; Woll, A.; Kirkham, R.; van de Wetering, E.
Title Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF Type A1 Journal article
Year 2013 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater
Volume 111 Issue 1 Pages 157-164
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In 17th century Old Master Paintings, the underpainting generally refers to the first sketch of a composition. The underpainting is applied to a prepared ground using a monochrome, brown oil paint to roughly indicate light, shade and contours. So far, methods to visualize the underpainting-other than in localized cross-sections-have been very limited. Neither infrared reflectography nor neutron induced autoradiography have proven to be practical, adequate visualization tools. Thus, although of fundamental interest in the understanding of a painting's genesis, the underpainting has virtually escaped all imaging efforts. In this contribution we will show that 17th century underpainting may consist of a highly heterogeneous mixture of pigments, including copper pigments. We suggest that this brown pigment mixture is actually the recycled left-over of a palette scraping. With copper as the heaviest exclusive elemental component, we will hence show in a case study on a Portrait of an Old Man attributed to Rembrandt van Rijn how scanning macro-XRF can be used to efficiently visualize the underpainting below the surface painting and how this information can contribute to the discussion of the painting's authenticity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316075700019 Publication Date 2012-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.455 Times cited 26 Open Access
Notes ; This research was supported by the SSD programme of BELSPO, Brussels (project S2-ART). The text also presents results of GOA 'XANES meets ELNES' (Research Fund, University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects nos. G.0704.08 and G.01769.09. Further, the research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 226716. M. Alfeld receives a Ph.D. fellowship of the Research Foundation-Flanders (FWO). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We acknowledge the assistance of C. Ryan, CSIRO Australia, in the preparation of the elemental maps using GeoPIXE and Rene Gerritsen (http://www.renegerritsen.nl) in providing photographs, XRR and IRR of the painting. We thank Sullivan Entertainment for documenting part of this project in their TV documentary 'Out of the shadows'. ; Approved Most recent IF: 1.455; 2013 IF: 1.694
Call Number UA @ admin @ c:irua:108263 Serial 5908
Permanent link to this record
 

 
Author Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K.
Title X-ray diffraction mapping for cultural heritage science : a review of experimental configurations and applications Type A1 Journal article
Year 2019 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 26 Issue 26 Pages 1703-1719
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract X-ray diffraction (XRD) mapping consists in the acquisition of XRD patterns at each pixel (or voxel) of an area (or volume). The spatial resolution ranges from the micrometer (mu XRD) to the millimeter (MA-XRD) scale, making the technique relevant for tiny samples up to large objects. Although XRD is primarily used for the identification of different materials in (complex) mixtures, additional information regarding the crystallite size, their orientation, and their in-depth distribution can also be obtained. Through mapping, these different types of information can be located on the studied sample/object. Cultural heritage objects are usually highly heterogeneous, and contain both original and later (degradation, conservation) materials. Their structural characterization is required both to determine ancient manufacturing processes and to evaluate their conservation state. Together with other mapping techniques, XRD mapping is increasingly used for these purposes. Here, the authors review applications as well as the various configurations for XRD mapping (synchrotron/laboratory X-ray source, poly-/monochromatic beam, micro/macro beam, 2D/3D, transmission/reflection mode). On-going hardware and software developments will further establish the technique as a key tool in heritage science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000501927300001 Publication Date 2019-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited Open Access
Notes ; M.C. thanks the KNAW for supporting her stays in the Netherlands through the Descartes Huygens price. V.G. and M.C. thank the Center of Research and Restoration of French Museums (C2RMF), Paris and in particular Myriam Eveno, for the collaboration on Rembrandt's impastos (Figure 7). M.C. is indebted to the Afghan government, NRICPT and in particular, Yoko Taniguchi for providing samples shown in Figure 5. K.J. and F.V. acknowledge the University of Antwerp Research Council for financial support via GOA project SolarPaint as well as InterReg project Smart*Light. FWO projects G057419N and G056619N are also acknowledged. The authors also wish to acknowledge the Van Gogh and Kroller-Muller museums, the Rijksmuseum, the Royal Museum of Fine Arts Antwerp and the Louvre museum for the constructive and inspiring collaborations in the past decade. Various beam lines and the staff at ESRF and DESY are thanked for providing beam time and support during experiments. ; Approved Most recent IF: 5.317
Call Number UA @ admin @ c:irua:165061 Serial 5911
Permanent link to this record
 

 
Author Vincze, L.; Janssens, K.; Adams, F.
Title X-ray optics for synchrotron-radiation-induced X-ray micro fluorescence at the european synchrotron-radiation facility, Grenoble Type A1 Journal article
Year 1993 Publication Institute of physics conference series Abbreviated Journal
Volume Issue 130 Pages 613-616
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Different optical designs for generating synchrotron x-ray micro beams suitable for use in an X-ray fluorescence microscope using an ESRF bending magnet X-ray source are compared. Attention is devoted to the spatial and energy distribution of the photons in the micro beam and to the minimum detection limits that are achievable with each alternative optical system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1993LW34000126 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-2346 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:104541 Serial 5917
Permanent link to this record
 

 
Author Ceglia, A.; Nuyts, G.; Cagno, S.; Meulebroeck, W.; Baert, K.; Cosyns, P.; Nys, K.; Thienpont, H.; Janssens, K.; Terryn, H.
Title A XANES study of chromophores : the case of black glass Type A1 Journal article
Year 2014 Publication Analytical methods Abbreviated Journal Anal Methods-Uk
Volume 6 Issue 8 Pages 2662-2671
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We studied the Fe K-edge X-ray absorption near edge (XANES) spectra of several Roman black glass fragments in order to determine the Fe3+/ΣFe ratio of these materials. The selected archaeological glass samples cover the period 1st5th century AD in nine different sites of the North Western provinces of the Roman Empire. The fragments belong to two different compositional groups demonstrating a diachronic evolution: early Roman HMG (High Magnesia Glass) and Roman Imperial LMG (Low Magnesia Glass). The first group contains natural Fe levels (below 2 wt% as Fe2O3), while the LMG has concentrations above 5 wt%. This difference is also reflected by Fe3+/ΣFe values. Low iron glass was produced under strongly reducing conditions in order to obtain the black colour, with average Fe3+/ΣFe values ≈ 0.17. LMG glass is somewhat more oxidised (Fe3+/ΣFe ≈ 0.40.5). While HMG glass required active control of the furnace environment, LMG was made under ambient atmosphere and its higher oxidation degree is mainly determined by the chemistry of the raw glass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000333524200032 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-9660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.9 Times cited 14 Open Access
Notes ; The authors are grateful to the staff of beamline L in HASYLAB for their helpful support. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 265010. Support from the University of Antwerp Research Council through GOA Programme “XANES meets ELNES” is gratefully acknowledged. This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223268/F50. We would like to thank M. P. Riccardi and E. Basso of the University of Pavia and R. Falcone of the Stazione Sperimentale del Vetro who provided us with the reference glasses. ; Approved Most recent IF: 1.9; 2014 IF: 1.821
Call Number UA @ admin @ c:irua:116596 Serial 5919
Permanent link to this record
 

 
Author de Nolf, W.; Vanmeert, F.; Janssens, K.
Title XRDUA : crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction Type A1 Journal article
Year 2014 Publication Journal of applied crystallography Abbreviated Journal
Volume 47 Issue 3 Pages 1107-1117
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Imaging of crystalline phase distributions in heterogeneous materials, either plane projected or in virtual cross sections of the object under investigation, can be achieved by scanning X-ray powder diffraction employing X-ray micro beams and X-ray-sensitive area detectors. Software exists to convert the two-dimensional powder diffraction patterns that are recorded by these detectors to one-dimensional diffractograms, which may be analysed by the broad variety of powder diffraction software developed by the crystallography community. However, employing these tools for the construction of crystalline phase distribution maps proves to be very difficult, especially when employing micro-focused X-ray beams, as most diffraction software tools have mainly been developed having structure solution in mind and are not suitable for phase imaging purposes. XRDUA has been developed to facilitate the execution of the complete sequence of data reduction and interpretation steps required to convert large sequences of powder diffraction patterns into a limited set of crystalline phase maps in an integrated fashion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336738500031 Publication Date 2014-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8898 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 62 Open Access
Notes ; The authors would like to thank the synchrotron beamline staff at ID15 (ESRF, Grenoble, France), MicroXAS (SLS, Villigen, Switzerland) and PO6/BL-L (Petra III/Hasylab, Hamburg, Germany) for accommodating the experiments presented in this paper. Support from FWO 'Big Science' project G0C1213N as well as from the BELSPO project 'S2ART' (SD/RI/04A) is acknowledged. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:117758 Serial 5920
Permanent link to this record
 

 
Author Pouyet, E.; Cotte, M.; Fayard, B.; Salome, M.; Meirer, F.; Mehta, A.; Uffelman, E.S.; Hull, A.; Vanmeert, F.; Kieffer, J.; Burghammer, M.; Janssens, K.; Sette, F.; Mass, J.
Title 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse Type A1 Journal article
Year 2015 Publication Applied physics A : materials science & processing Abbreviated Journal
Volume 121 Issue 3 Pages 967-980
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The chemical and physical alterations of cadmium yellow (CdS) paints in Henri Matisse's The Joy of Life (1905-1906, The Barnes Foundation) have been recognized since 2006, when a survey by portable X-ray fluorescence identified this pigment in all altered regions of the monumental painting. This alteration is visible as fading, discoloration, chalking, flaking, and spalling of several regions of light to medium yellow paint. Since that time, synchrotron radiation-based techniques including elemental and spectroscopic imaging, as well as X-ray scattering have been employed to locate and identify the alteration products observed in this and related works by Henri Matisse. This information is necessary to formulate one or multiple mechanisms for degradation of Matisse's paints from this period, and thus ensure proper environmental conditions for the storage and the display of his works. This paper focuses on 2D full-field X-ray Near Edge Structure imaging, 2D micro-X-ray Diffraction, X-ray Fluorescence, and Fourier Transform Infra-red imaging of the altered paint layers to address one of the long-standing questions about cadmium yellow alteration-the roles of cadmium carbonates and cadmium sulphates found in the altered paint layers. These compounds have often been assumed to be photo-oxidation products, but could also be residual starting reagents from an indirect wet process synthesis of CdS. The data presented here allow identifying and mapping the location of cadmium carbonates, cadmium chlorides, cadmium oxalates, cadmium sulphates, and cadmium sulphides in thin sections of altered cadmium yellow paints from The Joy of Life and Matisse's Flower Piece (1906, The Barnes Foundation). Distribution of various cadmium compounds confirms that cadmium carbonates and sulphates are photo-degradation products in The Joy of Life, whereas in Flower Piece, cadmium carbonates appear to have been a [(partially) unreacted] starting reagent for the yellow paint, a role previously suggested in other altered yellow paints.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364914100017 Publication Date 2015-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396; 1432-0630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130290 Serial 7382
Permanent link to this record
 

 
Author Singh, B.R.; Timsina, Y.N.; Lind, O.C.; Cagno, S.; Janssens, K.
Title Zinc and iron concentration as affected by nitrogen fertilization and their localization in wheat grain Type A1 Journal article
Year 2018 Publication Frontiers in plant science Abbreviated Journal Front Plant Sci
Volume 9 Issue 9 Pages
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Nearly half of the world cereal production comes from soils low or marginal in plant available zinc, leading to unsustainable and poor quality grain production. Therefore, the effects of nitrogen (N) rate and application time on zinc (Zn) and iron (Fe) concentration in wheat grain were investigated. Wheat (Triticum aestivum var. Krabat) was grown in a growth chamber with 8 and 16 h of day and night periods, respectively. The N rates were 29, 43, and 57 mg N kg(-1) soil, equivalent to 80, 120, and 160 kg N ha(-1). Zinc and Fe were applied at 10 mg kg(-1) growth media. In one of the N treatments, additional Zn and Fe through foliar spray (6 mg of Zn or Fe in 10 ml water / pot) was applied. Micro-analytical localization of Zn and Fe within grain was performed using scanning macro-X-ray fluorescence (MA-XRF) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The following data were obtained: grain and straw yield pot 1, 1000 grains weight, number of grains pot 1, whole grain protein content, concentration of Zn and Fe in the grains. Grain yield increased from 80 to 120 kg N ha(-1) rates only and decreased at 160 kg N ha(-1) g. Relatively higher protein content and Zn and Fe concentration in the grain were recorded with the split N application of 160 kg N ha(-1). Soil and foliar supply of Zn and Fe (Zn + Fes+f), with a single application of 120 kg N ha(-1) N at sowing, increased the concentration of Zn by 46% and of Fe by 35%, as compared to their growth media application only. Line scans of freshly cut areas of sliced grains showed co-localization of Zn and Fe within germ, crease and aleurone. We thus conclude that split application of N at 160 kg ha(-1) at sowing and stem elongation, in combination with soil and foliar application of Zn and Fe, can be a good agricultural practice to enhance protein content and the Zn and Fe concentration in grain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000427034400002 Publication Date 2018-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-462x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.298 Times cited 8 Open Access
Notes ; The research part of this master study was financed by the project “Mineral Improved Food and Feed Crops for Human and Animal Health” (Project No. 332160UA) and by a grant from the Norwegian Ministry of Foreign Affairs under the Program for Higher Education, Research and Development (HERD) in Western Balkan. The financial assistance for conducting this study is gratefully acknowledged. We also acknowledge the assistance by CERAD: this study has been funded by the Norwegian Research Council through its Centre of Excellence (CoE) funding scheme (Project No. 223268/F50). This research was supported by the Hercules Foundation (Brussels, Belgium) under grant AUHA09004 and FWO (Brussels, Belgium) Project Nos. G.0C12.13 and G.01769.09. ; Approved Most recent IF: 4.298
Call Number UA @ admin @ c:irua:149859 Serial 5924
Permanent link to this record