toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baelus, B.J.; Yampolskii, S.V.; Peeters, F.M.; Montevecchi, E.; Indekeu, J.O. url  doi
openurl 
  Title Superconducting properties of mesoscopic cylinders with enhanced surface superconductivity Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 2 Pages 024510-10  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The superconducting state of an infinitely long superconducting cylinder surrounded by a medium which enhances its superconductivity near the boundary is studied within the nonlinear Ginzburg-Landau theory. This enhancement can be due to the proximity of another superconductor or due to surface treatment. Quantities such as the free energy, the magnetization and the Cooper-pair density are calculated. Phase diagrams are obtained to investigate how the critical field and the critical temperature depend on this surface enhancement for different values of the Ginzburg-Landau parameter kappa. Increasing the superconductivity near the surface leads to higher critical fields and critical temperatures. For small cylinder diameters only giant vortex states nucleate, while for larger cylinders multivortices can nucleate. The stability of these multivortex states also depends on the surface enhancement. For type-I superconductors we found the remarkable result that for a range of values of the surface extrapolation length the superconductor can transit from the Meissner state into superconducting states with vorticity L > 1. Such a behavior is not found for the case of large kappa, i.e., type-II superconductivity,  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000173213100099 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:103890 Serial 3363  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Baelus, B.J.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title The superconducting state in square mesoscopic samples with two and four antidots Type A1 Journal article
  Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 404 Issue Pages 56-60  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000221211500012 Publication Date 2004-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.404; 2004 IF: 1.072  
  Call Number UA @ lucian @ c:irua:44978 Serial 3367  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Baelus, B.J.; Peeters, F.M. url  doi
openurl 
  Title Superconducting vortex state in a mesoscopic disk containing a blind hole Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 024508,1-15  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000222996600068 Publication Date 2004-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:57250 Serial 3369  
Permanent link to this record
 

 
Author Toledano-Luque, M.; Matagne, P.; Sibaja-Hernandez, A.; Chiarella, T.; Ragnarsson, L.-A.; Sorée, B.; Cho, M.; Mocuta, A.; Thean, A. doi  openurl
  Title Superior reliability of junctionless pFinFETs by reduced oxide electric field Type A1 Journal article
  Year 2014 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 35 Issue 12 Pages 1179-1181  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superior reliability of junctionless (JL) compared with inversion-mode field-effect transistors (FETs) is experimentally demonstrated on bulk FinFET wafers. The reduced negative bias temperature instability (NBTI) of JL pFETs outperforms the previously reported best NBTI reliability data obtained with Si channel devices and guarantees 10-year lifetime at typical operating voltages and high temperature. This behavior is understood through the reduced oxide electric field and lessened interaction between charge carriers and oxide traps during device operation. These findings encourage the investigation of JL devices with alternative channels as a promising alternative for 7-nm technology nodes meeting reliability targets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345575400006 Publication Date 2014-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 13 Open Access  
  Notes ; This work was supported by the imec's Core Partner Program. The review of this letter was arranged by Editor J. Schmitz. ; Approved Most recent IF: 3.048; 2014 IF: 2.754  
  Call Number UA @ lucian @ c:irua:122192 Serial 3378  
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M. doi  openurl
  Title The effect of surface defects on the vortex expulsion and penetration in mesoscopic superconducting disks Type A1 Journal article
  Year 2004 Publication Physica: C : superconductivity T2 – 7th International Conference on Materials and Mechanisms of, Superconductive and High Temperature Superconductors, MAY 25-30, 2003, Rio de Janeiro, BRAZIL Abbreviated Journal Physica C  
  Volume 408 Issue Pages 543-544  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within the framework of the nonlinear Ginzburg-Landau theory we investigate how the vortex expulsion and penetration fields are influenced by the presence of surface defects in superconducting disks with zero thickness. We studied different types and sizes of defects. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000224051700228 Publication Date 2004-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.404; 2004 IF: 1.072  
  Call Number UA @ lucian @ c:irua:102759 Serial 3576  
Permanent link to this record
 

 
Author Lucena, D.; Tkachenko, D.V.; Nelissen, K.; Misko, V.R.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel Type A1 Journal article
  Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 85 Issue 3:1 Pages 031147-031147,12  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Diffusive properties of a monodisperse system of interacting particles confined to a quasi-one-dimensional channel are studied using molecular dynamics simulations. We calculate numerically the mean-squared displacement (MSD) and investigate the influence of the width of the channel (or the strength of the confinement potential) on diffusion in finite-size channels of different shapes (i.e., straight and circular). The transition from single-file diffusion to the two-dimensional diffusion regime is investigated. This transition [ regarding the calculation of the scaling exponent (alpha) of the MSD <Delta x(2)(t)> proportional to t(alpha)] as a function of the width of the channel is shown to change depending on the channel's confinement profile. In particular, the transition can be either smooth (i.e., for a parabolic confinement potential) or rather sharp (i.e., for a hard-wall potential), as distinct from infinite channels where this transition is abrupt. This result can be explained by qualitatively different distributions of the particle density for the different confinement potentials.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000302117900003 Publication Date 2012-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 38 Open Access  
  Notes ; This work was supported by CNPq, FUNCAP (Pronex grant), the “Odysseus” program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, and the collaborative program CNPq-FWO-Vl. ; Approved Most recent IF: 2.366; 2012 IF: 2.313  
  Call Number UA @ lucian @ c:irua:97784 Serial 3699  
Permanent link to this record
 

 
Author Lucena, D.; Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Tunable diffusion of magnetic particles in a quasi-one-dimensional channel Type A1 Journal article
  Year 2013 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 87 Issue 1 Pages 012307-12309  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion, and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field. DOI: 10.1103/PhysRevE.87.012307  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000314152300005 Publication Date 2013-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes ; This work was supported by CNPq, CAPES, FUNCAP (Pronex grant), the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, the collaborative program CNPq – FWO-Vl, and the Brazilian program Science Without Borders (CsF). Discussions with V. R. Misko are gratefully acknowledged. ; Approved Most recent IF: 2.366; 2013 IF: 2.326  
  Call Number UA @ lucian @ c:irua:110089 Serial 3739  
Permanent link to this record
 

 
Author Baelus, B.J.; Kanda, A.; Peeters, F.M.; Ootuka, Y.; Kadowaki, K. url  doi
openurl 
  Title Two kinds of vortex states in thin mesoscopic superconductors Type A1 Journal article
  Year 2006 Publication Journal of physics : conference series T2 – Journal of physics: conference series Abbreviated Journal  
  Volume 43 Issue Pages 647-650  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Experimentally, multivortex states and giant vortex states in mesoscopic superconductors can be distinguished directly by using the multiple-small-tunnel-junctions, and indirectly by studying the temperature dependence of the expulsion fields. These experimental results are compared with the theoretical prediction from the nonlinear Ginzburg- Landau theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000277479400158 Publication Date 2006-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82762 Serial 3782  
Permanent link to this record
 

 
Author Yampolskii, S.V.; Baelus, B.J.; Peeters, F.M.; Kolá·ek, J. doi  openurl
  Title Vortex charge in mesoscopic superconductors Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 64 Issue Pages 144511  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000171530000084 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37282 Serial 3861  
Permanent link to this record
 

 
Author Peeters, F.M.; Schweigert, V.A.; Baelus, B.J.; Deo, P.S. doi  openurl
  Title Vortex matter in mesoscopic superconducting disks and rings Type A1 Journal article
  Year 2000 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 144 Issue Pages 255-262  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000087245200045 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 45 Open Access  
  Notes Approved Most recent IF: 1.404; 2000 IF: 1.489  
  Call Number UA @ lucian @ c:irua:28522 Serial 3871  
Permanent link to this record
 

 
Author Baelus, B.J.; Cabral, L.R.E.; Peeters, F.M. url  doi
openurl 
  Title Vortex shells in mesoscopic superconducting disks Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue Pages 064506,1-12  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220092100067 Publication Date 2004-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 94 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69381 Serial 3883  
Permanent link to this record
 

 
Author Baelus, B.J.; Kanda, A.; Peeters, F.M.; Ootuka, Y.; Kadowaki, K. url  doi
openurl 
  Title Vortex-state-dependent phase boundary in mesoscopic superconducting disks Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue Pages 140502(R),1-4  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228758700009 Publication Date 2005-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69407 Serial 3884  
Permanent link to this record
 

 
Author Ludu, A.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Vortex states in axially symmetric superconductors in applied magnetic field Type A1 Journal article
  Year 2012 Publication Sn – 0378-4754 Abbreviated Journal Math Comput Simulat  
  Volume 82 Issue 7 Pages 1258-1270  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve analytically the linearized Ginzburg-Landau (GL) equation in the presence of an uniform magnetic field with cylindrical boundary conditions. The solution of the non-linear GL equation is provided as an expansion in the basis of linearized solutions. We present examples of the resulting vortex structure for a solid and perforated superconducting cylinder. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000303097000009 Publication Date 2012-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4754; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.218 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 1.218; 2012 IF: 0.836  
  Call Number UA @ lucian @ c:irua:98300 Serial 3887  
Permanent link to this record
 

 
Author Peeters, F.M.; Baelus, B.J.; Milošević, M.V. doi  openurl
  Title Vortex states in mescopic superconductors Type A1 Journal article
  Year 2003 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 18 Issue Pages 312-315  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000183534200144 Publication Date 2003-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2003 IF: 0.930  
  Call Number UA @ lucian @ c:irua:44989 Serial 3889  
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M.; Schweigert, V.A. url  doi
openurl 
  Title Vortex states in superconducting rings Type A1 Journal article
  Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 61 Issue 14 Pages 9734-9747  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The superconducting state. of a thin superconducting disk with a hole is studied within the, nonlinear Ginzburg-Landau theory in which the demagnetization effect is accurately taken into account. We find that the flux through the hole is not quantized, the superconducting state is stabilized with increasing size of the hole for fixed radius of the disk, and a transition to a multivortex state is found if the disk is sufficiently large. Breaking the circular symmetry through a non-central-location of the hole in the disk favors the multivortex state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000086441800074 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 78 Open Access  
  Notes Approved Most recent IF: 3.836; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:28514 Serial 3892  
Permanent link to this record
 

 
Author Baelus, B.J.; Sun, D.; Peeters, F.M. url  doi
openurl 
  Title Vortex structures in mesoscopic superconducting spheres Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue Pages 174523,1-11  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000246890500136 Publication Date 2007-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69648 Serial 3896  
Permanent link to this record
 

 
Author Stosic, D.; Stosic, D.; Ludermir, T.; Stosic, B.; Milošević, M.V. pdf  doi
openurl 
  Title GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg-Landau formalism Type A1 Journal article
  Year 2016 Publication Journal of computational physics Abbreviated Journal J Comput Phys  
  Volume 322 Issue 322 Pages 183-198  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ginzburg-Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame – with speedup of over 100x compared to best available CPU implementations of the theory on a 2563grid. (C) 2016 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000381585100010 Publication Date 2016-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.744 Times cited 4 Open Access  
  Notes ; This work was supported through research grants from Brazilian agencies CNPq (306719/2012-6, 140840/2016-8) and FACEPE (IBPG-0510-1.03/15), BOF-UA, and the Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 2.744  
  Call Number UA @ lucian @ c:irua:137115 Serial 4354  
Permanent link to this record
 

 
Author Celebi, S.; Sezgin, M.E.; Çakir, D.; Baytan, B.; Demirkaya, M.; Sevinir, B.; Bozdemir, S.E.; Gunes, A.M.; Hacimustafaoglu, M. doi  openurl
  Title Catheter-associated bloodstream infections in pediatric hematology-oncology patients Type A1 Journal article
  Year 2013 Publication Pediatric Hematology And Oncology Abbreviated Journal Pediatr Hemat Oncol  
  Volume 30 Issue 3 Pages 187-194  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Catheter-associated bloodstream infections (CABSIs) are common complications encountered with cancer treatment. The aims of this study were to analyze the factors associated with recurrent infection and catheter removal in pediatric hematology-oncology patients. All cases of CABSIs in patients attending the Department of Pediatric Hematology-Oncology between January 2008 and December 2010 were reviewed. A total of 44 episodes of CABSIs, including multiple episodes involving the same catheter, were identified in 31 children with cancer. The overall CABSIs rate was 7.4 infections per 1000 central venous catheter (CVC) days. The most frequent organism isolated was coagulase-negative Staphylococcus (CONS). The CVC was removed in nine (20.4%) episodes. We found that hypotension, persistent bacteremia, Candida infection, exit-side infection, neutropenia, and prolonged duration of neutropenia were the factors for catheter removal. There were 23 (52.2%) episodes of recurrence or reinfection. Mortality rate was found to be 9.6% in children with CABSIs. In this study, we found that CABSIs rate was 7.4 infections per 1000 catheter-days. CABSIs rates in our hematology-oncology patients are comparable to prior reports. Because CONS is the most common isolated microorganism in CABSIs, vancomycin can be considered part of the initial empirical regimen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 2013-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-0018 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.12 Times cited Open Access  
  Notes Approved Most recent IF: 1.12; 2013 IF: 0.963  
  Call Number UA @ lucian @ c:irua:128324 Serial 4589  
Permanent link to this record
 

 
Author Hacimustafaoglu, M.; Celebi, S.; Bozdemir, S.E.; Ozgur, T.; Ozcan, I.; Guray, A.; Çakir, D. openurl 
  Title RSV frequency in children below 2 years hospitalized for lower respiratory tract infections Type A1 Journal article
  Year 2013 Publication Turkish Journal Of Pediatrics Abbreviated Journal Turkish J Pediatr  
  Volume 55 Issue 2 Pages 130-139  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Respiratory syncytial virus (RSV) is the most frequent agent of acute lower respiratory diseases and creates a significant burden of disease in children under 5 years all over the world. RSV causes severe lower respiratory tract infections (LRTI) that require hospitalization, especially in children <= 2 years. The aim of this study was to determine the incidence of RSV in children <= 2 years of age hospitalized for LRTI. Children <= 2 years of age hospitalized for one year for LRTI in the three largest hospitals of Bursa City Center, Turkey were evaluated. These three hospitals comprise 67.5% of all child beds in central Bursa, so this study allows us to evaluate the total disease burden and hospitalization incidence in central Bursa. Nasal swabs of the children were evaluated with RSV RespiStrip (Coris Bioconcept Organization). A total of 671 children were hospitalized for LRTI, and 254 (37.9%) had at least one hospitalization that was positive for RSV. Of all patients with LRTI, 54.8% (368/671) were hospitalized for acute bronchiolitis, while 45.2% (303/671) were hospitalized for pneumonia. Of patients with acute bronchiolitis or pneumonia, 41% (151/368) and 34% (103/303) were RSV+, respectively. Of RSV+ hospitalized children, 59.5% (151/254) were diagnosed as acute bronchiolitis and 40.5% (103/254) as pneumonia. The annual incidences of hospitalization due to LRTI, acute bronchiolitis and pneumonia were 20.5/1000, 11.2/1000 and 9.3/1000, respectively, in children <= 2 years of age. The annual incidences of hospitalization due to RSV+ LRTI, acute bronchiolitis and pneumonia were found as 7.8/1000, 4.6/1000 and 3.2/1000, respectively, in children <= 2 years of age. More than one-third of all children hospitalized with LRTI (38.3%, n=257) were in the 0-3 months age group. Compared to other age groups, RSV positivity was highest in that age group for acute bronchiolitis (57%), pneumonia (39.5%) and also total children with LRTI (47.9%). RSV is a very important cause of lower respiratory infections in children <= 2 years of age and occurred most frequently in those 0-3 months of age in our study. Since there is no other study assessing the annual hospitalization incidence of RSV+ LRTIs in one city in Turkey, our study has unique importance for providing valuable statistical data about RSV+ LRTIs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Ankara Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0041-4301 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.32 Times cited Open Access  
  Notes Approved Most recent IF: 0.32; 2013 IF: 0.339  
  Call Number UA @ lucian @ c:irua:128325 Serial 4606  
Permanent link to this record
 

 
Author Madan, I.; Kusar, P.; Baranov, V.V.; Lu-Dac, M.; Kabanov, V.V.; Mertelj, T.; Mihailovic, D. url  doi
openurl 
  Title Real-time measurement of the emergence of superconducting order in a high-temperature superconductor Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 22 Pages 224520  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Systems which rapidly evolve through symmetry-breaking transitions on timescales comparable to the fluctuation timescale of the single-particle excitations may behave very differently than under controlled near-ergodic conditions. A real-time investigation with high temporal resolution may reveal insights into the ordering through the transition that are not available in static experiments. We present an investigation of the system trajectory through a normal-to-superconductor transition in a prototype high-temperature superconducting cuprate in which such a situation occurs. Using a multiple pulse femtosecond spectroscopy technique we measure the system trajectory and time evolution of the single-particle excitations through the transition in La1.9Sr0.1CuO4 and compare the data to a simulation based on the time-dependent Ginzburg-Landau theory, using the laser excitation fluence as an adjustable parameter controlling the quench conditions in both experiment and theory. The comparison reveals the presence of significant superconducting fluctuations which precede the transition on short timescales. By including superconducting fluctuations as a seed for the growth of the superconducting order we can obtain a satisfactory agreement of the theory with the experiment. Remarkably, the pseudogap excitations apparently play no role in this process.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000378815800003 Publication Date 2016-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; We wish to acknowledge the useful discussion with T. W. Kibble regarding the importance of a variable quench rate in the experiment. The funding was provided by European Research Council advanced grant TRAJECTORY. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144701 Serial 4683  
Permanent link to this record
 

 
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V. url  doi
openurl 
  Title Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 21 Pages 214403  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000416846900002 Publication Date 2017-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 52 Open Access  
  Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:147684 Serial 4890  
Permanent link to this record
 

 
Author Plumadore, R.; Baskurt, M.; Boddison-Chouinard, J.; Lopinski, G.; Modarresi, M.; Potasz, P.; Hawrylak, P.; Sahin, H.; Peeters, F.M.; Luican-Mayer, A. url  doi
openurl 
  Title Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 20 Pages 205408  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic scale defects in semiconductors enable their technological applications and realization of different quantum states. Using scanning tunneling microscopy and spectroscopy complemented by ab initio calculations we determine the nature of defects in the anisotropic van der Waals layered semiconductor ReS2. We demonstrate the in-plane anisotropy of the lattice by directly visualizing chains of rhenium atoms forming diamond-shaped clusters. Using scanning tunneling spectroscopy we measure the semiconducting gap in the density of states. We reveal the presence of lattice defects and by comparison of their topographic and spectroscopic signatures with ab initio calculations we determine their origin as oxygen atoms absorbed at lattice point defect sites. These results provide an atomic-scale view into the semiconducting transition metal dichalcogenides, paving the way toward understanding and engineering their properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000587595800007 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 9 Open Access  
  Notes ; The authors acknowledge funding from National Sciences and Engineering Research Council (NSERC) Discovery Grant No. RGPIN-2016-06717. We also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through QC2DM Strategic Project No. STPGP 521420. P.H. thanks uOttawa Research Chair in Quantum Theory of Materials for support. P.P. acknowledges partial financial support from National Science Center (NCN), Poland, Grant Maestro No. 2014/14/A/ST3/00654, and calculations were performed in theWroclaw Center for Networking and Supercomputing. H.S. acknowledges financial support from TUBITAK under Project No. 117F095 and from Turkish Academy of Sciences under the GEBIP program. Our computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:173525 Serial 6584  
Permanent link to this record
 

 
Author Benito Llorens, J.; Embon, L.; Correa, A.; Gonzalez, J.D.; Herrera, E.; Guillamon, I.; Luccas, R.F.; Azpeitia, J.; Mompean, F.J.; Garcia-Hernandez, M.; Munuera, C.; Aragon Sanchez, J.; Fasano, Y.; Milošević, M.V.; Suderow, H.; Anahory, Y. url  doi
openurl 
  Title Observation of a gel of quantum vortices in a superconductor at very low magnetic fields Type A1 Journal article
  Year 2020 Publication Physical review research Abbreviated Journal  
  Volume 2 Issue 1 Pages 013329  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type-II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in beta-Bi2Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602698100008 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 14 Open Access  
  Notes ; We acknowledge support, discussions and critical reading of the manuscript from Eli Zeldov, who also devised and setup the SOT system. We also acknowledge critical reading and suggestions of Vladimir Kogan and Alexander Buzdin. Work performed in Spain was supported by the MINECO (FIS2017-84330-R, MAT2017-87134-C2-2-R, RYC-2014-16626 and RYC-2014-15093) and by the Region of Madrid through programs NANOFRONTMAG-CM (S2013/MIT-2850) and MAD2D-CM (S2013/ MIT-3007). The SEGAINVEX at UAM is also acknowledged as well as PEOPLE, Graphene Flagship, NMP programs of EU (Grant Agreements FP7-PEOPLE-2013-CIG 618321, 604391 and AMPHIBIAN H2020-NMBP-03-2016 NMP3-SL 2012-310516). Work in Israel was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802952). Y.F. acknowledges the support of grant PICT 2017-2182 from the ANPCyT. R.F.L. acknowledges the support of grant PICT 2017-2898 from the ANPCyT. E.H. acknowledges support of Departamento Administrativo de Ciencia, Tecnologia e Innovacion, COLCIENCIAS (Colombia) Programa de estancias Postdoctorales convocatoria 784-2017 and the Cluster de investigacin en ciencias y tecnologas convergentes de la Universidad Central (Colombia). I.G. was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 679080). M.V.M. acknowledges support from Research FoundationFlanders (FWO). The international collaboration on this work was fostered by the EU-COST Action CA16218 Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies (NANOCOHYBRI). J.D.G. and M.V.M. gratefully acknowledge support from the Research Fund (FONCIENCIAS) of Universidad del Magdalena. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:175138 Serial 6694  
Permanent link to this record
 

 
Author Demirkol, Ö.; Sevik, C.; Demiroğlu, I. url  doi
openurl 
  Title First principles assessment of the phase stability and transition mechanisms of designated crystal structures of pristine and Janus transition metal dichalcogenides Type A1 Journal article
  Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 24 Issue 12 Pages 7430-7441  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T '' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T ' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T ' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T ', T '' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766791000001 Publication Date 2022-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:187184 Serial 7164  
Permanent link to this record
 

 
Author Gurel, T.; Altunay, Y.A.; Bulut, P.; Yildirim, S.; Sevik, C. url  doi
openurl 
  Title Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄ Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 19 Pages 195204-195210  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, an extremely low lattice thermal conductivity value has been reported for the alkali-based telluride material BaIn2Te4. The value is comparable with low-thermal conductivity metal chalcogenides, and the glass limit is highly intriguing. Therefore, to shed light on this issue, we performed first-principles phonon thermal transport calculations. We predicted highly anisotropic lattice thermal conductivity along different directions via the solution of the linearized phonon Boltzmann transport equation. More importantly, we determined several different factors as the main sources of the predicted ultralow lattice thermal conductivity of this crystal, such as the strong interactions between low-frequency optical phonons and acoustic phonons, small phonon group velocities, and lattice anharmonicity indicated by large negative mode Gruneisen parameters. Along with thermal transport calculations, we also investigated the electronic transport properties by accurately calculating the scattering mechanisms, namely the acoustic deformation potential, ionized impurity, and polar optical scatterings. The inclusion of spin-orbit coupling (SOC) for electronic structure is found to strongly affect the p-type Seebeck coefficients. Finally, we calculated the thermoelectric properties accurately, and the optimal ZT value of p-type doping, which originated from high Seebeck coefficients, was predicted to exceed unity after 700 K and have a direction averaged value of 1.63 (1.76 in the y-direction) at 1000 K around 2 x 1020 cm-3 hole concentration. For n-type doping, a ZT around 3.2 x 1019 cm-3 concentration was predicted to be a direction-averaged value of 1.40 (1.76 in the z-direction) at 1000 K, mostly originating from its high electron mobility. With the experimental evidence of high thermal stability, we showed that the BaIn2Te4 compound has the potential to be a promising mid- to high-temperature thermoelectric material for both p-type and n-type systems with appropriate doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918954800001 Publication Date 2022-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:194384 Serial 7290  
Permanent link to this record
 

 
Author Duden, E.I.; Savaci, U.; Turan, S.; Sevik, C.; Demiroglu, I. pdf  url
doi  openurl
  Title Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue 8 Pages 085301-85311  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. The ab initio molecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000899825400001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:193399 Serial 7313  
Permanent link to this record
 

 
Author Karaaslan, Y.; Yapicioglu, H.; Sevik, C. doi  openurl
  Title Assessment of Thermal Transport Properties of Group-III Nitrides: A Classical Molecular Dynamics Study with Transferable Tersoff-Type Interatomic Potentials Type A1 Journal article
  Year 2020 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 13 Issue 3 Pages 034027  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, by means of classical molecular dynamics simulations, we investigate the thermal-transport properties of hexagonal single-layer, zinc-blend, and wurtzite phases of BN, AlN, and GaN crystals, which are very promising for the application and design of high-quality electronic devices. With this in mind, we generate fully transferable Tersoff-type empirical interatomic potential parameter sets by utilizing an optimization procedure based on particle-swarm optimization. The predicted thermal properties as well as the structural, mechanical, and vibrational properties of all materials are in very good agreement with existing experimental and first-principles data. The impact of isotopes on thermal transport is also investigated and between approximately 10 and 50% reduction in phonon thermal transport with random isotope distribution is observed in BN and GaN crystals. Our investigation distinctly shows that the generated parameter sets are fully transferable and very useful in exploring the thermal properties of systems containing these nitrides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518820200003 Publication Date 2020-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved Most recent IF: 4.6; 2020 IF: 4.808  
  Call Number UA @ admin @ c:irua:193766 Serial 7508  
Permanent link to this record
 

 
Author Demiroglu, I.; Sevik, C. url  doi
openurl 
  Title Extraordinary negative thermal expansion of two-dimensional nitrides : a comparative ab initio study of quasiharmonic approximation and molecular dynamics simulations Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 8 Pages 085430  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thermal expansion behavior of two-dimensional (2D) nitrides and graphene were studied by ab initio molecular dynamics (MD) simulations as well as quasiharmonic approximation (QHA). Anharmonicity of the acoustic phonon modes are related to the unusual negative thermal expansion (NTE) behavior of the nitrides. Our results also hint that direct ab initio MD simulations are a more elaborate method to investigate thermal expansion behavior of 2D materials than the QHA. Nevertheless, giant NTE coefficients are found for h-GaN and h-AlN within the covered temperature range 100-600 K regardless of the chosen computational method. This unusual NTE of 2D nitrides is reasoned with the out-of-plane oscillations related to the rippling behavior of the monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620346100007 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176671 Serial 7956  
Permanent link to this record
 

 
Author Karaaslan, Y.; Haskins, J.B.; Yapicioglu, H.; Sevik, C. doi  openurl
  Title Influence of randomly distributed vacancy defects on thermal transport in two-dimensional group-III nitrides Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 129 Issue 22 Pages 224304  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient thermal transport control is a fundamental issue for electronic device applications such as information, communication, and energy storage technologies in modern electronics in order to achieve desired thermal conditions. Structural defects in materials provide a mechanism to adjust the thermal transport properties of these materials on demand. In this context, the effect of structural defects on lattice thermal conductivities of two-dimensional hexagonal binary group-III nitride (XN, X = B, Al, and Ga) semiconductors is systematically investigated by means of classical molecular dynamics simulations performed with recently developed transferable inter-atomic potentials accurately describing defect energies. Here, two different Green-Kubo based approaches and another approach based on non-equilibrium molecular dynamics are compared in order to get an overall understanding. Our investigation clearly shows that defect concentrations of 3% decrease the thermal conductivity of systems containing these nitrites up to 95%. Results hint that structural defects can be used as effective adjustment parameters in controlling thermal transport properties in device applications associated with these materials. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000692024300001 Publication Date 2021-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:181618 Serial 8096  
Permanent link to this record
 

 
Author Sar, H.; Ozden, A.; Demiroglu, I.; Sevik, C.; Perkgoz, N.K.; Ay, F. doi  openurl
  Title Long-Term Stability Control of CVD-Grown Monolayer MoS2 Type A1 Journal article
  Year 2019 Publication Physica status solidi: rapid research letters Abbreviated Journal  
  Volume 13 Issue 7 Pages 1800687  
  Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural stability of 2D transition metal dichalcogenide (TMD) formations is of particular importance for their reliable device performance in nano-electronics and opto-electronics. Recent observations show that the CVD-grown TMD monolayers are likely to encounter stability problems such as cracking or fracturing when they are kept under ambient conditions. Here, two different growth configurations are investigated and a favorable growth geometry is proposed, which also sheds light onto the growth mechanism and provides a solution for the stability and fracture formation issues for TMDs specifically for MoS2 monolayers. It is shown that 18 months naturally and thermally aged MoS2 monolayer flakes grown using specifically developed conditions, retain their stability. To understand the mechanism of the structural deterioration, two possible effective mechanisms, S vacancy defects and growth-induced tensile stress, are assessed by the first principle calculations where the role of S vacancy defects in obtaining oxidation resistant MoS2 monolayer flakes is revealed to be rather more critical. Hence, these simulations, time-dependent observations and thermal aging experiments show that durability and stability of 2D MoS2 flakes can be controlled by CVD growth configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477671800009 Publication Date 2019-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193784 Serial 8184  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: