|   | 
Details
   web
Records
Author Plumadore, R.; Baskurt, M.; Boddison-Chouinard, J.; Lopinski, G.; Modarresi, M.; Potasz, P.; Hawrylak, P.; Sahin, H.; Peeters, F.M.; Luican-Mayer, A.
Title Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue (up) 20 Pages 205408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomic scale defects in semiconductors enable their technological applications and realization of different quantum states. Using scanning tunneling microscopy and spectroscopy complemented by ab initio calculations we determine the nature of defects in the anisotropic van der Waals layered semiconductor ReS2. We demonstrate the in-plane anisotropy of the lattice by directly visualizing chains of rhenium atoms forming diamond-shaped clusters. Using scanning tunneling spectroscopy we measure the semiconducting gap in the density of states. We reveal the presence of lattice defects and by comparison of their topographic and spectroscopic signatures with ab initio calculations we determine their origin as oxygen atoms absorbed at lattice point defect sites. These results provide an atomic-scale view into the semiconducting transition metal dichalcogenides, paving the way toward understanding and engineering their properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000587595800007 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 9 Open Access
Notes ; The authors acknowledge funding from National Sciences and Engineering Research Council (NSERC) Discovery Grant No. RGPIN-2016-06717. We also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through QC2DM Strategic Project No. STPGP 521420. P.H. thanks uOttawa Research Chair in Quantum Theory of Materials for support. P.P. acknowledges partial financial support from National Science Center (NCN), Poland, Grant Maestro No. 2014/14/A/ST3/00654, and calculations were performed in theWroclaw Center for Networking and Supercomputing. H.S. acknowledges financial support from TUBITAK under Project No. 117F095 and from Turkish Academy of Sciences under the GEBIP program. Our computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:173525 Serial 6584
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Li, L.L.; Huang, F.; Xu, W.; Peeters, F.M.
Title Substrate dependent terahertz response of monolayer WS₂ Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 116 Issue (up) 20 Pages 1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate experimentally the terahertz (THz) optoelectronic properties of monolayer (ML) tungsten disulfide (WS2) placed on different substrates using THz time-domain spectroscopy (TDS). We find that the THz optical response of n-type ML WS2 depends sensitively on the choice of the substrate. This dependence is found to be a consequence of substrate induced charge transfer, extra scattering centers, and electronic localization. Through fitting the experimental results with the Drude-Smith formula, we can determine the key sample parameters (e.g., the electronic relaxation time, electron density, and electronic localization factor) of ML WS2 on different substrates. The temperature dependence of these parameters is examined. Our results show that the THz TDS technique is an efficient non-contact method that can be utilized to characterize and investigate the optoelectronic properties of nano-devices based on ML WS2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536282300001 Publication Date 2020-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 17 Open Access
Notes ; This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018GF09) and by the National Natural Science foundation of China (Nos. U1930116 and 11574319). ; Approved Most recent IF: 4; 2020 IF: 3.411
Call Number UA @ admin @ c:irua:170255 Serial 6620
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type A1 Journal article
Year 2009 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 32nd International Workshop on Condensed Matter Theories, Aug 12-19, 2008, Loughborough Univ, Loughborough, England Abbreviated Journal Int J Mod Phys B
Volume 23 Issue (up) 20-21 Pages 4257-4268
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract We study the effect of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We show that in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic field exhibits quantum-size oscillations with pronounced resonant enhancements.
Address
Corporate Author Thesis
Publisher World scientific Place of Publication Singapore Editor
Language Wos 000274525500026 Publication Date 2009-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.736 Times cited 1 Open Access
Notes Approved Most recent IF: 0.736; 2009 IF: 0.408
Call Number UA @ lucian @ c:irua:95673 Serial 3362
Permanent link to this record
 

 
Author Chaves, A.; Komendová, L.; Milošević, M.V.; Andrade, J.S.; Farias, G.A.; Peeters, F.M.
Title Conditions for nonmonotonic vortex interaction in two-band superconductors Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue (up) 21 Pages 214523-214523,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional differentiation between type I and type II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ*, different from the standard κ of a bulk superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature dependent, and can be further tuned by alterations of the material on the microscopic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292252300009 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; Discussions with A. Moreira, A. Shanenko, R. Prozorov, and A. Golubov are gratefully acknowledged. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral project FWO-CNPq, CAPES, and PRONEX/CNPq/FUNCAP. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90922 Serial 477
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Fluxonic cellular automata Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 91 Issue (up) 21 Pages 212501,1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000251105500023 Publication Date 2007-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 45 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:67176 Serial 1245
Permanent link to this record
 

 
Author Milošević, M.V.; Kanda, A.; Hatsumi, S.; Peeters, F.M.; Ootuka, Y.
Title Local current injection into mesoscopic superconductors for the manipulation of quantum states Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 103 Issue (up) 21 Pages 217003-217003,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We perform strategic current injection in a small mesoscopic superconductor and control the (non)equilibrium quantum states in an applied homogeneous magnetic field. In doing so, we realize a current-driven splitting of multiquanta vortices, current-induced transitions between states with different angular momenta, and current-controlled switching between otherwise degenerate quantum states. These fundamental phenomena form the basis for the electronic and logic applications discussed, and are confirmed in both theoretical simulations and multiple-small-tunnel-junction transport measurements.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000272054300044 Publication Date 2009-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 48 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:94498 Serial 1826
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
Title Metallic nanograins : spatially nonuniform pairing induced by quantum confinement Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue (up) 21 Pages 214509-214509,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It is well known that the formation of discrete electron levels strongly influences the pairing in metallic nanograins. Here, we focus on another effect of quantum confinement in superconducting grains that was not studied previously, i.e., spatially nonuniform pairing. This effect is very significant when single-electron levels form bunches and/or a kind of shell structure. We find that, in highly symmetric grains, the order parameter can exhibit variations with position by an order of magnitude. Nonuniform pairing is closely related to a quantum-confinement-induced modification of the pairing-interaction matrix elements and size-dependent pinning of the chemical potential to groups of degenerate or nearly degenerate levels. For illustrative purposes, we consider spherical metallic nanograins and also rectangular shapes. We show that the relevant matrix elements are, as a rule, enhanced in the presence of quantum confinement, which favors spatial variations of the order parameter, compensating the corresponding energy cost. The size-dependent pinning of the chemical potential further increases the spatial variation of the pair condensate. The role of nonuniform pairing is smaller in less symmetric confining geometries and/or in the presence of disorder. However, it always remains of importance when the energy spacing between discrete electron levels δ is approaching the scale of the bulk gap ΔB, i.e., δ>0.10.2 ΔB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000291310000006 Publication Date 2011-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Alexander von Humboldt Foundation, the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP). M. D. C. acknowledges support of the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90081 Serial 2010
Permanent link to this record
 

 
Author Benedict, M.G.; Földi, P.; Peeters, F.M.
Title Microwave emission from a crystal of molecular magnets: the role of a resonant cavity Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue (up) 21 Pages 214430,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000234335400099 Publication Date 2005-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:56302 Serial 2081
Permanent link to this record
 

 
Author Baelus, B.J.; Partoens, B.; Peeters, F.M.
Title One-dimensional modulation of the superconducting boundary condition for thin superconducting films Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue (up) 21 Pages 212503,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000238696200029 Publication Date 2006-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:59706 Serial 2464
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.; Axt, V.M.
Title Parity-fluctuation induced enlargement of the ratio \DeltaE/kBTc in metallic grains Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue (up) 21 Pages 214518-214518,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate how the interplay of quantum confinement and particle number-parity fluctuations affects superconducting correlations in ultra-small metallic grains. Using the number-parity projected BCS formalism we calculate the critical temperature and the excitation gap as a function of the grain size for grains with even and odd number of confined carriers. We show that the experimentally observed anomalous increase of the coupling ratio ΔE/kBTc with decreasing superconducting grain size can be attributed to an enhancement of the number-parity fluctuations in ultra-small grains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298114100003 Publication Date 2011-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flamish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). M. D. C. thanks A. S. Mel'nikov and N. B. Kopnin for fruitful discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94373 Serial 2555
Permanent link to this record
 

 
Author Elmurodov, A.K.; Peeters, F.M.; Vodolazov, D.Y.; Michotte, S.; Adam, S.; de Menten de Horne, F.; Piraux, L.; Lucot, D.; Mailly, D.
Title Phase-slip phenomena in NbN superconducting nanowires with leads Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue (up) 21 Pages 214519,1-214519,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transport properties of a superconducting NbN nanowire are studied experimentally and theoretically. Different attached leads (superconducting contacts) allowed us to measure current-voltage (I-V) characteristics of different segments of the wire independently. The experimental results show that with increasing the length of the segment the number of jumps in the I-V curve increases indicating an increasing number of phase-slip phenomena. The system shows a clear hysteresis in the direction of the current sweep, the size of which depends on the length of the superconducting segment. The interpretation of the experimental results is supported by theoretical simulations that are based on the time-dependent Ginzburg-Landau theory, the heat equation has been included in the Ginzbur-Landau theory.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262244400100 Publication Date 2009-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76004 Serial 2589
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M.
Title Second-order multiple-quanta flux entry into a perforated spherical mesoscopic superconductor Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue (up) 21 Pages 214501-214501,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Flux entry in type-II superconductors without prominent symmetry is a first-order phase transition, where flux enters conventionally gradual in units of a flux quantum. Here we show that neither is necessarily the case in a mesoscopic superconducting sphere with a perforation. In axially applied magnetic field, vortices initially occupy the hole, and can oppose further flux entry in the sample. As a result, multiple-quanta flux entry is found at significantly higher field, and it can manifest as a second-order transition due to suppressed geometric barrier at the equatorial belt of the sample. At high fields a new state is found, with gradually destroyed condensate from the equator inwards, the exact opposite of surface superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286737800007 Publication Date 2010-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the ESF “Nanoscience and Engineering in Superconductivity” program. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88039 Serial 2957
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Hai, G.-Q.; Peeters, F.M.
Title Spin- and valley-dependent commensurability oscillations and electric-field-induced quantum Hall plateaux in periodically modulated silicene Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue (up) 21 Pages 213109
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the commensurability oscillations in silicene subject to a perpendicular electric field E-z, a weak magnetic field B, and a weak periodic potential V = V-0 cos(Cy); C = 2 pi/a(0) with a(0) its period. The field E-z and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E-z is replaced by a periodic one E-z = E-0 cos(Dy); D = 2 pi/b(0), while the valley one is maximal for b(0) = a(0). In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000337143000047 Publication Date 2014-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes ; The work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. Also, G. Q. H. was supported by FAPESP and CNPq (Brazil). ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118409 Serial 3078
Permanent link to this record
 

 
Author Xavier, L.J.P.; Pereira, J.M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Topological confinement in graphene bilayer quantum rings Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue (up) 21 Pages 212108,1-212108,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We find localized electron and hole states in a ring-shaped potential kink in biased bilayer graphene. Within the continuum description, we show that for sharp potential steps the Dirac equation describing carrier states close to the K (or K′) point of the first Brillouin zone can be solved analytically for a circular kink/antikink dot. The solutions exhibit interfacial states which exhibit AharonovBohm oscillations as functions of the height of the potential step and/or the radius of the ring.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278183200039 Publication Date 2010-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 29 Open Access
Notes ; This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, FUNCAP, CAPES, the Bilateral program between Flanders and Brazil, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:83373 Serial 3675
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Tunable kinematics of phase-slip lines in a superconducting stripe with magnetic dots Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue (up) 21 Pages 214509,1-214509,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using numerical simulations, we study the dynamic properties of a superconducting stripe with a perpendicular magnetized ferromagnet on top in the presence of an applied dc current. In the resistive state conventional phase-slip lines are transformed into kinematic vortex-antivortex pairs with special dynamic behavior. In addition, the location of phase slippage in the sample is predetermined by the position of the magnetic dot. Both these effects directly influence the dynamics of the superconducting condensate and lead to periodic oscillations of the voltage across the sample with a frequency tunable both by the applied current and by the magnetization of the magnet. We found that the frequency of the voltage oscillations increases with increasing number of magnetic dots.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000273228200084 Publication Date 2009-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 33 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80575 Serial 3743
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M.
Title Vortex matter in mesoscopic two-gap superconducting disks: influence of Josephson and magnetic coupling Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue (up) 21 Pages 15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278846600001 Publication Date 2010-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 89 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen), the Belgian Science Policy (IAP), the ESF “Nanoscience and Engineering in Superconductivity” (NES) program, and the ESF “Arrays of Quantum Dots and Josephson Junctions” network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83933 Serial 3872
Permanent link to this record
 

 
Author Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M.
Title Fano resonances in bilayer phosphorene nanoring Type A1 Journal article
Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 29 Issue (up) 21 Pages 215202
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000428920200001 Publication Date 2018-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 4 Open Access
Notes ; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 Serial 4968
Permanent link to this record
 

 
Author Abdullah, H.M.; Van der Donck, M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
Title Graphene quantum blisters : a tunable system to confine charge carriers Type A1 Journal article
Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 112 Issue (up) 21 Pages 213101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000433140900025 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 9 Open Access
Notes ; H.M.A. and H.B. acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group Project Nos. RG1502-1 and RG1502-2. This work was supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (B.V.D.) and a doctoral fellowship (M.V.d.D.). ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:151505UA @ admin @ c:irua:151505 Serial 5027
Permanent link to this record
 

 
Author Chen, Q.; Wang, W.; Peeters, F.M.
Title Magneto-polarons in monolayer transition-metal dichalcogenides Type A1 Journal article
Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 123 Issue (up) 21 Pages 214303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Landau levels (LLs) are modified by the Frohlich interaction which we investigate within the improved Wigner-Brillouin theory for energies both below and above the longitudinal-optical-continuum in monolayer MoS2.., WS2, MoSe2, and WSe2. Polaron corrections to the LLs are enhanced in monolayer MoS2 as compared to WS2. A series of levels are found at h omega(LO) + lh omega(c), and in addition, the Frohlich interaction lifts the degeneracy between the levels nh omega(c) and h omega(LO) + lh omega(c) resulting in an anticrossing. The screening effect due to the environment plays an important role in the polaron energy corrections, which are also affected by the effective thickness r(eff) parameter. The polaron anticrossing energy gap E-gap decreases with increasing effective thickness r(eff). Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000434775500014 Publication Date 2018-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes ; Q. Chen and W. Wang acknowledge the financial support from the China Scholarship Council (CSC). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040), by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042), and by the National Natural Science Foundation of China (Grant No. 11404214). ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:151985UA @ admin @ c:irua:151985 Serial 5031
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M.
Title Two-dimensional carbon nitride (2DCN) nanosheets : tuning of novel electronic and magnetic properties by hydrogenation, atom substitution and defect engineering Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 126 Issue (up) 21 Pages 215104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing first-principles calculations within the framework of density functional theory, we investigated the structural, electronic, and magnetic properties of graphene and various two-dimensional carbon-nitride (2DNC) nanosheets. The different 2DCN gives rise to diverse electronic properties such as metals (C3N2), semimetals (C4N and C9N4), half-metals (C4N3), ferromagnetic-metals (C9N7), semiconductors (C2N, C3N, C3N4, C6N6, and C6N8), spin-glass semiconductors (C10N9 and C14N12), and insulators (C2N2). Furthermore, the effects of adsorption and substitution of hydrogen atoms as well as N-vacancy defects on the electronic and magnetic properties are systematically studied. The introduction of point defects, including N vacancies, interstitial H impurity into graphene and different 2DCN crystals, results in very different band structures. Defect engineering leads to the discovery of potentially exotic properties that make 2DCN interesting for future investigations and emerging technological applications with precisely tailored properties. These properties can be useful for applications in various fields such as catalysis, energy storage, nanoelectronic devices, spintronics, optoelectronics, and nanosensors. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000504007300023 Publication Date 2019-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 70 Open Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:165733 Serial 6329
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Machine learning approach to constructing tight binding models for solids with application to BiTeCl Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 128 Issue (up) 21 Pages 215107
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Finding a tight-binding (TB) model for a desired solid is always a challenge that is of great interest when, e.g., studying transport properties. A method is proposed to construct TB models for solids using machine learning (ML) techniques. The approach is based on the LCAO method in combination with Slater-Koster (SK) integrals, which are used to obtain optimal SK parameters. The lattice constant is used to generate training examples to construct a linear ML model. We successfully used this method to find a TB model for BiTeCl, where spin-orbit coupling plays an essential role in its topological behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000597311900001 Publication Date 2020-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited 10 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government and was partially supported by BOF (UAntwerpen Grant Reference No. ADPERS/BAP/RS/ 2019). We would like to thank one of the anonymous referees for assisting us in making the paper more accessible to the reader. ; Approved Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:174380 Serial 6691
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Valley filtering in graphene due to substrate-induced mass potential Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 29 Issue (up) 21 Pages 215502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interaction of monolayer graphene with specific substrates may break its sublattice symmetry and results in unidirectional chiral states with opposite group velocities in the different Dirac cones (Zarenia et al 2012 Phys. Rev. B 86 085451). Taking advantage of this feature, we propose a valley filter based on a transversal mass kink for low energy electrons in graphene, which is obtained by assuming a defect region in the substrate that provides a change in the sign of the substrate-induced mass and thus creates a non-biased channel, perpendicular to the kink, for electron motion. By solving the time-dependent Schrodinger equation for the tight-binding Hamiltonian, we investigate the time evolution of a Gaussian wave packet propagating through such a system and obtain the transport properties of this graphene-based substrate-induced quantum point contact. Our results demonstrate that efficient valley filtering can be obtained, provided: (i) the electron energy is sufficiently low, i.e. with electrons belonging mostly to the lowest sub-band of the channel, and (ii) the channel length (width) is sufficiently long (narrow). Moreover, even though the transmission probabilities for each valley are significantly affected by impurities and defects in the channel region, the valley polarization in this system is shown to be robust against their presence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000400092700002 Publication Date 2017-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 15 Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152636 Serial 8730
Permanent link to this record
 

 
Author Xiang, F.; Gupta, A.; Chaves, A.; Krix, Z.E.; Watanabe, K.; Taniguchi, T.; Fuhrer, M.S.; Peeters, F.M.; Neilson, D.; Milošević, M.V.; Hamilton, A.R.
Title Intra-zero-energy Landau level crossings in bilayer graphene at high electric fields Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue (up) 21 Pages 9683-9689
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors nu = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at nu = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between nu = 0 -> 1 and nu = 2 -> 3 show anomalous behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102148900001 Publication Date 2023-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.8 Times cited 1 Open Access
Notes Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number UA @ admin @ c:irua:201200 Serial 9052
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Peeters, F.M.
Title Cerenkov emission of terahertz acoustic-phonons from graphene Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue (up) 22 Pages 222101-222104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000320621600034 Publication Date 2013-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 25 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109607 Serial 305
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Comment on “Chiral tunneling in trilayer graphene” [Appl. Phys. Lett. 100, 163102 (2012)] Type Editorial
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue (up) 22 Pages 226101-1
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000311967000107 Publication Date 2012-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:105999 Serial 408
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue (up) 22 Pages 224523-224523,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292218200010 Publication Date 2011-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90924 Serial 1415
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Chao, X.H.; Peeters, F.M.; Wang, H.B.; Moshchalkov, V.V.; Zhu, B.Y.
Title Magnetoresistance oscillations in superconducting strips : a Ginzburg-Landau study Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue (up) 22 Pages 224504-224508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within the time-dependent Ginzburg-Landau theory we study the dynamic properties of current-carrying superconducting strips in the presence of a perpendicular magnetic field. We found pronounced voltage peaks as a function of the magnetic field, the amplitude of which depends both on sample dimensions and external parameters. These voltage oscillations are a consequence of moving vortices, which undergo alternating static and dynamic phases. At higher fields or for high currents, the continuous motion of vortices is responsible for the monotonic background on which the resistance oscillations due to the entry of additional vortices are superimposed. Mechanisms for such vortex-assisted resistance oscillations are discussed. Qualitative changes in the magnetoresistance curves are observed in the presence of random defects, which affect the dynamics of vortices in the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000312064300004 Publication Date 2012-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF-NES program. G. R. B. acknowledges support from FWO-Vl. B.Y.Z. acknowledges the support from the MOST 973 Projects No. 2011CBA00110 and No. 2009CB930803, and the National Natural Science Foundation of China. V. V. M. acknowledges support from the Methusalem Funding by the Flemish Government. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:105969 Serial 1930
Permanent link to this record
 

 
Author Vagov, A.; Croitoru, M.D.; Axt, V.M.; Kuhn, T.; Peeters, F.M.
Title Nonmonotonic field dependence of damping and reappearance of Rabi oscillations in quantum dots Type A1 Journal article
Year 2007 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 98 Issue (up) 22 Pages 1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000246910100059 Publication Date 2007-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 91 Open Access
Notes Iap Approved Most recent IF: 8.462; 2007 IF: 6.944
Call Number UA @ lucian @ c:irua:64768 Serial 2362
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting transition temperature of Pb nanofilms : impact of thickness-dependent oscillations of the phonon-mediated electron-electron coupling Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue (up) 22 Pages 224517-224517,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract To date, several experimental groups reported measurements of the thickness dependence of T-c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T-c oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon-mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover, and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T-c oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305251300006 Publication Date 2012-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:99076 Serial 3368
Permanent link to this record
 

 
Author Conti, S.; Van der Donck, M.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Doping-dependent switch from one- to two-component superfluidity in coupled electron-hole van der Waals heterostructures Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue (up) 22 Pages 220504-220506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The hunt for high-temperature superfluidity has received new impetus from the discovery of atomically thin stable materials. Electron-hole superfluidity in coupled MoSe2-WSe2 monolayers is investigated using a mean-field multiband model that includes band splitting caused by strong spin-orbit coupling. This splitting leads to a large energy misalignment of the electron and hole bands which is strongly modified by interchanging the doping of the monolayers. The choice of doping determines if the superfluidity is tunable from one to two components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000538941900002 Publication Date 2020-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 12 Open Access
Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl), the Methusalem Foundation, and the FLAG-ERA project TRANS2DTMD. We thank A. R. Hamilton and A. Vargas-Paredes for useful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:170201 Serial 6489
Permanent link to this record