toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V. url  doi
openurl 
  Title Evolution of multigap superconductivity in the atomically thin limit : strain-enhanced three-gap superconductivity in monolayer MgB2 Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue (up) 9 Pages 094510  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2 at its ultrathin limit. Atomically thin MgB2 is distinctly different from bulk MgB2 in that surface states become comparable in electronic density to the bulklike sigma and pi bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we showthat monolayer MgB2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >50K under biaxial tensile strain of similar to 4%, which is an enhancement that is stronger than in any other graphene-related superconductor known to date.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000410166800008 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 56 Open Access  
  Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules Foundation and the Flemish Government (EWI Department). Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145623 Serial 4741  
Permanent link to this record
 

 
Author Michel, K.H.; Scuracchio, P.; Peeters, F.M. url  doi
openurl 
  Title Sound waves and flexural mode dynamics in two-dimensional crystals Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue (up) 9 Pages 094302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and outof-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000409246200003 Publication Date 2017-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145630 Serial 4751  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M. url  doi
openurl 
  Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue (up) 9 Pages 094420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411161700002 Publication Date 2017-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access OpenAccess  
  Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @c:irua:146748 Serial 4774  
Permanent link to this record
 

 
Author Vargas Paredes, A.A.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Perali, A. url  doi
openurl 
  Title Crossband versus intraband pairing in superconductors: signatures and consequences of the interplay Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue (up) 9 Pages 094516-94517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We analyze the paradigmatic competition between intraband and crossband Cooper-pair formation in twoband superconductors, neglected in most works to date. We derive the phase-sensitive gap equations and describe the crossover between the intraband-dominated and the crossband-dominated regimes, delimited by a “gapless” state. Experimental signatures of crosspairing comprise notable gap splitting in the excitation spectrum, non-BCS behavior of gaps versus temperature, as well as changes in the pairing symmetry as a function of temperature. The consequences of these findings are illustrated on the examples of MgB2 and Ba0.6K0.4Fe2As2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000522074900002 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 14 Open Access  
  Notes ; This collaborative work was fostered within the international Multi Super network on Multi-condensate Superconductivity and Superfluidity [70]. The authors thank Andrea Guidini for his help during the initial stage of this work and Laura Fanfarillo for useful discussions. This work was partially supported by the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001) and the Research Foundation -Flanders (FWO). A.A.V.-P. acknowledges support by the joint doctoral program and by the Erasmus+ exchange between the University of Antwerp and the University of Camerino. M.V.M. gratefully acknowledges support from a Visiting Professorship at the University of Camerino. A.S. and A.V. acknowledge support from the CAPES/Print Grant, Process No. 88887.333666/ 2019-00 (Brazil) and the Russian Science Foundation Project No. 18-12-00429, respectively. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168605 Serial 6479  
Permanent link to this record
 

 
Author van Duijn, F.; Osca, J.; Sorée, B. url  doi
openurl 
  Title Skyrmion elongation, duplication, and rotation by spin-transfer torque under spatially varying spin current Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue (up) 9 Pages 094426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the spatially varying spin current on a skyrmion is numerically investigated. It is shown that an inhomogeneous current density induces an elongation of the skyrmion. This elongation can be controlled using current pulses of different strength and duration. Long current pulses lead to a splitting that forms two replicas of the initial skyrmion while for short pulses the elongated skyrmion relaxes back to its initial circular state through rotation in the MHz-GHz frequency range. The frequency is dependent on the strength of the damping coefficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704236000002 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:182467 Serial 7018  
Permanent link to this record
 

 
Author Lazarevic, N.; Baum, A.; Milosavljevic, A.; Peis, L.; Stumberger, R.; Bekaert, J.; Solajic, A.; Pesic, J.; Wang, A.; Scepanovic, M.; Abeykoon, A.M.M.; Milošević, M.V.; Petrovic, C.; Popovic, Z.V.; Hackl, R. url  doi
openurl 
  Title Evolution of lattice, spin, and charge properties across the phase diagram of Fe1-xSx Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue (up) 9 Pages 094510-94519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A Raman scattering study covering the entire substitution range of the FeSe1-xSx solid solution is presented. Data were taken as a function of sulfur concentration x for 0 <= x <= 1, of temperature and of scattering symmetry. All types of excitations including phonons, spins, and charges are analyzed in detail. It is observed that the energy and width of the iron-related B-1g phonon mode vary continuously across the entire range of sulfur substitution. The A(1g) chalcogenide mode disappears above x = 0.23 and reappears at a much higher energy for x = 0.69. In a similar way the spectral features appearing at finite doping in A(1g) symmetry vary discontinuously. The magnetic excitation centered at approximately 500 cm(-1) disappears above x = 0.23 where the A(1g) lattice excitations exhibit a discontinuous change in energy. The low-energy mode associated with fluctuations displays maximal intensity at the nematostructural transition and thus tracks the phase boundary.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000917933500004 Publication Date 2022-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:194397 Serial 7304  
Permanent link to this record
 

 
Author Cadorim, L.R.; de Toledo, L.V.; Ortiz, W.A.; Berger, J.; Sardella, E. doi  openurl
  Title Closed vortex state in three-dimensional mesoscopic superconducting films under an applied transport current Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 107 Issue (up) 9 Pages 094515-94518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using the full 3D generalized time-dependent Ginzbug-Landau equation, we study a long superconducting film of finite width and thickness under an applied transport current. We show that, for sufficiently large thickness, the vortices and the antivortices become curved before they annihilate each other. As they approach the center of the sample, their ends combine, producing a single closed vortex. We also determine the critical values of the thickness for which the closed vortex sets in for different values of the Ginzburg-Ladau parameter. Finally, we propose a model of how to detect a closed vortex experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000957055800002 Publication Date 2023-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:196079 Serial 7673  
Permanent link to this record
 

 
Author Grujić, M.M.; Tadic, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Chiral properties of topological-state loops Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 245432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The angular momentum quantization of chiral gapless modes confined to a circularly shaped interface between two different topological phases is investigated. By examining several different setups, we show analytically that the angular momentum of the topological modes exhibits a highly chiral behavior, and can be coupled to spin and/or valley degrees of freedom, reflecting the nature of the interface states. A simple general one-dimensional model, valid for arbitrarily shaped loops, is shown to predict the corresponding energies and the magnetic moments. These loops can be viewed as building blocks for artificial magnets with tunable and highly diverse properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000356928200005 Publication Date 2015-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Ministry of Education, Science and Technological Development (Serbia), and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127039 Serial 357  
Permanent link to this record
 

 
Author Shylau, A.A.; Badalyan, S.M.; Peeters, F.M.; Jauho, A.P. url  doi
openurl 
  Title Electron polarization function and plasmons in metallic armchair graphene nanoribbons Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 205444  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Plasmon excitations in metallic armchair graphene nanoribbons are investigated using the random phase approximation. An exact analytical expression for the polarization function of Dirac fermions is obtained, valid for arbitrary temperature and doping. We find that at finite temperatures, due to the phase space redistribution among inter-band and intra-band electronic transitions in the conduction and valence bands, the full polarization function becomes independent of temperature and position of the chemical potential. It is shown that for a given width of nanoribbon there exists a single plasmon mode whose energy dispersion is determined by the graphene's fine structure constant. In the case of two Coulomb-coupled nanoribbons, this plasmon splits into in-phase and out-of-phase plasmon modes with splitting energy determined by the inter-ribbon spacing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355315400007 Publication Date 2015-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation (DNRF58). The work at the University of Antwerp was supported by the Flemisch Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. S.M.B. gratefully acknowledges hospitality and support from the Department of Physics at the University of Missouri. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126403 Serial 984  
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M. doi  openurl
  Title Fano resonances in the conductance of graphene nanoribbons with side gates Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 035444  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The control of side gates on the quantum electron transport in narrow graphene ribbons of different widths and edge types (armchair and zigzag) is investigated. The conductance exhibits Fano resonances with varying side gate potential. Resonant and antiresonant peaks in the conductance can be associated with the eigenstates of a closed system, and these peaks can be accurately fitted with a Fano line shape. The local density of states (LDOS) and the electron current show a specific behavior at these resonances, which depends on the ribbon edge type. In zigzag ribbons, transport is dominated by intervalley scattering, which is reflected in the transmission functions of individual modes. The side gates induce p-n interfaces near the edges at which the LDOS exhibits peaks. Near the resonance points, the electron current flows uniformly through the constriction, while near the antiresonances it creates vortices. In the armchair ribbons the LDOS spreads in areas of high potential, with current flowing near the edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351217900005 Publication Date 2015-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes ; This work was supported by the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125422 Serial 1172  
Permanent link to this record
 

 
Author Schoelz, J.K.; Xu, P.; Meunier, V.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M. url  doi
openurl 
  Title Graphene ripples as a realization of a two-dimensional Ising model : a scanning tunneling microscope study Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 045413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ripples in pristine freestanding graphene naturally orient themselves in an array that is alternately curved-up and curved-down; maintaining an average height of zero. Using scanning tunneling microscopy (STM) to apply a local force, the graphene sheet will reversibly rise and fall in height until the height reaches 60%-70% of its maximum at which point a sudden, permanent jump occurs. We successfully model the ripples as a spin-half Ising magnetic system, where the height of the graphene plays the role of the spin. The permanent jump in height, controlled by the tunneling current, is found to be equivalent to an antiferromagnetic-to-ferromagnetic phase transition. The thermal load underneath the STM tip alters the local tension and is identified as the responsible mechanism for the phase transition. Four universal critical exponents are measured from our STM data, and the model provides insight into the statistical role of graphene's unusual negative thermal expansion coefficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000348762200011 Publication Date 2015-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was supported in part by Office of Naval Research (USA) under Grant No. N00014-10-1-0181 and National Science Foundation (USA) under Grant No. DMR-0855358. F. M. Peeters and M. Neek-Amal were supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:123866 Serial 1377  
Permanent link to this record
 

 
Author Bacaksiz, C.; Sahin, H.; Ozaydin, H.D.; Horzum, S.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Hexagonal A1N : dimensional-crossover-driven band-gap transition Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 085430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by a recent experiment that reported the successful synthesis of hexagonal (h) AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013)], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h-AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h-AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm(-1) and an E-g mode at 703 cm(-1), which are observable by Raman measurements. In addition, single-layer h-AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, AA'-type stacking is found to be the most favorable one, and interlayer interaction is strong. While N-layered h-AlN is an indirect-band-gap semiconductor for N = 1 – 9, we predict that thicker structures (N >= 10) have a direct band gap at the Gamma point. The number-of-layer-dependent band-gap transitions in h-AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350319200020 Publication Date 2015-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 99 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B. and R.T.S. acknowledge the support from TUBITAK Project No 114F397. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125416 Serial 1421  
Permanent link to this record
 

 
Author Nishio, K.; Lu, A.K.A.; Pourtois, G. url  doi
openurl 
  Title Low-strain Si/O superlattices with tunable electronic properties : ab initio calculations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 165303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose that low-strain Si/O superlattices can be constructed by connecting reconstructed Si{001} surfaces by Si-O-Si bridges. Ab initio calculations show that our models are energetically more favorable than all the models proposed so far. The part of our Si/O superlattice model is experimentally accessible just by oxidizing a Si( 001) substrate. To complete our Si/O superlattice model, we propose a three-step method. We also explore the potential of our Si/O superlattice models for new materials used in future Si electronics. We find that the location of the channel where the carriers travel can be controlled between the interfaces and the Si layers by the insertion of O atoms into the Si-Si dimers. By revealing the origins of the interface electron and hole states, we find that similar interface states should be easily achieved for Si slabs and Si substrates. Interestingly, the interface electrons and holes have small effective masses in the direction parallel to the channel and large effective masses in the direction normal to the channel, which makes the Si/O superlattices attractive to be used for channel materials. We also find that the valley splitting of Si is enhanced by the formation of the Si/O/Si interfaces, which is ideal for developing Si-based qubits. Our findings open new perspectives to design and control the electronic properties of Si.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352986700002 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125998 Serial 1852  
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 214504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355647100003 Publication Date 2015-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126433 Serial 2089  
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Disordered graphene Josephson junctions Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 054506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349436500001 Publication Date 2015-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:129192 Serial 3961  
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Peeters, F.M.; Foeldi, P. url  doi
openurl 
  Title Oscillating spin-orbit interaction in two-dimensional superlattices : sharp transmission resonances and time-dependent spin-polarized currents Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 235311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider ballistic transport through a lateral, two-dimensional superlattice with experimentally realizable, sinusoidally oscillating, Rashba-type spin-orbit interaction (SOI). The periodic structure of the rectangular lattice produces a spin-dependent miniband structure for static SOI. Using Floquet theory, transmission peaks are shown to appear in themini-bandgaps as a consequence of the additional, time-dependent SOI. A detailed analysis shows that this effect is due to the generation of harmonics of the driving frequency, via which, e.g., resonances that cannot be excited in the case of static SOI become available. Additionally, the transmitted current shows space-and time-dependent partial spin polarization, in other words, polarization waves propagate through the superlattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355956500003 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was partially supported by the European Union and the European Social Fund through Projects No. TAMOP-4.2.2.C-11/1/KONV-2012-0010 and No. TAMOP-4.2.2.A-11/1/KONV-2012-0060, and by the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and No. 116688. The ELI-ALPS Project (GOP-1.1.1-12/B-2012-0001) is supported by the European Union and cofinanced by the European Regional Development Fund. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126432 Serial 2534  
Permanent link to this record
 

 
Author Aierken, Y.; Sahin, H.; Iyikanat, F.; Horzum, S.; Suslu, A.; Chen, B.; Senger, R.T.; Tongay, S.; Peeters, F.M. url  doi
openurl 
  Title Portlandite crystal : bulk, bilayer, and monolayer structures Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 245413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ca(OH)(2) crystals, well known as portlandite, are grown in layered form, and we found that they can be exfoliated on different substrates. We performed first principles calculations to investigate the structural, electronic, vibrational, and mechanical properties of bulk, bilayer, and monolayer structures of this material. Different from other lamellar structures such as graphite and transition-metal dichalcogenides, intralayer bonding in Ca(OH)(2) is mainly ionic, while the interlayer interaction remains a weak dispersion-type force. Unlike well-known transition-metal dichalcogenides that exhibit an indirect-to-direct band gap crossover when going from bulk to a single layer, Ca(OH)(2) is a direct band gap semiconductor independent of the number layers. The in-plane Young's modulus and the in-plane shear modulus of monolayer Ca(OH)(2) are predicted to be quite low while the in-plane Poisson ratio is larger in comparison to those in the monolayer of ionic crystal BN. We measured the Raman spectrum of bulk Ca(OH)(2) and identified the high-frequency OH stretching mode A(1g) at 3620 cm(-1). In this study, bilayer and monolayer portlandite [Ca(OH)(2)] are predicted to be stable and their characteristics are analyzed in detail. Our results can guide further research on ultrathin hydroxites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356135600007 Publication Date 2015-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126983 Serial 2675  
Permanent link to this record
 

 
Author Zalipaev, V.; Linton, C.M.; Croitoru, M.D.; Vagov, A. url  doi
openurl 
  Title Resonant tunneling and localized states in a graphene monolayer with a mass gap Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 085405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study tunneling of quasiparticles through potential barriers in a graphene monolayer with the mass gap using a semiclassical (WKB) approach. The main equations are derived in away similar to the WKB theory for the Schrodinger equation, which allows for explicit solutions at all orders. The analog of the classical action is used to distinguish types of possible stationary states in the system. The analysis focuses on the resonant scattering and the hole states localized in the vicinity of a barrier that are often overlooked. The scattering coefficients for the physically interesting limits are obtained by matching the WKB approximation with the known solutions at turning points. The localized states demonstrate unconventional properties and lead to alterations of the single particle density of states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351773900004 Publication Date 2015-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; M.D.C. acknowledges the Belgian Science Policy (BELSPO Back to Belgium Grant). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125523 Serial 2891  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M. url  doi
openurl 
  Title Rippling, buckling, and melting of single- and multilayer MoS2 Type A1 Journal article
  Year 2015 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 014101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large-scale atomistic simulations using the reactive empirical bond order force field approach is implemented to investigate thermal and mechanical properties of single-layer (SL) and multilayer (ML) molybdenum disulfide (MoS2). The amplitude of the intrinsic ripples of SL MoS2 are found to be smaller than those exhibited by graphene (GE). Furthermore, because of the van der Waals interaction between layers, the out-of-plane thermal fluctuations of ML MoS2 decreases rapidly with increasing number of layers. This trend is confirmed by the buckling transition due to uniaxial stress which occurs for a significantly larger applied tension as compared to graphene. For SL MoS2, the melting temperature is estimated to be 3700 K which occurs through dimerization followed by the formation of small molecules consisting of two to five atoms. When different types of vacancies are inserted in the SL MoS2 it results in a decrease of both the melting temperature as well as the stiffness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000347921300001 Publication Date 2015-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes ; This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. We would like to thanks Prof. Douglas E. Spearot [26] for giving us the implemented parameters of Mo-S in LAMMPS. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:123834 Serial 2909  
Permanent link to this record
 

 
Author Leenaerts, O.; Schoeters, B.; Partoens, B. url  doi
openurl 
  Title Stable kagome lattices from group IV elements Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 115202  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A thorough investigation of three-dimensional kagome lattices of group IV elements is performed with first-principles calculations. The investigated kagome lattices of silicon and germanium are found to be of similar stability as the recently proposed carbon kagome lattice. Carbon and silicon kagome lattices are both direct-gap semiconductors but they have qualitatively different electronic band structures. While direct optical transitions between the valence and conduction bands are allowed in the carbon case, no such transitions can be observed for silicon. The kagome lattice of germanium exhibits semimetallic behavior but can be transformed into a semiconductor after compression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351900700003 Publication Date 2015-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125516 Serial 3144  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Tomasch effect in nanoscale superconductors Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 024508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Tomasch effect (TE) is due to quasiparticle interference (QPI) as induced by a nonuniform superconducting order parameter, which results in oscillations in the density of states (DOS) at energies above the superconducting gap. Quantum confinement in nanoscale superconductors leads to an inhomogenerous distribution of the Cooperpair condensate, which, as we found, triggers the manifestation of a new TE. We investigate the electronic structure of nanoscale superconductors by solving the Bogoliubov-de Gennes (BdG) equations self-consistently and describe the TE determined by two types of processes, involving two-or three-subband QPIs. Both types of QPIs result in additional BCS-like Bogoliubov-quasiparticles and BCS-like energy gaps leading to oscillations in the DOS and modulated wave patterns in the local density of states. These effects are strongly related to the symmetries of the system. A reduced 4 x 4 inter-subband BdG Hamiltonian is established in order to describe analytically the TE of two-subband QPIs. Our study is relevant to nanoscale superconductors, either nanowires or thin films, Bose-Einsten condensates, and confined systems such as two-dimensional electron gas interface superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000348473700003 Publication Date 2015-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:123864 Serial 3670  
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J. url  doi
openurl 
  Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 094112  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352017000002 Publication Date 2015-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 54 Open Access  
  Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125512 c:irua:125512 Serial 3825  
Permanent link to this record
 

 
Author Richardson, C.L.; Edkins, S.D.; Berdiyorov, G.R.; Chua, C.J.; Griffiths, J.P.; Jones, G.A.C.; Buitelaar, M.R.; Narayan, V.; Sfigakis, F.; Smith, C.G.; Covaci, L.; Connolly, M.R.; url  doi
openurl 
  Title Vortex detection and quantum transport in mesoscopic graphene Josephson-junction arrays Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 245418  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate mesoscopic Josephson-junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-T/T-c regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356129800012 Publication Date 2015-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; This work was financially supported by the Engineering and Physical Sciences Research Council, and an NPL/EPSRC Joint Postdoctoral Partnership. Supporting data for this paper is available at the DSpace@Cambridge data repository (https://www.repository.cam.ac.uk/handle/1810/248242). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126982 Serial 3865  
Permanent link to this record
 

 
Author Chaves, A.; Low, T.; Avouris, P.; Çakir, D.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic exciton Stark shift in black phosphorus Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 155311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the excitonic spectrum of few-layer black phosphorus by direct diagonalization of the effective mass Hamiltonian in the presence of an applied in-plane electric field. The strong attractive interaction between electrons and holes in this system allows one to investigate the Stark effect up to very high ionizing fields, including also the excited states. Our results show that the band anisotropy in black phosphorus becomes evident in the direction-dependent field-induced polarizability of the exciton.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000353459200005 Publication Date 2015-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 88 Open Access  
  Notes ; Discussions with J. M. Pereira Jr. and J. S. de Souza are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq) through the PQ and Science Without Borders programs, the Flemish Science Foundation (FWO-Vl), the Methusalem programme of the Flemish government, and the Bilateral program (CNPq-FWO) between Flanders and Brazil. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132506 Serial 4141  
Permanent link to this record
 

 
Author Sadeghi, A.; Neek-Amal, M.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Diffusion of fluorine on and between graphene layers Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 014304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations and reactive force field molecular dynamics simulations, we study the structural properties and dynamics of a fluorine (F) atom, either adsorbed on the surface of single layer graphene (F/GE) or between the layers of AB stacked bilayer graphene (F@ bilayer graphene). It is found that the diffusion of the F atom is very different in those cases, and that the mobility of the F atom increases by about an order of magnitude when inserted between two graphene layers. The obtained diffusion constant for F/GE is twice larger than that experimentally found for gold adatom and theoretically found for C-60 molecule on graphene. Our study provides important physical insights into the dynamics of fluorine atoms between and on graphene layers and explains the mechanism behind the separation of graphite layers due to intercalation of F atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000349125800002 Publication Date 2015-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132561 Serial 4161  
Permanent link to this record
 

 
Author Pavlović, S.; Peeters, F.M. url  doi
openurl 
  Title Electronic properties of triangular and hexagonal MoS2 quantum dots Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 155410  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we calculate the electronic structure of triangular and hexagonal MoS2 quantum dots. Due to the orbital asymmetry we show that it is possible to form quantum dots with the same shape but having different electronic properties. The electronic states of triangular and hexagonal quantum dots are explored, as well as the local and total density of states and the convergence towards the bulk spectrum with dot size is investigated. Our calculations show that: (1) edge states appear in the band gap, (2) that there are a larger number of electronic states in the conduction band as compared to the valence band, and (3) the relative number of edge states decreases with increasing dot size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000352591200005 Publication Date 2015-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. Stefan Pavlovic is supported by JoinEU-SEE IV, Erasmus Mundus Action 2 programme. We thank J. M. Pereira for interesting discussions. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132516 Serial 4170  
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M. url  doi
openurl 
  Title Theory of anharmonic phonons in two-dimensional crystals Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (up) 91 Pages 134302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Anharmonic effects in an atomic monolayer thin crystal with honeycomb lattice structure are investigated by analytical and numerical lattice dynamical methods. Starting from a semiempirical model for anharmonic couplings of third and fourth orders, we study the in-plane and out-of-plane (flexural) mode components of the generalized wave vector dependent Gruneisen parameters, the thermal tension and the thermal expansion coefficients as a function of temperature and crystal size. From the resonances of the displacement-displacement correlation functions, we obtain the renormalization and decay rate of in-plane and flexural phonons as a function of temperature, wave vector, and crystal size in the classical and in the quantum regime. Quantitative results are presented for graphene. There, we find that the transition temperature T-alpha from negative to positive thermal expansion is lowered with smaller system size. Renormalization of the flexural mode has the opposite effect and leads to values of T-alpha approximate to 300 K for systems of macroscopic size. Extensive numerical analysis throughout the Brillouin zone explores various decay and scattering channels. The relative importance of normal and umklapp processes is investigated. The work is complementary to crystalline membrane theory and computational studies of anharmonic effects in two-dimensional crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000353031000001 Publication Date 2015-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132512 Serial 4263  
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Magneto-optical transport properties of monolayer phosphorene Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue (up) 92 Pages 045420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic properties of monolayer phosphorene are exotic due to its puckered structure and large intrinsic direct band gap. We derive and discuss its band structure in the presence of a perpendicular magnetic field. Further, we evaluate the magneto-optical Hall and longitudinal optical conductivities as functions of temperature, magnetic field, and Fermi energy, and show that they are strongly influenced by the magnetic field. The imaginary part of the former and the real part of the latter exhibit regular interband oscillations as functions of the frequency omega in the range (h) over bar omega similar to 1.5-2 eV. Strong intraband responses in the latter and weak ones in the former occur at much lower frequencies. The magneto-optical response can be tuned in the microwave-to-terahertz and visible frequency ranges in contrast with a conventional two-dimensional electron gas or graphene in which the response is limited to the terahertz regime. This ability to isolate carriers in an anisotropic structure may make phosphorene a promising candidate for new optical devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000358373600003 Publication Date 2015-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 68 Open Access  
  Notes ; This work was supported by the the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127192 Serial 1903  
Permanent link to this record
 

 
Author Shakouri, K.; Peeters, F.M. url  doi
openurl 
  Title Spin- and pseudospin-polarized quantum Hall liquids in HgTe quantum wells Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue (up) 92 Pages 045416  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A Hg(Cd)Te insulator heterostructure hosts a two-dimensional electron system that can simulate the physics of Dirac fermions with only a single valley. We investigate the magnetotransport properties of this structure and show that, unlike most two-dimensional crystals with spin and valley coupled levels, the Shubnikov-de Haas oscillations exhibit a high spin polarization in the absence of any valley degree of freedom. This effect can be observed using magnetospectroscopy measurements for quantum well thicknesses corresponding to either the topologically trivial or quantum spin Hall phases. The pseudospin texture of the electrons near the Fermi level is also studied and we show that a tunable pseudospin-polarized quantum Hall liquid can only be observed for thicknesses corresponding to the inverted regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000358032000002 Publication Date 2015-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127097 Serial 3077  
Permanent link to this record
 

 
Author Shakouri, K.; Simchi, H.; Esmaeilzadeh, M.; Mazidabadi, H.; Peeters, F.M. url  doi
openurl 
  Title Tunable spin and charge transport in silicene nanoribbons Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue (up) 92 Pages 035413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding formalism, we study spin and charge transport through a zigzag silicene ribbon subject to an external electric field E-z. The effect of an exchange field M-z is also taken into account and its consequences on the band structure as well as spin transport are evaluated. We show that the band structure lacks spin inversion symmetry in the presence of intrinsic spin-orbit interaction in combination of E-z and M-z fields. Our quantum transport calculations indicate that for certain energy ranges of the incoming electrons the silicene ribbon can act as a controllable high-efficiency spin polarizer. The polarization maxima occur simultaneously with the van Hove singularities of the local density of states. In this case, the combination of electric and exchange fields is the key to achieving nearly perfect spin polarization, which also leads to the appearance of additional narrow plateaus in the quantum conductance. Moreover, we demonstrate that the output current still remains completely spin-polarized for low-energy carriers even when a few edge vacancies are present.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357806900004 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 70 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127099 Serial 3746  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: