toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Somsen, C.; Wassermann, E.F.; Kästner, J.; Schryvers, D. doi  openurl
  Title Precursor phenomena in a quenched and aged Ni52Ti48 shape memory alloy Type A1 Journal article
  Year 2003 Publication Journal de physique: 4 T2 – 10th International Conference on Martensitic Transformations, JUN 10-14, 2002, ESPOO, FINLAND Abbreviated Journal J Phys Iv  
  Volume 112 Issue (down) Part 2 Pages 777-780  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We measured the electrical resistivity R(T) and specific heat C-p(T) between room temperature (RT) and 4.2 K as well as the microstructure by transmission electron microscopy (TEM) of a Ni-52 Ti-48 SMA quenched from 1000degreesC (B2-Phase range) to RT and then annealed for 1h at T=380degreesC, 550degreesC and 650degreesC. In the “as quenched” and the “650degreesC annealed” state no martensitic transformations (MT's) occur. The diffraction patterns show faint reflections originating from coherent Ni4Ti3 precipitates in an early state of formation. Additional reflections of the type 1/2 <110>, 1/2 <111> and 1/3 <110> result from various lattice displacement waves, which are precursors of the MT's to the B19' and R-phase, respectively. Indeed, high resolution TEM micrographs of the [001] zone of the “as quenched” sample reveal transverse 1/2 <110> <110> lattice displacement waves, precursors of the B19' martensite. The coherent Ni4Ti3 precipitates, homogeneously distributed on a small length scale, binder the MT's in the “as quenched” and the “650degreesC annealed” state, and thus only the precursors appear. When annealed at T=380degreesC, however, coherent Ni4Ti3 precipitates with a length of 10nm are clearly visible in TEM. These precipitates trigger the NIT from the B2 to the R-phase on cooling, as evidenced also by anomalies in R(T) and C-p(T). Annealing at T-550degreesC leads to the well known two step MT's from the B2 to the R-phase and then into the B19'-phase. These martensitic transitions are clearly seen as additional peaks in the specific heat and anomalies in the resistance, while the “as quenched” and 650degreesC annealed samples show weak features in R(T) and C-p(T).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000186503400036 Publication Date 2008-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:102791 Serial 2694  
Permanent link to this record
 

 
Author Arakcheeva, A.; Pattison, P.; Chapuis, G.; Rossell, M.; Filaretov, A.; Morozov, V.; Van Tendeloo, G. pdf  doi
openurl 
  Title KSm(MoO4)2, an incommensurately modulated and partially disordered scheelite-like structure Type A1 Journal article
  Year 2008 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B  
  Volume 64 Issue (down) Part 2 Pages 160-171  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The incommensurately modulated scheelite-like KSm( MoO4)(2) structure has been refined in the monoclinic superspace group I2/b(alpha beta 0)00 by the Rietveld method on the basis of synchrotron radiation powder diffraction data. The systematic broadening of satellite reflections has been accounted for by applying anisotropic microstrain line-broadening. The microstructure has been studied by transmission electron microscopy (TEM). The partial disorder of the K and Sm cations in the A position is best approximated by a combination of harmonic and complex crenel functions with (0.952Sm + 0.048K) and (0.952K + 0.048Sm) atomic domains. This combination yields a compositional wave distribution from {KMoO4} to {SmMoO4} observed in the ab structure projection along q. The specific features of KSm(MoO4)(2) and degree of the A-cation ordering are discussed in comparison with the previously reported structure of KNd(MoO4)(2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000253992600004 Publication Date 2008-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0108-7681; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 23 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:102618 Serial 3539  
Permanent link to this record
 

 
Author Antipov, E.V.; Putilin, S.N.; Shpanchenko, R.V.; Alyoshin, V.A.; Rozova, M.G.; Abakumov, A.M.; Mikhailova, D.A.; Balagurov, A.M.; Lebedev, O.; Van Tendeloo, G. doi  openurl
  Title Structural features, oxygen and fluorine doping in Cu-based superconductors Type A1 Journal article
  Year 1997 Publication Physica: C : superconductivity T2 – International Conference on Materials and Mechanisms of, Superconductivity – High Temperature Superconductors V, Feb. 28-Mar. 04, 1997, Beijing, Peoples R. China Abbreviated Journal Physica C  
  Volume 282 Issue (down) Part 1 Pages 61-64  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The variation of structures and superconducting properties by changing extra oxygen or fluorine atoms concentration in Hg-based Cu mixed oxides and YBa2Cu3O6+delta was studied. The data obtained by NPD study of Hg-1201 can be considered as an evidence of the conventional oxygen doping mechanism with 2 delta holes per (CuO2) layer. The extra oxygen atom was found to be located in the middle of the Hg mesh only. Different formal charges of oxygen and fluorine inserted into reduced 123 structure results in its distinct variations. The fluorine incorporation into strongly reduced YBa2Cu3O6+delta causes a significant structural rearrangement and the formation of a new compound with a composition close to YBa2Cu3O6F2 (tetragonal alpha = 3.87 Angstrom and c approximate to 13 Angstrom), which structure was deduced from the combined results of X-ray diffraction, electron diffraction and high resolution electron microscopy. Fluorination treatment by XeF2 of nonsuperconducting 123 samples causes an appearance of bulk superconductivity with T-c up to 94K.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Place of Publication Amsterdam Editor  
  Language Wos A1997XZ90400019 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.404; 1997 IF: 2.199  
  Call Number UA @ lucian @ c:irua:95866 Serial 3237  
Permanent link to this record
 

 
Author Ball, J.M.; Schryvers, D. doi  openurl
  Title The analysis of macrotwins in NiAl martensite Type A1 Journal article
  Year 2003 Publication Journal de physique: 4 T2 – 10th International Conference on Martensitic Transformations, JUN 10-14, 2002, ESPOO, FINLAND Abbreviated Journal J Phys Iv  
  Volume 112 Issue (down) Part 1 Pages 159-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a theoretical study of macrotwins arising in cubic to tetragonal martensitic transformations. The results help to explain some features of such macrotwins observed in Ni65Al35.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000186503200024 Publication Date 2008-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103275 Serial 3569  
Permanent link to this record
 

 
Author L. Zhang, J. Kim, J. Zhang, F. Nan, N. Gauquelin, G.A. Botton, P. He, R. Bashyam, S. Knights doi  openurl
  Title Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction Type A1 Journal Article
  Year 2013 Publication Applied Energy Abbreviated Journal  
  Volume 103 Issue (down) March 2013 Pages 507-513  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A new method is developed for synthesizing Ti4O7 supported Ru@Pt core–shell catalyst (Ru@Pt/Ti4O7) through pyrolysis followed by microwave irradiation. The purpose is to improve the Ru durability of PtRu from core–shell structure and strong bonding to Ti4O7 oxide. In this method, the first step is to co-reduce the mixture of ruthenium precursor and TiO2 in a H2 reducing atmosphere under heat-treatment to obtain a Ru core on Ti4O7 support, and the second step is to create a shell of platinum via microwave irradiation. Energy dispersive X-ray spectrometry, X-ray Diffraction, High-resolution Scanning Transmission Electron Microscopy with the high-angle annular dark-field method and Electron Energy-Loss Spectroscopy are used to demonstrate that this catalyst with larger particles has a core–shell structure with a Ru core and a Pt shell. Electrochemical measurements show Ru@Pt/Ti4O7 catalyst has a higher CO-tolerance capability than that of PtRu/C alloy catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314669500048 Publication Date 2012-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 33 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4547  
Permanent link to this record
 

 
Author Schryvers, D. pdf  doi
openurl 
  Title Martensitic and related transformations in Ni-Al alloys Type A1 Journal article
  Year 1995 Publication Journal de physique: 4 T2 – IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPAIN Abbreviated Journal IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPA  
  Volume 5 Issue (down) C2 Pages 225-234  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present paper gives a review of results of recent studies investigating the fundamentals of the martensitic and related phase transformations in Ni-Al. For the former case, the emphasis will be on the microstructure of martensite plates. The latter include the metastable Ni2Al omega-like and stable Ni5Al3 bainitic phases. These phases will be discussed in view of their atomic structure, nucleation, growth and effect on the martensitic transformation. A separate chapter will deal with precursor effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos A1995QX40700036 Publication Date 2007-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104437 Serial 1947  
Permanent link to this record
 

 
Author Schryvers, D.; Toth, L.; Ma, Y.; Tanner, L. pdf  doi
openurl 
  Title Nucleation and growth of the Ni5Al3 phase in Ni-Al austenite and martensite Type A1 Journal article
  Year 1995 Publication Journal de physique: 4 T2 – IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPAIN Abbreviated Journal IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPA  
  Volume 5 Issue (down) C2 Pages 299-304  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The nucleation and growth mechanisms of Ni5Al3 precipitates and microtwinned plates in B2 austenite and 2M (3R) martensite phases are described on the basis of conventional and high resolution electron microscopy. In the Ni62.5Al37.5 B2 austenite matrix short annealings at 550 degrees C introduce three-pointed star shaped precipitates consisting of twin related parts of different variants of the Ni5Al3 structure. Longer annealings result in plates growing separately from these wings and developing microtwinning in order to accommodate stress built-up at the interfaces with the surrounding matrix. Annealing of Ni65Al35 2M martensite plates induces simple reordering into the Ni5Al3 phase, increasing the fct c/a ratio by about 1%. As a result stracking faults are introduced in the smallest twin variants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos A1995QX40700047 Publication Date 2007-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104438 Serial 2387  
Permanent link to this record
 

 
Author Muto, S.; Schryvers, D. openurl 
  Title Electron-irridation-induced martensitic transformation in a Ni63Al37 observed in-situ by HREM Type A3 Journal article
  Year 1993 Publication MRS Japan: shape memory materials Abbreviated Journal  
  Volume 18 Issue (down) B Pages 853-856  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:48357 Serial 937  
Permanent link to this record
 

 
Author Schryvers, D.; Tanner, L.E. openurl 
  Title On the phase-like nature of the 7M structure in Ni-Al Type A3 Journal article
  Year 1993 Publication MRS Japan: shape memory materials Abbreviated Journal  
  Volume 18 Issue (down) B Pages 849-852  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1994BC69J00183 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:48356 Serial 2447  
Permanent link to this record
 

 
Author Grieb, T.; Tewes, M.; Schowalter, M.; Müller-Caspary, K.; Krause, F.F.; Mehrtens, T.; Hartmann, J.-M.; Rosenauer, A. pdf  doi
openurl 
  Title Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue (down) B Pages 29-36  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The chemical composition of four Si1-xGex layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si1-xGex in STEM. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000417779800004 Publication Date 2017-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access Not_Open_Access  
  Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. RO2057/11-1. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:148500 Serial 4893  
Permanent link to this record
 

 
Author Alania, M.; Lobato Hoyos, I.P.; Van Aert, S. pdf  url
doi  openurl
  Title Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy : a comparison study in terms of integrated intensity and atomic column position measurement Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue (down) A Pages 188-198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramer-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000415650200022 Publication Date 2017-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, and G.0368.15N). A. Rosenauer is acknowledged for providing the STEMsim program. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:147658 Serial 4877  
Permanent link to this record
 

 
Author Vervaet, B.A.; Nast, C.C.; Jayasumana, C.; Schreurs, G.; Roels, F.; Herath, C.; Kojc, N.; Samaee, V.; Rodrigo, S.; Gowrishankar, S.; Mousson, C.; Dassanayake, R.; Orantes, C.M.; Vuiblet, V.; Rigothier, C.; d' Haese, P.C.; de Broe, M.E. url  doi
openurl 
  Title Chronic interstitial nephritis in agricultural communities is a toxin induced proximal tubular nephropathy Type A1 Journal article
  Year 2019 Publication Kidney international Abbreviated Journal Kidney Int  
  Volume 97 Issue (down) 97 Pages 350-369  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory Experimental Medicine and Pediatrics (LEMP); Pathophysiology  
  Abstract Almost 30 years after the detection of chronic interstitial nephritis in agricultural communities (CINAC) its etiology remains unknown. To help define this we examined 34 renal biopsies from Sri Lanka, El Salvador, India and France of patients with chronic kidney disease 2-3 and diagnosed with CINAC by light and electron microscopy. In addition to known histopathology, we identified a unique constellation of proximal tubular cell findings including large dysmorphic lysosomes with a light-medium electron-dense matrix containing dispersed dark electron-dense non-membrane bound “aggregates”. These aggregates associated with varying degrees of cellular/tubular atrophy, apparent cell fragment shedding and no-weak proximal tubular cell proliferative capacity. Identical lysosomal lesions, identifiable by electron microscopy, were observed in 9% of renal transplant implantation biopsies, but were more prevalent in six month (50%) and 12 month (67%) protocol biopsies and in indication biopsies (76%) of calcineurin inhibitor treated transplant patients. The phenotype was also found associated with nephrotoxic drugs (lomustine, clomiphene, lithium, cocaine) and in some patients with light chain tubulopathy, all conditions that can be directly or indirectly linked to calcineurin pathway inhibition or modulation. One hundred biopsies of normal kidneys, drug/toxin induced nephropathies, and overt proteinuric patients of different etiologies to some extent could demonstrate the light microscopic proximal tubular cell changes, but rarely the electron microscopic lysosomal features. Rats treated with the calcineurin inhibitor cyclosporine for four weeks developed similar proximal tubular cell lysosomal alterations, which were absent in a dehydration group. Overall, the finding of an identical proximal tubular cell (lysosomal) lesion in CINAC and calcineurin inhibitor nephrotoxicity in different geographic regions suggests a common paradigm where CINAC patients undergo a tubulotoxic mechanism similar to calcineurin inhibitor nephrotoxicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508449300020 Publication Date 2019-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0085-2538; 1523-1755 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.395 Times cited Open Access  
  Notes Approved Most recent IF: 8.395  
  Call Number UA @ admin @ c:irua:164305c:irua:166544 Serial 5384  
Permanent link to this record
 

 
Author Kleibert, A.; Balan, A.; Yanes, R.; Derlet, P.M.; Vaz, C.A.F.; Timm, M.; Fraile Rodríguez, A.; Béché, A.; Verbeeck, J.; Dhaka, R.S.; Radovic, M.; Nowak, U.; Nolting, F. pdf  url
doi  openurl
  Title Direct observation of enhanced magnetism in individual size- and shape-selected 3d transition metal nanoparticles Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue (down) 95 Pages 195404  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Magnetic nanoparticles are critical building blocks for future technologies ranging from nanomedicine to spintronics. Many related applications require nanoparticles with tailored magnetic properties. However, despite significant efforts undertaken towards this goal, a broad and poorly understood dispersion of magnetic properties is reported, even within monodisperse samples of the canonical ferromagnetic 3d transition metals. We address this issue by investigating the magnetism of a large number of size- and shape-selected, individual nanoparticles of Fe, Co, and Ni using a unique set of complementary characterization techniques. At room temperature, only superparamagnetic behavior is observed in our experiments for all Ni nanoparticles within the investigated sizes, which range from 8 to 20 nm. However, Fe and Co nanoparticles can exist in two distinct magnetic states at any size in this range: (i) a superparamagnetic state, as expected from the bulk and surface anisotropies known for the respective materials and as observed for Ni, and (ii) a state with unexpected stable magnetization at room temperature. This striking state is assigned to significant modifications of the magnetic properties arising from metastable lattice defects in the core of the nanoparticles, as concluded by calculations and atomic structural characterization. Also related with the structural defects, we find that the magnetic state of Fe and Co nanoparticles can be tuned by thermal treatment enabling one to tailor their magnetic properties for applications. This paper demonstrates the importance of complementary single particle investigations for a better understanding of nanoparticle magnetism and for full exploration of their potential for applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400665300002 Publication Date 2017-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access OpenAccess  
  Notes We thank A. Weber, R. Schelldorfer, and J. Krbanjevic (Paul Scherrer Institut) for technical assistance. This paper was supported by the Swiss Nanoscience Institute, University of Basel. A.F.R. acknowledges support from the MICIIN “Ramón y Cajal” Programme. A.B. and J.V. acknowledge funding from the European Union under the European Research Council (ERC) Starting Grant No. 278510 VORTEX and under a contract for Integrated Infrastructure Initiative ESTEEM2 No. 312483. R.Y. and U.N. thank the Deutsche Forschungsgemeinschaft for financial support via Sonderforschungsbereich 1214. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @ c:irua:143634UA @ admin @ c:irua:143634 Serial 4575  
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D. url  doi
openurl 
  Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue (down) 94 Pages 52140-52146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200-400 degrees C) is reported. The use of the fluorinated Fe(hfa)(2)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) molecular precursor in Ar/O-2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in gamma-Fe2O3 at 200 degrees C and alpha-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 degrees C the formation of highly oriented alpha-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344389000041 Publication Date 2014-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:121239 Serial 2813  
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D. url  doi
openurl 
  Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
  Year 2014 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume Issue (down) 94 Pages 52140-52146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200400 °C) is reported. The use of the fluorinated Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) molecular precursor in Ar/O2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in γ-Fe2O3 at 200 °C and α-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 °C the formation of highly oriented α-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344389000041 Publication Date 2014-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:119529 Serial 2814  
Permanent link to this record
 

 
Author Juchtmans, R.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Extension of Friedel's law to vortex-beam diffraction Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue (down) 94 Pages 033858  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384374500010 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 13 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_; Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:137200UA @ admin @ c:irua:137200 Serial 4314  
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D. pdf  url
doi  openurl
  Title Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach Type A1 Journal article
  Year 2017 Publication Micron Abbreviated Journal Micron  
  Volume 94 Issue (down) 94 Pages 66-73  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393247300008 Publication Date 2016-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 11 Open Access OpenAccess  
  Notes This research has been performed with the financial support of the Belgian Science Policy (Belspo) under the framework of the interuniversity attraction poles program, IAP7/21. Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaeeaghmiyoni also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 1.98  
  Call Number EMAT @ emat @ c:irua:139515 Serial 4341  
Permanent link to this record
 

 
Author Juchtmans, R.; Clark, L.; Lubk, A.; Verbeeck, J. url  doi
openurl 
  Title Spiral phase plate contrast in optical and electron microscopy Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue (down) 94 Pages 023838  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of phase plates in the back focal plane of a microscope is a well-established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, which adds an angularly dependent phase of the form exp(iℓϕk) to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of l=+-1

SPP filtered images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. We discuss the difference between a clockwise-anticlockwise pair of SPP filtered images and derive conditions under which the modulus of the wave's gradient can be seen directly from one SPP filtered image. This work provides the theoretical background to interpret images obtained with a SPP, thereby opening new perspectives for new experiments to study, for example, magnetic materials in an electron microscope.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381882800011 Publication Date 2016-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 10 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_ Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:140086 Serial 4418  
Permanent link to this record
 

 
Author Cabana, L.; Ke, X.; Kepić, D.; Oro-Solé, J.; Tobías-Rossell, E.; Van Tendeloo, G.; Tobias, G. pdf  url
doi  openurl
  Title The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 93 Issue (down) 93 Pages 1059-1067  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Purification and shortening of carbon nanotubes have attracted a great deal of attention to increase the biocompatibility and performance of the material in several applications. Steam treatment has been employed to afford both purification and shortening of multi-walled carbon nanotubes (MWCNTs). Steam removes the amorphous carbon and the graphitic particles that sheath catalytic nanoparticles, facilitating their removal by a subsequent acidic wash. The amount of metal impurities can be reduced in this manner below 0.01 wt.%. The length distribution of MWCNTs after different steam treatment times (from 1 h to 15 h) was assessed by box plot analysis of the electron microscopy data. Samples with a median length of 0.57 μm have been prepared with the reported methodology while preserving the integrity of the tubular wall structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000360292100108 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 17 Open Access  
  Notes 312483 Esteem2; 290023 Raddel; esteem2_ta Approved Most recent IF: 6.337; 2015 IF: 6.196  
  Call Number c:irua:127691 c:irua:127691 Serial 2921  
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J. url  doi
openurl 
  Title Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 93 Issue (down) 93 Pages 023811  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The orbital angular momentum (OAM) of light and matter waves is a parameter that has been getting increasingly more attention over the past couple of years. Beams with a well-defined OAM, the so-called vortex beams, are applied already in, e.g., telecommunication, astrophysics, nanomanipulation, and chiral measurements in optics and electron microscopy. Also, the OAM of a wave induced by the interaction with a sample has attracted a lot of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates (SPPs) as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and show how, by using SPPs, the position and the OAM of each individual beam can be detected. Finally, we look at the OAM induced by a magnetic dipole on a free-electron wave and show how the SPP can be used to localize the magnetic poles and measure their “magnetic charge.” Although our findings can be applied to study the OAM of any wave function, our findings are of particular interest for electron microscopy where versatile programmable phase plates do not yet exist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369367700006 Publication Date 2016-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 12 Open Access  
  Notes The authors acknowledge support from the Aspirant Fonds Wetenschappelijk Onderzoek–Vlaanderen (FPO), the EU un- der the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, and the ERC Starting Grant 278510 VORTEX.; esteem2jra2 ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:131613 c:irua:131613UA @ admin @ c:irua:131613 Serial 4030  
Permanent link to this record
 

 
Author Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Symmetry-constrained electron vortex propagation Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 93 Issue (down) 93 Pages 063840  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378197200006 Publication Date 2016-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 7 Open Access  
  Notes L.C., A.B., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510—VORTEX. J.V. and A.L. acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The Qu-Ant-EM microscope was partly funded by the Hercules fund of the Flemish Government.; esteem2jra3; ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:134086 c:irua:134086 Serial 4090  
Permanent link to this record
 

 
Author Sankaran, K.J.; Duc Quang Hoang; Korneychuk, S.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D'Haen, J.; Verbeeck, J.; Leou, K.-C.; Leung, K.T.; Lin, I.-N.; Haenen, K. doi  openurl
  Title Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue (down) 93 Pages 90338-90346  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385451800044 Publication Date 2016-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 8 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. KJ Sankaran, and P Pobedinskas are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.108  
  Call Number UA @ lucian @ c:irua:144757UA @ admin @ c:irua:144757 Serial 4662  
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J. url  doi
openurl 
  Title Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue (down) 92 Pages 134108  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work we present an alternative way to look at electron diffraction in a transmission electron microscope.

Instead of writing the scattering amplitude in Fourier space as a set of plane waves,we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362893100002 Publication Date 2015-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes The authors acknowledge support from the FWO (As- pirant Fonds Wetenschappelijk Onderzoek–Vlaanderen), the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2, and ERC Starting Grant No. 278510 VORTEX; esteem2jra1; ECASJO; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:129417 c:irua:129417UA @ admin @ c:irua:129417 Serial 4089  
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J. url  doi
openurl 
  Title Inelastic electron-vortex-beam scattering Type A1 Journal article
  Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 91 Issue (down) 91 Pages 032703  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and postselection one can filter out the relevant contributions to a specific signal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000351035000004 Publication Date 2015-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 31 Open Access  
  Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2015 IF: 2.808  
  Call Number c:irua:123925 c:irua:123925UA @ admin @ c:irua:123925 Serial 1607  
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J. url  doi
openurl 
  Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue (down) 91 Pages 094112  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352017000002 Publication Date 2015-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 54 Open Access  
  Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125512 c:irua:125512 Serial 3825  
Permanent link to this record
 

 
Author Bartholomeeusen, E.; De Cremer, G.; Kennes, K.; Hammond, C.; Hermans, I.; Lu, J.-B.; Schryvers, D.; Jacobs, P.A.; Roeffaers, M.B.J.; Hofkens, J.; Sels, B.F.; Coutino-Gonzalez, E. doi  openurl
  Title Optical encoding of luminescent carbon nanodots in confined spaces Type A1 Journal article
  Year 2021 Publication Chemical Communications Abbreviated Journal Chem Commun  
  Volume 57 Issue (down) 90 Pages 11952-11955  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711122000001 Publication Date 2021-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.319  
  Call Number UA @ admin @ c:irua:184147 Serial 6876  
Permanent link to this record
 

 
Author de Backer, A.; Van Aert, S.; van Dyck, D. pdf  url
doi  openurl
  Title High precision measurements of atom column positions using model-based exit wave reconstruction Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue (down) 9/10 Pages 1475-1482  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this paper, it has been investigated how to measure atom column positions as accurately and precisely as possible using a focal series of images. In theory, it is expected that the precision would considerably improve using a maximum likelihood estimator based on the full series of focal images. As such, the theoretical lower bound on the variances of the unknown atom column positions can be attained. However, this approach is numerically demanding. Therefore, maximum likelihood estimation has been compared with the results obtained by fitting a model to a reconstructed exit wave rather than to the full series of focal images. Hence, a real space model-based exit wave reconstruction technique based on the channelling theory is introduced. Simulations show that the reconstructed complex exit wave contains the same amount of information concerning the atom column positions as the full series of focal images. Only for thin samples, which act as weak phase objects, this information can be retrieved from the phase of the reconstructed complex exit wave.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300461200004 Publication Date 2011-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:91879 Serial 1438  
Permanent link to this record
 

 
Author Schattschneider, P.; Verbeeck, J. pdf  url
doi  openurl
  Title Theory of free electron vortices Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue (down) 9/10 Pages 1461-1468  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent creation of electron vortex beams and their first practical application motivates a better understanding of their properties. Here, we develop the theory of free electron vortices with quantized angular momentum, based on solutions of the Schrödinger equation for cylindrical boundary conditions. The principle of transformation of a plane wave into vortices with quantized angular momentum, their paraxial propagation through round magnetic lenses, and the effect of partial coherence are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300461200002 Publication Date 2011-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 57 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:91882 Serial 3617  
Permanent link to this record
 

 
Author de Gryse, O.; Clauws, P.; Rossou, L.; van Landuyt, J.; Vanhellemont, J. doi  openurl
  Title Accurate infrared spectroscopy determination of interstitial and precipitated oxygen in highly doped Czochralski-grown silicon Type A1 Journal article
  Year 1999 Publication The review of scientific instruments Abbreviated Journal Rev Sci Instrum  
  Volume 70 Issue (down) 9 Pages 3661-3663  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A method has been developed to determine the interstitial and precipitated oxygen concentration in highly doped n- and p-type silicon. 10-30-mu m-thin silicon samples in a mechanical stress-free state and without alteration of the thermal history are prepared and measured with Fourier transform infrared spectroscopy at 5.5-6 K. The measured oxygen contents in the as-grown Si samples agree well with those obtained with gas fusion analysis. In the highly boron-doped samples, the interstitial oxygen can be determined down to 10(17) cm(-3). (C) 1999 American Institute of Physics. [S0034-6748(99)04909-6].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000082289200026 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6748; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.515 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.515; 1999 IF: 1.293  
  Call Number UA @ lucian @ c:irua:103487 Serial 48  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. doi  openurl
  Title Accurate pseudopotential description of the GW bandstructure of ZnO Type A1 Journal article
  Year 2011 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 182 Issue (down) 9 Pages 2029-2031  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the GW band structure of ZnO in its wurtzite (WZ), zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. We have used a Zn20+ pseudopotential which is essential for the adequate treatment of the exchange interaction in the self-energy. The accuracy of the pseudopotential used is also discussed. The effect of the pd hybridization on the GW corrections to the band gap is correlated by comparing the ZB and RS phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000292675100062 Publication Date 2011-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 3.936; 2011 IF: 3.268  
  Call Number UA @ lucian @ c:irua:90761 Serial 51  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: