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High Precision Measurements of Atom Column Positions using Model-Based Exit Wave
Reconstruction

A. De Backer∗, S. Van Aert, D. Van Dyck

Electron Microscopy for Materials Science (EMAT),University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

Abstract

In this paper, it has been investigated how to measure atom column positions as accurately and precisely as possible using a focal
series of images. In theory, it is expected that the precision would considerably improve using a maximum likelihood estimator
based on the full series of focal images. As such, the theoretical lower bound on the variances of the unknown atom column
positions can be attained. However, this approach is numerically demanding. Therefore, maximum likelihood estimation has been
compared with the results obtained by fitting a model to a reconstructed exit wave rather than to the full series of focal images.
Hence, a real space model-based exit wave reconstruction technique based on the channelling theory is introduced. Simulations
show that the reconstructed complex exit wave contains the same amount of information concerning the atom column positions as
the full series of focal images. Only for thin samples, which act as weak phase objects, this information can be retrieved from the
phase of the reconstructed complex exit wave.
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1. Introduction

High-resolution transmission electron microscopy (HRTEM)
is established as a method used in order to determine the in-
ternal structure of materials at a local scale [1]. Recently, the
introduction of aberration-corrected electron microscopes has
improved the interpretability of the images down to atomic res-
olution [2–5]. Nevertheless, the phase information is lost due
to the image recording process, which is a limiting factor since
the phase contains significant information on the positions of
the atom columns. Therefore, the imaging process has to be
inverted numerically in order to calculate the wave function at
the exit plane of the object. One commonly applied technique
is to use a series of images at different focal values [6–14].
In this way both the amplitude and phase information of the
exit wave are recovered. In addition, a better signal-to-noise
ratio is achieved and residual lens aberrations are eliminated
[9, 12, 13, 15, 16]. The reconstructed exit wave is closely re-
lated to the object structure. In combination with quantitative
methods, atom column positions can be measured with a preci-
sion of a few picometers [2–4, 17–19].
In this paper, a real space model-based approach for exit wave
reconstruction based on the channelling theory [20–24] is intro-
duced in order to investigate the precision that can ultimately
be obtained for the unknown structure parameters. Quantitative
structure determination then becomes a statistical parameter es-
timation problem in which the available parametric model is fit-
ted to the experimental data using a criterion of goodness of fit
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[18, 19, 25–28].
In our opinion, the ultimate goal of quantitative HRTEM is to
determine structure parameters with the highest possible preci-
sion and accuracy. Due to the unavoidable presence of noise in
the observations, the estimated parameters will fluctuate from
experiment to experiment. The amount of variation in these
estimated parameters quantifies the precision. Moreover, mod-
elling errors will limit the accuracy resulting in bias, that is a
systematic deviation of the estimated parameters from the true
parameters. Statistical parameter estimation theory provides
an expression for the highest precision, or in other words, the
minimum variance, with which the atom column positions can
be determined. This is the so-called Cramér-Rao lower bound
(CRLB) [25, 26, 29], which is a theoretical lower bound on the
variance of any unbiased estimator of the unknown structure pa-
rameters. One of the properties of the maximum likelihood es-
timator is that it achieves the Cramér-Rao lower bound asymp-
totically, i.e. for an infinite number of observations. However,
determining the parameters using the maximum likelihood esti-
mator applied to the originally recorded focal images is numer-
ically demanding. In current studies, however, only the phase
information of the reconstructed exit wave is employed to deter-
mine the atom column position parameters using, for example,
an empirical parametric model consisting of a superposition of
Gaussian peaks [5, 15, 18, 19]. In principle, more accurate and
precise results might be expected if the reconstructed ampli-
tude is also taken into account using a physics-based parametric
model using the channelling theory. By means of image simula-
tions of an ideal Au [100] sample, which are subject to counting
noise, different parameter estimation methods have been com-
pared. It has been investigated what precision could be obtained
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by using the phase information of the reconstructed exit wave
only or by using the full complex exit wave for different spec-
imen thicknesses. This precision has been compared with the
attainable precision that could in principle be obtained by ap-
plying the maximum likelihood estimator to the full series of
focal images. Although these simulations represent an idealis-
tic case, they serve as a reference for model-based exit wave re-
construction and statistical parameter estimation theory of atom
column positions. These simulations should answer the ques-
tion whether the use of only the phase information in a quan-
titative analysis is justified and if the analysis would benefit if
the amplitude would be used in addition.
The remainder of this article will be structured as follows. In
section 2, the model-based approach for exit wave reconstruc-
tion is described. Section 3 briefly explains the concepts of
statistical parameter estimation theory. In section 4, a simula-
tion of a Au [100] crystal is considered. Finally, in section 5,
conclusions are drawn.

2. Model-Based Exit Wave Reconstruction

In this paper, we consider a real space reconstruction tech-
nique in contrast to existing techniques which act in Fourier
space [7–9, 11, 12, 30]. The image intensities of the focal
series are backpropagated to the zero-focus to reconstruct the
wave at the exit face of the specimen. Next, the set of back-
propagated images is averaged. The real space approach for
exit wave reconstruction is very intuitive and understandable,
but is conceptually different from the existing focal series re-
construction methods. In most reconstruction methods the only
aim is to reconstruct the complex exit wave as such. However,
since it is the purpose to derive also the crystal structure from
the exit wave, we want to go one step further and include also
the channelling theory for the electron interaction already in the
exit wave. For this purpose a real space approach for focal se-
ries reconstruction is much more suitable.
The channelling theory [20–23] describes the quantum mechan-
ical interaction of the electrons with the object and provides a
closed analytical expression for the exit wave which is para-
metric in the structure parameters. The complex exit wave of
an object consisting of M atom columns described in the chan-
nelling theory consists of a vacuum wave and an interaction
wave [20–23]:

ψex(r, z) =1 + ψint(r, z)

=1 +

M∑
m=1

cmφ1s,m(r − βm)
[
exp

(
−iπ

E1s,m

E0

1
λ

z
)
− 1

]
(1)

where r = (x, y)T is a two-dimensional vector in the exit plane
of the object, perpendicular to the incident beam direction; E0
denotes the incident electron energy, λ the electron wavelength
and z the object thickness; φ1s,m(r − βm) is the eigenfunction of
the lowest energy bound state with energy E1s,m, i.e. the 1s-state

of an atom column m at position βm = (βxm , βym )T :

φ1s,m(r − βm) =
1

am
√

2π
exp

(
−

r2

4a2
m

)
(2)

where am is the column dependent width. Moreover, r is the
Euclidean norm of the vector r − βm, which is defined as:

r = ‖r − βm‖2 =

√
(x − βxm )2 + (y − βym )2 (3)

The interpretation of expression (1) for the exit wave is as fol-
lows. Each atom column acts as a channel in which the wave
function oscillates periodically with depth [20, 24]. This peri-
odicity is related to the average mass density of an atom column
and is given by:

D1s =
∣∣∣∣2E0λ

E1s,m

∣∣∣∣ (4)

This distance is called the extinction distance. The importance
of this result lies in the fact that it can be used to describe the dy-
namical diffraction up to larger thicknesses than the usual phase
grating approximation [20, 24].
The wave function in the image plane is given by the exit wave
convoluted with a point spread function accounting for the ef-
fect of defocus ε and spherical aberration Cs [31]:

ψim(r, z; Cs, ε) = 1 + ψint(r, z) ∗ pCs (r; Cs) ∗ pε(r; ε) (5)

The intensity in the image plane is described by [31]:

I(r, z; Cs, ε) = |ψim(r, z; Cs, ε)|2 (6)

The intensity is the modulus squared of the image wave; other
aberration effects are neglected in the simulations as it is as-
sumed that they can be numerically corrected in the reconstruc-
tion [7, 11–13, 32]. The expression (6) for the image intensity
can be written as a sum of 4 terms: a constant, linear, conjugate
linear and non-linear term.
In order to reconstruct the exit wave, the image intensities of
the focal series are backpropagated. This backpropagation is
performed by a convolution with the inverse point spread func-
tion of the defocus p−1

ε (r; ε) = p∗ε (r; ε), which equals the point
spread function of the defocus with the opposite focal value
pε(r;−ε). In this way, a compensation is obtained for the effect
of the defocus. The same procedure can be applied for spherical
aberration resulting into the following expression:

Ψrec(r, z) =< I(r, z) >

=
1
N

N−1
2∑

n=− N−1
2

I(r, z; Cs, εn) ∗ pε(r,−εn) ∗ pCs (r,−Cs)

(7)

The focal value εn corresponds to the focal value of an image
of the focal series. Other aberrations, like incoherence effects
present in experimental images can be corrected by including
them in the backpropagation by the appropriate inverse point
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spread function [11, 33].
Equation (7) demonstrates the procedure for obtaining the re-
constructed exit wave Ψrec(r, z). The reconstructed exit wave
Ψrec(r, z) can be calculated by working out the right-hand side
of equation (7) after substitution of equation (5) and (6). This
calculation results into 4 contributions: a constant, a linear, a
conjugate linear and a non-linear term. Under some approxima-
tions (see Appendix Appendix A), an explicit analytical expres-
sion can be obtained. In the ideal case, this reconstructed exit
wave Ψrec equals the theoretical exit wave ψex(r, z). The sum of
the reconstructed constant and linear term indeed yields the ex-
pression for the exit wave provided by the channelling theory,
i.e. expression (1). It can be shown that the conjugate linear
term yields a constant background in the limit of an infinite se-
ries of focal images. Although it is likely that the non-linear
term is small compared to the constant and linear contribution,
it is more difficult to interpret. A numerical evaluation of the
reconstructed wave is useful to determine the importance of the
different terms as a function of some experimental parameters.
From such an analysis, it follows that the contribution of the
non-linear term becomes more and more negligible when:

• the mean focal value of the focal series is selected away
from the zero-focus;

• the number of images of the focal series is increased using
a small defocus step to ensure sufficient sampling;

• the spherical aberration constant increases.

This result means that for focal series where the mean focal
value is chosen away from the zero-focus or where a non-zero
spherical aberration constant is chosen, the reconstructed exit
wave better matches the true exit wave. This is shown in fig-
ure 1, where the sum over the pixel values of the squared bias
map between the reconstructed exit wave ψrec and the true exit
wave ψex of the channelling theory is plotted as a function of the
spherical aberration constant and the mean defocus of the focal
series. The figure is calculated for an isolated Si[100] atom col-
umn in reconstructions obtained from a simulated focal series
with 21 focal images and a focal step of 2.5 nm. The thick-
ness of the simulated object equals half the extinction distance,
0.5D1s; the object parameters for Si[100] are given in table 1.
For other thicknesses similar figures can be obtained for com-
paring the amplitude and phase of the reconstructed exit wave
with the true exit wave. Moreover, simulation results show that
the quality of the reconstructed exit wave also depends on the
atom column type: the reconstruction is better for heavier atom
columns.

In figure 2, a simulation demonstrates that the reconstructed
exit wave shows good agreement with the true input exit wave
for a realistic set of experimental parameters in a focal se-
ries. A focal series of 21 images is simulated for a Au [100]-
crystal with a thickness of 0.1D1s having a mean focal value of
−75 nm, a focal step of 2.5 nm and a spherical aberration con-
stant of 0.5 mm. The object parameters for Au[100] are also
given in table 1. The two-dimensional projected structure is
modelled as a lattice of 7 × 7 projected atom columns based on
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Figure 1: Sum of the squared bias map between the reconstructed exit wave ψrec
and the true exit wave ψex of an isolated Si[100] atom column as a function of
the spherical aberration constant Cs and the mean defocus ε of the focal series.
Increasing the focal value leads to a better agreement with the true exit wave.

parameter Si[100] Au[100]
Z (atomic number) 14 79
am Å 0.34 0.13
E1s,m (eV) −20.2 −210.8
d Å(interatomic distance) 5.43 4.08
D1s (nm) 59.4 5.7
D1s (atoms) 109 14

Table 1: Object parameters used in the simulation of the focal series.

the channelling model. The phase and amplitude of the recon-
structed wave and the true exit wave are compared in figures
2(a) and 2(b), respectively. Also for thicker specimens, the re-
constructed exit wave will show good agreement with the true
input exit wave. This agreement enables us to use the paramet-
ric model from the channelling theory given by equation (1), in
a statistical parameter estimation procedure applied to the re-
constructed exit wave.

3. Statistical Parameter Estimation Theory

3.1. Principle

The reconstructed exit wave does not directly provide quan-
titative measurements of the atom column positions. Therefore,
the reconstructed exit wave is used as a starting point for mea-
surement of the atom column positions using statistical param-
eter estimation theory. In this way, it is possible to determine
the atom column positions with a precision that is orders of
magnitude better than the information limit of the electron mi-
croscope. This requires a quantitative model-based method, in
which the focal series or the reconstructed exit wave is consid-
ered as a data plane from which the unknown structure param-
eters, such as the atom column positions, have to be estimated
in a statistical way [29]. For a successful application, a para-
metric model describing the expectations of the pixel values in
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Figure 2: Comparison of the phase (left) and amplitude (right) of the recon-
structed exit wave with the input wave modelled with the channelling theory
represented as line plots through the atom column positions of a Au[100] crys-
tal.

the focal series or in the real and imaginary part of the com-
plex exit wave should be available. Our goal for quantitative
interpretation of HRTEM images is to obtain numbers with the
highest possible precision and accuracy. Statistical parameter
estimation theory provides an expression for the highest pos-
sible precision in the form of a lower bound on the variance
with which the structure parameters can be estimated unbias-
edly [29]. This lower bound is independent of the parameter
estimation method that is used. In practice, different estima-
tors can be used to estimate the same parameters. However,
the variance of unbiased estimators will never be lower than
the Cramér-Rao lower bound. By comparing this lower bound
with the sample variance of the estimated parameters such as
the atom column positions, it can be examined if all informa-
tion contained in the images of the focal series is extracted using
a particular estimation procedure. In Appendix B, the concept

of Fisher information and the Cramér-Rao lower bound is sum-
marised [25, 26, 29].

3.2. Estimation of atom column positions
The maximum likelihood estimator, which is briefly dis-

cussed in Appendix B, achieves the Cramér-Rao lower bound
asymptotically, i.e. for an increasing number of observations.
The Cramér-Rao lower bound can thus be attained by deriving
the maximum likelihood estimates from the full series of focal
images. In other words, the maximum likelihood estimator
seems to be the most preferable estimator in terms of precision.
However, deriving the maximum likelihood estimates from a
full series of focal images is not practically useful because
of the numerical complexity of the problem. Therefore, least
squares estimates are often derived from the phase of the
reconstructed exit wave assuming an empirical parametric
model. Nevertheless, it is expected that the precision would
improve when deriving the least squares estimates from the full
complex exit wave rather than from the phase of the exit wave
only. In the following subsections, the least squares estimation
procedures when using the phase of the exit wave only or when
using the full complex exit wave will be outlined. In section
4, the performance of these estimators will be studied. In
particular, we will compare the precision of these estimators
with the attainable precision, given by the Cramér-Rao lower
bound.

3.2.1. Least squares estimator using phase of reconstructed
exit wave

It is generally known that the phase of the exit wave is peaked
at the atom column positions. Accordingly, an empirical model
is often used in current studies in which the phase is modelled
as a superposition of Gaussian functions which are peaked at
the atom column positions [5, 15, 18, 19]. Therefore, the ex-
pectation at the pixel (k, l) at the position (xk, yl) of the phase of
the exit wave can be described as:

f p
kl(ϑ) = ζ +

I∑
i=1

Mi∑
mi=1

ηmi exp

− (xk − βxmi
)2 + (yl − βymi

)2

2ρ2
i

 (8)

where the superscript p refers to the model for the phase; ζ is a
constant background, ρi is the width of the Gaussian peak, ηmi

is the height of the Gaussian peak and βxmi
and βymi

are the x-
and y-coordinate of the mith atom column, respectively. The
index i refers to a particular atom type, with I the total number
of different atom types and mi refers to the mth atom column of
atom type i with Mi the total number of atom columns for atom
type i. The unknown parameters of the model:

ϑ = (βx11
, . . . , βxMI

, βy11
, . . . , βyMI

, ρ1, . . . , ρI , η11 , . . . , ηMI , ζ)T

(9)

are estimated in the least squares sense. The uniformly
weighted least squares estimates ϑ̂ are given by the values of
t that minimise the uniformly weighted least squares criterion:

ϑ̂ = arg min
t

K∑
k=1

L∑
l=1

(wkl − f p
kl(t))

2 (10)
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with wkl the value of the reconstructed phase at the pixel (k, l).

3.2.2. Least squares estimator using phase and amplitude of
reconstructed exit wave

In order to attain a higher precision, especially for thicker
specimens, all the information available in the reconstructed
exit wave, i.e. phase and amplitude information, can be used
to estimate the unknown parameters. The implementation for
the complex exit wave is fully equivalent to the procedure for
the phase, although more extended. The complex exit wave is
given by expression (1). This physics-based parametric model
for this complex exit wave can be rewritten and separated in a
real (R) and imaginary (I) part:

f c
kl(ϑ) =R(ϑ) + iI(ϑ)

=

ζR +

I∑
i=1

Mi∑
mi=1

ηRmi
exp

− (xk − βxmi
)2 + (yl − βymi

)2

2ρ2
i




+ i

ζI +

I∑
i=1

Mi∑
mi=1

ηImi
exp

− (xk − βxmi
)2 + (yl − βymi

)2

2ρ2
i




(11)

where the superscript c refers to the model for the complex
wave. The effect of the thickness of the object is incorporated in
the parameters ηRmi

and ηImi
. The vector containing the unknown

parameters for the complex model is:

ϑ =(βx11
, . . . , βxMI

, βy11
, . . . , βyMI

, ρ1, . . . , ρI ,

ηR11
, . . . , ηRMI

, ηI11
, . . . , ηIMI

, ζR, ζI)T (12)

Minimisation of the uniformly weighted least squares criterion
yields the estimated parameters:

ϑ̂ = arg min
t

K∑
k=1

L∑
l=1

[
(wRkl − R(t))2 + (wIkl − I(t))2

]
(13)

where wRkl and wIkl represent the real and imaginary part of the
reconstructed complex exit wave respectively.

4. Simulations of Au [100]

4.1. Attainable precision

Given the asymptotic properties of the maximum likelihood
estimator, it is expected that the lower bound on the variance of
the unknown parameters can be attained by applying the max-
imum likelihood estimator to the originally recorded focal im-
ages. However, this approach is unpractical and computation-
ally demanding. In this section, the variance of the structure pa-
rameters obtained when applying the uniformly weighted least
squares estimator is examined and compared with the lower
bound on the variance. In order to derive the Cramér-Rao lower
bound on the variance of the unknown parameters, the model
describing the expectations of the original observations of the
focal series is needed. The expectation model for the image

intensity of an image of the recorded focal series used for this
purpose equals:

f i
kl(ϑ) = λn

kl = Nd
I(r, z; Cs, εn)

Inorm
∆x∆y (14)

where the superscript i refers to the model for the image inten-
sity. This result defines the number of electrons expected to
be found at a pixel (k, l) taking into account the electron dose.
In this equation, I(r, z; Cs, εn) denotes the intensity in the im-
age plane as given by expression (6), Nd the total number of
detected electrons and ∆x and ∆y represent the sampling dis-
tances in the x- and y-direction. The normalisation factor Inorm
is given by:

Inorm =

∫
I(r, z; Cs, εn)dr (15)

where the integral extends over the whole field of view. Un-
der the assumption that the image intensities are Poisson dis-
tributed, the Cramér-Rao lower bound on the variance is given
by the inverse Fisher information matrix of which the elements
are given by expression (B.3). The derivatives in expression
(B.3) are calculated with respect to the parameters ϑ in the ex-
pectation model given by equation (14), i.e. the positions, the
width and the height of the atom columns and a constant back-
ground. Following equation (B.5), the diagonal elements of the
inverse Fisher information matrix define lower bounds on the
variance of the parameters ϑ. The thus obtained numbers will
be compared with the variance of the structure parameters esti-
mated from the phase of the reconstructed exit wave and esti-
mated from the reconstructed complex exit wave. This compar-
ison is first carried out for an isolated atom column and next for
an assembly of atom columns. Furthermore, the comparison is
done for different specimen thicknesses. For thin specimens for
which the weak phase object approximation (WPOA) is valid,
most object information will be contained in the phase of the
reconstructed exit wave. The weak phase object approximation
is valid if [20, 23]:

|E1s,m| <
E0λ

πz
. (16)

In terms of the extinction distance D1s (expression (4)), the
weak phase object approximation is valid if the specimen thick-
ness is smaller than 0.16D1s. For Au[100], the extinction dis-
tance D1s equals 5.7 nm, i.e. about 14 atoms. This means that
the WPOA is valid for a specimen thickness less than 2 atoms.
However, it should be noted that some deviations can be ex-
pected from equation (16) for very heavy atoms.
Focal series for different object thicknesses are simulated of an
isolated Au[100] atom column and of a 7×7 lattice of projected
Au[100] atom columns, modelled using the channelling theory.
The microscope parameters for the simulation of the focal se-
ries are shown in table 2; the value of Cs is arbitrarily chosen
non-zero. Different noise realisations are simulated to investi-
gate the attainability of the lower bound on the variance. The
complex exit wave is reconstructed from 100 different Poisson
distributed noise realisations of a focal series calculated from
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parameter value
accelerating voltage V0 (kV) 300
mean focal value ε (nm) -75
focal step γ (nm) 2.5
spherical aberration constant Cs (mm) 0.5
number of focal images N 21
pixel size ∆x = ∆y (Å) 0.1
number of pixels x- and y-direction K = L 1024
electron dose Nd (e−Å−2) 7854

Table 2: Microscope parameters for the simulation of the focal series.

the expectation model given by equation (14). The unknown
parameters of the parametric models for the phase of the recon-
structed exit wave and the reconstructed complex exit wave, de-
scribed by expressions (8) and (11) respectively, are estimated
in the least squares sense. The sample mean and sample vari-
ance are computed from the 100 estimates and compared with
the true values and the Cramér-Rao lower bound on the variance
of the position parameters, respectively.

4.2. Isolated atom column

In this analysis unbiased estimates have been obtained for the
x- and y-coordinates. The results of the analysis of the attain-
ability of the Cramér-Rao lower bound for an isolated atom col-
umn as a function of the object thickness are presented in figure
3. The figure shows the ratio of the estimated variance to the
calculated Cramér-Rao lower bound for the x- and y-position
coordinates. The Cramér-Rao lower bound on the variance of
the position parameters also depends on the object thickness as
is shown in the inset in figure 3. The attainable precision for the
position parameters is highest when the thickness equals half
the extinction distance. Here, the electrons are most strongly
localised at the atom column positions implying that the exit
wave is peaked maximally at the atom positions. From figure 3,
it can be concluded that the lower bound on the variance is at-
tained for all thicknesses when the column position coordinates
are estimated from the complex reconstructed exit wave using
the parametric model given by the channelling theory (equa-
tion (11)). This result is also valid for thicknesses larger than
0.5D1s and will show a periodic behaviour since the exit wave
varies periodically with depth. By estimating the position coor-
dinates from the phase of the reconstructed exit wave using the
model of Gaussian peaks (equation (8)), the Cramér-Rao lower
bound is only attained when the weak phase approximation is
valid, i.e. if the thickness is smaller than 0.16D1s. It is clear that
for larger object thicknesses, for which the WPOA is no longer
valid, estimating the position coordinates from the complex re-
constructed exit wave is necessary in order to attain the highest
possible precision.

4.3. Assembly of atom columns

To evaluate the effect of neighbouring atom columns, a
7 × 7 lattice of projected Au[100] atom columns is modelled.
For an assembly of atom columns two different thicknesses
are considered: z1 = 0.1D1s corresponding to a specimen
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Figure 3: Attainability of the CRLB as a function of the object thickness for
an isolated Au[100] atom column. The error bars show the 95% confidence
intervals for the estimated variances. The inset shows the CRLB as a function
of the object thickness.

thickness of only 1 atom and z2 = 0.4D1s corresponding to a
specimen thickness of 5 atoms. The weak phase approximation
is valid for z1 but not for z2. The positions of the central
5 × 5 atom columns are considered in the analysis in order
to avoid boundary effects at the outermost atom columns of
the simulation. Like for isolated columns, the estimates for
the position coordinates are unbiased. The results for the
attainability of the CRLB for both thicknesses z1 and z2 are
presented in figure 4. The ratio of the estimated variance for the
x- and y-coordinates to the CRLB are plotted for the 25 atom
columns. As expected for the thin object the variances on the
position parameters correspond to the theoretical lower bound
on the variance for both estimating the position coordinates
from the phase information only or from the full complex
exit wave. For the thicker object, where the WPOA is no
longer valid, the CRLB can only be attained by estimating the
position coordinates from the complex model for the exit wave
to the reconstructed exit wave. If the position parameters are
determined based on the full complex exit wave, the precision
is approximately 3 to 4 times better in terms of variance than
determining the atom column position parameters from the
phase of the reconstruction. This result is in agreement with
the result for the isolated atom column.
Note that in practice, the lower bound and estimated variances
will be typically larger, since their actual values critically
depend on the image contrast. A reduction of contrast will
indeed result in a loss of precision [19]. So far, the contrast
mechanism in HRTEM images is not yet fully understood.
The contrast in experimental images is typically a factor of
3 lower than in simulated images. This is the well-known
contrast problem, often referred to as the Stobbs factor [34–
36]. Phonon scattering and different experimental conditions,
like the stability of the specimen and the microscope, atom
thermal vibrations, lattice configuration, residual microscope
aberrations, time dependent incoherence may contribute to a
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Figure 4: Attainability of the CRLB for 25 position estimates of Au[100] atom
columns. The bottom of the graph shows the result for thickness z1 = 0.1D1s
and the top of the graph shows the result for thickness z2 = 0.4D1s. Each
atom column position corresponds to two estimated ratios in the graph, the x-
coordinate and y-coordinate, resulting in 50 data points on the horizontal axis.
The error bars show the 95% confidence intervals for the estimated variances.

loss of image contrast. So far, it is impossible to take all these
factors properly into account in the theory.

5. Conclusions

Often only the reconstructed phase is used in quantitative
studies of exit waves reconstructed from focal series. However,
it is expected that the precision with which unknown structure
parameters can be estimated would improve when using the am-
plitude of the exit wave as well. Therefore, the performance of
both approaches has theoretically been examined in this study
in terms of the attainable precision and bias by means of simu-
lations. This has been done using a model-based approach for
exit wave reconstruction using the channelling theory. Com-
bined with statistical parameter estimation theory, quantitative
measurements were obtained for atom column position param-
eters and their precision. In a simulation of Au[100], the vari-
ance thus attained was compared with the Cramér-Rao lower
bound, a theoretical lower bound on the variance of unbiased
estimators. Although, it was expected that the Cramér-Rao
lower bound could only be attained when deriving the maxi-
mum likelihood estimates from the full series of focal images,
it has been demonstrated that the reconstructed complex exit
wave contains the same amount of information on the position
parameters. Estimating the position parameters from the com-
plex exit wave using the parametric model from the channelling
theory results in the highest possible precision. This precision
cannot be obtained when using the phase information only ex-
cept for thin specimens where the weak phase approximation
is valid, that is, thinner than 0.16D1s with D1s the extinction
distance. For thicker specimens, an improvement of a factor
of about 4 in terms of the variance with which the atom col-
umn positions can be estimated is observed, when using the full

complex exit wave in the estimation procedure. From this study
we can conclude that it is therefore recommendable to use the
full complex exit wave to determine quantitative information
about the atom column positions.
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Appendix A. Analytical expression for the reconstructed
exit wave

An analytical expression is calculated for the complex recon-
structed exit wave by working out the right-hand side of equa-
tion (7) after substitution of equation (5) and (6), resulting into
4 terms. The expression for the point spread functions are given
by:

pε(r; ε) = F −1
{
exp

(
−iπελg2

)}
pCs (r; Cs) = F −1

{
exp

(
−

iπCsλ
3g4

2

)}
where F −1 denotes the inverse Fourier transform and g the
norm of the two-dimensional spatial frequency vector. A com-
plete analytical expression for the reconstruction can only be
obtained by making some approximations for the non-linear
term. Moreover, the influence of the spherical aberration is ne-
glected. The complete result of the complex exit wave in the
approximated case is:

reconstruction =

1
+ψint(r − βm, z)

+
1
N
ψ∗int(r − βm, z) ∗ F −1

exp
(
2πiελg2

) sin
(
πNγλg2

)
sin

(
πγλg2)


+

1
N · γ

|ψint(r − βm, z)|2∗

F −1

exp
(
iπελg2

)
exp

−g2 ε
2λ2

8a2
1

 exp


(
iπλg2 −

g2ελ2

4a2
1

)2

4 ·
(

g2λ2

8a2
1

+ 1
2ζ2

)



The first two terms yield the expression of the exit wave of the
channelling theory.
This analytical expression is useful to calculate the importance
of the different terms as a function of the defocus parameter
ε and the number of focal images N in the series straightfor-
wardly. In order to determine the importance of the differ-
ent terms as a function of the spherical aberration constant Cs,
which is neglected in the analytical calculation, the contribu-
tions of the 4 terms should be calculated based on the recon-
struction from a set of simulated image intensities.
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Appendix B. Fisher information and attainable precision

The usual way to describe the fluctuating behaviour of im-
ages in the presence of noise is by modelling the observations
w as stochastic variables ω [29]. In our case, the observations
are given by the pixel values resulting from the electron counts
in the images of the focal series. By definition, each set of ob-
servations modelled as stochastic variables is characterised by a
joint probability density function pw(ω). The joint probability
density function defines the expectations, i.e. the mean value of
each observation and the fluctuations of the observations about
these expectations. The expectation values E[w] are described
by a functional model f i

kl(ϑ), i.e. equation (14), parametric in
the quantities to be estimated. For HRTEM images in a focal
series, the observations wn

kl are assumed to be statistically inde-
pendent having a Poisson distribution with the following joint
probability density function [26, 27]:

p(ω) =

N∏
n=1

K∏
k=1

L∏
l=1

(λn
kl)

ωn
kl

ωn
kl!

exp(−λn
kl) (B.1)

where λn
kl is the expectation value of a pixel, i.e. E[w] = λn

kl =

f i
kl(ϑ); the superscript n denotes the nth image of the focal se-

ries. The dependence of the joint probability density function
on the unknown parameters defines the Fisher information ma-
trix and the Cramér-Rao lower bound [29, 37]. The concept
of the Fisher information is a measure to express quantitatively
the amount of information on the unknown structure parameters
included in the observations. This Fisher information matrix is
defined as:

Fϑ = −E
[
∂2 ln p(w;ϑ)

∂ϑ2

]
(B.2)

The Fisher information matrix for a set of Poisson distributed
observations then becomes:

Frs =

N∑
n=1

K∑
k=1

L∑
l=1

1
λn

kl

∂λn
kl

∂ϑr

∂λn
kl

∂ϑs
(B.3)

Using this concept, it is possible to determine the attainable pre-
cision, i.e. the lowest variance with which a parameter can be
estimated unbiasedly [29]. An expression can be derived for the
lower bound on the variance with which the atom positions can
be estimated from a quantitative focal series HRTEM experi-
ment. This lower bound is called the Cramér-Rao lower bound
and is independent of the estimation method, but depends on
the statistical properties of the observations, the measurement
points and mostly of the hypothetical true values of the param-
eters. The Cramér-Rao inequality, with t̂ an unbiased estimator
of ϑ, states [25]:

cov
(
t̂, t̂

)
≥ F−1

ϑ (B.4)

The matrix F−1
ϑ

is the Cramér-Rao lower bound on the variance
of t̂.
This inequality expresses that the difference between the co-
variance matrix of any unbiased estimator and the Cramér-Rao

lower bound is positive semi-definite. A property of a positive
semi-definite matrix is that its diagonal elements cannot be neg-
ative. This means that the diagonal elements of cov

(
t̂, t̂

)
will

always be larger than or equal to to the corresponding diagonal
elements of the inverse of the Fisher information matrix. There-
fore, the diagonal elements of F−1

ϑ
define lower bounds on the

variances of the elements of t̂:

var
(
t̂R
)
≥

[
F−1
ϑ

]
RR

(B.5)

where t̂R is the Rth element of t̂ and
[
F−1
ϑ

]
RR

is the (R,R)th ele-
ment of the inverse of the Fisher information matrix.
In addition, from the probability density function of the obser-
vations the maximum likelihood estimator may be derived. The
maximum likelihood estimator achieves the Cramér-Rao lower
bound asymptotically, i.e. for an infinite number of observa-
tions. The maximum likelihood estimates, t̂ML of the parame-
ters ϑ are given by the values of t that maximise the likelihood
function L(t) := p(w; t) with t independent variables replacing
the true parameters and the observations replacing the stochas-
tic variables in the joint probability density function:

t̂ML = arg max
t

L(t) = arg max
t

ln L(t) (B.6)
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