toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; Egoavil, R.; Verbeeck, J.; McCammon, C.; Dyadkin, V.; Chernyshov, D.; van Smaalen, S.; Dubrovinsky, L.S. pdf  url
doi  openurl
  Title Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 8 Issue (up) 8 Pages 501-508  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below approximately 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.  
  Address Bayerisches Geoinstitut, Universitat Bayreuth, Universitatsstrasse 30, D-95447, Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000374534100019 Publication Date 2016-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 51 Open Access  
  Notes S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13- 00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.; esteem2jra2; esteem2jra3 Approved Most recent IF: 25.87  
  Call Number c:irua:133593 c:irua:133593UA @ admin @ c:irua:133593 Serial 4068  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J.-L. url  doi
openurl 
  Title Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope Type A1 Journal article
  Year 2016 Publication Micron Abbreviated Journal Micron  
  Volume 80 Issue (up) 80 Pages 145-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000366770100018 Publication Date 2015-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 50 Open Access  
  Notes Approved Most recent IF: 1.98  
  Call Number UA @ lucian @ c:irua:136446 Serial 4401  
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Srinivasu, K.; Korneychuk, S.; Banerjee, D.; Barman, A.; Bhattacharya, G.; Phase, D.M.; Gupta, M.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.; Roy, S.S. pdf  doi
openurl 
  Title Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties Type A1 Journal article
  Year 2018 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 83 Issue (up) 83 Pages 118-125  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A detailed conductive atomic force microscopic investigation is carried out to directly image the electron emission behavior for nitrogen-doped diamond nanorods (N-DNRs). Localized emission measurements illustrate uniform distribution of high-density electron emission sites from N-DNRs. Emission sites coupled to nano graphitic phases at the grain boundaries facilitate electron transport and thereby enhance field electron emission from N-DNRs, resulting in a device operation at low turn-on fields of 6.23 V/mu m, a high current density of 1.94 mA/cm(2) (at an applied field of 11.8 V/mu m) and a large field enhancement factor of 3320 with a long lifetime stability of 980 min. Moreover, using N-DNRs as cathodes, a microplasma device that can ignite a plasma at a low threshold field of 390 V/mm achieving a high plasma illumination current density of 3.95 mA/cm2 at an applied voltage of 550 V and a plasma life-time stability for a duration of 433 min was demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000430767200017 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 9 Open Access Not_Open_Access  
  Notes ; S. Deshmulch, D. Banerjee and G. Bhattacharya are indebted to Shiv Nadar University for providing Ph.D. scholarships. K.J. Sankaran and K. Haenen like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. Korneychuk and J. Verbeeck acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.561  
  Call Number UA @ lucian @ c:irua:151609UA @ admin @ c:irua:151609 Serial 5030  
Permanent link to this record
 

 
Author Batuk, D.; de Dobbelaere, C.; Tsirlin, A.A.; Abakumov, A.M.; Hardy, A.; van Bael, M.K.; Greenblatt, M.; Hadermann, J. pdf  doi
openurl 
  Title Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6 Type A1 Journal article
  Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 48 Issue (up) 9 Pages 2993-2997  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the Cr3+ for Mn3+ substitution in the BiMnFe2O6 structure. The BiCrxMn1-xFe2O6 solid solution is obtained by the solution-gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe2O6 structure (for x = 0.3, a = 5.02010(6)angstrom, b = 7.06594(7)angstrom, c = 12.6174(1)angstrom, S.G. Pbcm, R-1 = 0.036, R-p = 0.011) with only a slight decrease in the cell parameters associated with the Cr3+ for Mn3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCrxMn1-xFe2O6 (x = 0.2; 0.3) and parent BiMnFe2O6. Only T-N slightly decreases upon Cr doping that indicates a very subtle influence of Cr3+ cations on the magnetic properties at the available substitution rates. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322354000002 Publication Date 2013-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 3 Open Access  
  Notes Fwo Approved Most recent IF: 2.446; 2013 IF: 1.968  
  Call Number UA @ lucian @ c:irua:109755 Serial 561  
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Tsirlin, A.A.; Kondakova, E.S.; Antipov, E.V.; Bougerol, C.; Hadermann, J.; Van Tendeloo, G.; Sakurai, H.; Takayama-Muromachi, E. doi  openurl
  Title New germanates RCrGeO5 (R=NdEr, Y): synthesis, structure, and properties Type A1 Journal article
  Year 2008 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 181 Issue (up) 9 Pages 2433-2441  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The new complex germanates RCrGeO5 (R=NdEr, Y) have been synthesized and investigated by means of X-ray powder diffraction, electron microscopy, magnetic susceptibility and specific heat measurements. All the compounds are isostructural and crystallize in the orthorhombic symmetry, space group Pbam, and Z=4. The crystal structure of RCrGeO5, as refined using X-ray powder diffraction data, includes infinite chains built by edge-sharing Cr+3O6 octahedra with two alternating Cr−Cr distances. The chains are combined into a three-dimensional framework by Ge2O8 groups consisting of two edge-linked square pyramids oriented in opposite directions. The resulting framework contains pentagonal channels where rare-earth elements are located. Thus, RCrGeO5 germanates present new examples of RMn2O5-type compounds and show ordering of Cr+3 and Ge+4 cations. Electron diffraction as well as high-resolution electron microscopy confirm the structure solution. Magnetic susceptibility data for R=Nd, Sm, and Eu are qualitatively consistent with the presence of isolated 3d (antiferromagnetically coupled Cr+3 cations) and 4f (R+3) spin subsystems in the RCrGeO5 compounds. NdCrGeO5 undergoes long-range magnetic ordering at 2.6 K, while SmCrGeO5 and EuCrGeO5 do not show any phase transitions down to 2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000259415800047 Publication Date 2008-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.299; 2008 IF: 1.910  
  Call Number UA @ lucian @ c:irua:72948 Serial 2314  
Permanent link to this record
 

 
Author Batuk, M.; Tyablikov, O.A.; Tsirlin, A.A.; Kazakov, S.M.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title Structure and magnetic properties of a new anion-deficient perovskite Pb2Ba2BiFe4ScO13 with crystallographic shear structure Type A1 Journal article
  Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 48 Issue (up) 9 Pages 3459-3465  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb2Ba2BiFe4ScO13, a new n = 5 member of the oxygen-deficient perovskite-based A(n)B(n)O(3n-2) homologous series, was synthesized using a solid-state method. The crystal structure of Pb2Ba2BiFe4ScO13 was investigated by a combination of synchrotron X-ray powder diffraction, electron diffraction, high-angle annular dark-field scanning transmission electron microscopy and Mossbauer spectroscopy. At 900 K, it crystallizes in the Ammm space group with the unit cell parameters a = 5.8459(1) angstrom, b = 4.0426(1) angstrom, and c=27.3435(1) angstrom. In the Pb2Ba2BiFe4ScO13 structure, quasi-two-dimensional perovskite blocks are periodically interleaved with 1/2[1 1 0] ((1) over bar 0 1)(p) crystallographic shear (CS) planes. At the CS planes, the corner-sharing FeO6 octahedra are transformed into chains of edge-sharing FeO5 distorted tetragonal pyramids. B-positions of the perovskite blocks between the CS planes are jointly occupied by Fe3+ and Sc3+. The chains of the FeO5 pyramids and (Fe,Sc)O-6 octahedra delimit six-sided tunnels that are occupied by double columns of cations with a lone electron pair (Pb2+). The remaining A-cations (Bi3+, Ba2+) occupy positions in the perovskite block. According to the magnetic susceptibility measurements, Pb2Ba2BiFe4ScO13 is antiferromagnetically ordered below T-N approximate to 350 K. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322354000076 Publication Date 2013-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.446; 2013 IF: 1.968  
  Call Number UA @ lucian @ c:irua:109756 Serial 3282  
Permanent link to this record
 

 
Author Conings, B.; Bretschneider, S.A.; Babayigit, A.; Gauquelin, N.; Cardinaletti, I.; Manca, J.V.; Verbeeck, J.; Snaith, H.J.; Boyen, H.-G. url  doi
openurl 
  Title Structure-property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue (up) 9 Pages 8092-8099  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The power conversion efficiency of halide perovskite solar cells is heavily dependent on the perovskite layer being sufficiently smooth and pinhole-free. It has been shown that these features can be obtained even when starting out from rough and discontinuous perovskite film, by briefly exposing it to methylamine (MA) vapor. The exact underlying physical mechanisms of this phenomenon are, however, still unclear. By investigating smooth, MA treated films, based on very rough and discontinuous reference films of methylammonium triiode (MAPbI3), considering their morphology, crystalline features, local conductive properties, and charge carrier lifetime, we unravel the relation between their characteristic physical qualities and their performance in corresponding solar cells. We discover that the extensive improvement in photovoltaic performance upon MA treatment is a consequence of the induced morphological enhancement of the perovskite layer, together with improved electron injection into TiO2, which in fact compensates for an otherwise compromised bulk electronic quality, simultaneously caused by the MA treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396186000025 Publication Date 2017-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 43 Open Access OpenAccess  
  Notes This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by FWO and Imec. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. The authors thank Tim Vangerven for Urbach energy determination, and Johnny Baccus and Jan Mertens for technical support. Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:140849 Serial 4422  
Permanent link to this record
 

 
Author Pullini, D.; Sgroi, M.; Mahmoud, A.; Gauquelin, N.; Maschio, L.; Lorenzo-Ferrari, A.M.; Groenen, R.; Damen, C.; Rijnders, G.; van den Bos, K.H.W.; Van Aert, S.; Verbeeck, J. pdf  url
doi  openurl
  Title One step toward a new generation of C-MOS compatible oxide p-n junctions: Structure of the LSMO/ZnO interface elucidated by an experimental and theoretical synergic work Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue (up) 9 Pages 20974-20980  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterostructures formed by La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p–n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112̅0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404090000079 Publication Date 2017-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 4 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Commission – DG research and innovation to the collaborative research project named Interfacing oxides (IFOX, Contract No. NMP3-LA-2010-246102). N.G. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. S.V.A. and K.H.W.B. acknowledge financial support from the Research Foundation Flanders through project fundings (G.0374.13N , G.0368.15N, and G.0369.15N) and a Ph.D. research grant to K.H.W.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. CINECA is acknowledged for computational facilities (Iscra project HP10CMO1UP). Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:144431UA @ admin @ c:irua:144431 Serial 4621  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M. url  doi
openurl 
  Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue (up) 9 Pages 094420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411161700002 Publication Date 2017-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access OpenAccess  
  Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @c:irua:146748 Serial 4774  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue (up) 9 Pages 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author Lin, A.G.; Xiang, B.; Merlino, D.J.; Baybutt, T.R.; Sahu, J.; Fridman, A.; Snook, A.E.; Miller, V. pdf  doi
openurl 
  Title Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors Type A1 Journal article
  Year 2018 Publication Oncoimmunology Abbreviated Journal  
  Volume 7 Issue (up) 9 Pages e1484978  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Immunogenic cell death is characterized by the emission of danger signals that facilitate activation of an adaptive immune response against dead-cell antigens. In the case of cancer therapy, tumor cells undergoing immunogenic death promote cancer-specific immunity. Identification, characterization, and optimization of stimuli that induce immunogenic cancer cell death has tremendous potential to improve the outcomes of cancer therapy. In this study, we show that non-thermal, atmospheric pressure plasma can be operated to induce immunogenic cell death in an animal model of colorectal cancer. In vitro, plasma treatment of CT26 colorectal cancer cells induced the release of classic danger signals. Treated cells were used to create a whole-cell vaccine which elicited protective immunity in the CT26 tumor mouse model. Moreover, plasma treatment of subcutaneous tumors elicited emission of danger signals and recruitment of antigen presenting cells into tumors. An increase in T cell responses targeting the colorectal cancer-specific antigen guanylyl cyclase C (GUCY2C) were also observed. This study provides the first evidence that non-thermal plasma is a bone fide inducer of immunogenic cell death and highlights its potential for clinical translation for cancer immunotherapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443993100030 Publication Date 2018-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-4011; 2162-402x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 28 Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:155651 Serial 5119  
Permanent link to this record
 

 
Author Biscop,; Lin,; Boxem,; Loenhout,; Backer,; Deben,; Dewilde,; Smits,; Bogaerts, url  doi
openurl 
  Title Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume 11 Issue (up) 9 Pages 1287  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Increasing the selectivity of cancer treatments is attractive, as it has the potential to reduce side-effects of therapy. Cold atmospheric plasma (CAP) is a novel cancer treatment that disrupts the intracellular oxidative balance. Several reports claim CAP treatment to be selective, but retrospective analysis of these studies revealed discrepancies in several biological factors and culturing methods. Before CAP can be conclusively stated as a selective cancer treatment, the importance of these factors must be investigated. In this study, we evaluated the influence of the cell type, cancer type, and cell culture medium on direct and indirect CAP treatment. Comparison of cancerous cells with their non-cancerous counterparts was performed under standardized conditions to determine selectivity of treatment. Analysis of seven human cell lines (cancerous: A549, U87, A375, and Malme-3M; non-cancerous: BEAS-2B, HA, and HEMa) and five different cell culture media (DMEM, RPMI1640, AM, BEGM, and DCBM) revealed that the tested parameters strongly influence indirect CAP treatment, while direct treatment was less affected. Taken together, the results of our study demonstrate that cell type, cancer type, and culturing medium must be taken into account before selectivity of CAP treatment can be claimed and overlooking these parameters can easily result in inaccurate conclusions of selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489719000072 Publication Date 2019-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes the Research Foundation Flanders, 12S9218N – ; Universiteit Antwerpen, – ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:162097 Serial 5360  
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 4 Issue (up) 9 Pages 8832-8848  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703338600018 Publication Date 2021-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access OpenAccess  
  Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183949 Serial 6823  
Permanent link to this record
 

 
Author Saeumel, I.; Ramirez, L.R.; Santolin, J.; Pintado, K. url  doi
openurl 
  Title A step to disentangle diversity patterns in Uruguayan grasslands : climatic seasonality, novel land-uses, and landscape context drive diversity of ground flora Type A1 Journal article
  Year 2023 Publication Conservation Science and Practice Abbreviated Journal  
  Volume 5 Issue (up) 9 Pages 1-20  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract South American grasslands contain extraordinary biodiversity and play a central role in the subsistence of regional agroecosystems. In recent decades, afforestation, followed by the soybean planting boom, have led to drastic land-use changes at the expense of grasslands. Impacts on local biodiversity have remained understudied. We explored the taxonomic richness and ss-diversity of plants of ground layer (excluding trees and shrubs) at different land uses, its interplay at regional scale with environmental heterogeneity, and at local scale with novel land cover types and landscape configurations. We conducted correlation, principal component, NDMS, and SDR analysis to explore variation of taxonomic richness, richness difference, replacement, and similarity of ground flora as response to environmental filters and land use change across Uruguay. We surveyed 160 plots distributed in 10 land cover types, that is, closed and open native forests, different grasslands, crops, orchards, and timber plantations. We observed overlaying regional patterns driven by seasonality of temperature and precipitation, and land cover shaping taxonomic richness at local scale. Landscape configuration affects diversity patterns of native ground flora, which seems to be sustained mainly by the “old growth grassland” species pool. Taxonomic richness of native species decreases with an increase of distance to grassland. Crops and grasslands harbor a higher number of native species in the ground flora than native forests and timber plantations. The introduction of exotics is driven mostly by crops or highly modified pastures. Diversity patterns only partially reflect the ecoregion concept. Expanding the perspective from conservation in purely natural ecosystems to measures conserving species richness in human-modified landscapes is a powerful tool against species loss in the Anthropocene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034673500001 Publication Date 2023-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2578-4854 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198300 Serial 8828  
Permanent link to this record
 

 
Author Sankaran, K.J.; Duc Quang Hoang; Korneychuk, S.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D'Haen, J.; Verbeeck, J.; Leou, K.-C.; Leung, K.T.; Lin, I.-N.; Haenen, K. doi  openurl
  Title Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue (up) 93 Pages 90338-90346  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385451800044 Publication Date 2016-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 8 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. KJ Sankaran, and P Pobedinskas are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.108  
  Call Number UA @ lucian @ c:irua:144757UA @ admin @ c:irua:144757 Serial 4662  
Permanent link to this record
 

 
Author Shumilin, A.V.; Baranov, V.V.; Kabanov, V.V. url  doi
openurl 
  Title Upper critical field in the model with finite-range interaction between electrons Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue (up) 94 Pages 174506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We develop a theory of the upper critical field in a BCS superconductor with a nonlocal interaction between electrons. We have shown that the nonlocal interaction is characterized by the parameter k(F)rho(0), where k(F) is the Fermi momentum and rho(0) is the radius of electron-electron interaction. The presence of the external magnetic field leads to the generation of additional components of the order parameter with different angular momenta. This effect leads to the enhancement of the upper critical field above the orbital limiting field. In addition the upward curvature in the temperature dependence of H-c2 (T) in the clean limit is predicted. The impurity scattering suppresses the effect in the dirty limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387884100005 Publication Date 2016-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.836 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:139166 Serial 4365  
Permanent link to this record
 

 
Author L. Zhang, J. Kim, J. Zhang, F. Nan, N. Gauquelin, G.A. Botton, P. He, R. Bashyam, S. Knights doi  openurl
  Title Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction Type A1 Journal Article
  Year 2013 Publication Applied Energy Abbreviated Journal  
  Volume 103 Issue (up) March 2013 Pages 507-513  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A new method is developed for synthesizing Ti4O7 supported Ru@Pt core–shell catalyst (Ru@Pt/Ti4O7) through pyrolysis followed by microwave irradiation. The purpose is to improve the Ru durability of PtRu from core–shell structure and strong bonding to Ti4O7 oxide. In this method, the first step is to co-reduce the mixture of ruthenium precursor and TiO2 in a H2 reducing atmosphere under heat-treatment to obtain a Ru core on Ti4O7 support, and the second step is to create a shell of platinum via microwave irradiation. Energy dispersive X-ray spectrometry, X-ray Diffraction, High-resolution Scanning Transmission Electron Microscopy with the high-angle annular dark-field method and Electron Energy-Loss Spectroscopy are used to demonstrate that this catalyst with larger particles has a core–shell structure with a Ru core and a Pt shell. Electrochemical measurements show Ru@Pt/Ti4O7 catalyst has a higher CO-tolerance capability than that of PtRu/C alloy catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314669500048 Publication Date 2012-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 33 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4547  
Permanent link to this record
 

 
Author Antipov, E.V.; Putilin, S.N.; Shpanchenko, R.V.; Alyoshin, V.A.; Rozova, M.G.; Abakumov, A.M.; Mikhailova, D.A.; Balagurov, A.M.; Lebedev, O.; Van Tendeloo, G. doi  openurl
  Title Structural features, oxygen and fluorine doping in Cu-based superconductors Type A1 Journal article
  Year 1997 Publication Physica: C : superconductivity T2 – International Conference on Materials and Mechanisms of, Superconductivity – High Temperature Superconductors V, Feb. 28-Mar. 04, 1997, Beijing, Peoples R. China Abbreviated Journal Physica C  
  Volume 282 Issue (up) Part 1 Pages 61-64  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The variation of structures and superconducting properties by changing extra oxygen or fluorine atoms concentration in Hg-based Cu mixed oxides and YBa2Cu3O6+delta was studied. The data obtained by NPD study of Hg-1201 can be considered as an evidence of the conventional oxygen doping mechanism with 2 delta holes per (CuO2) layer. The extra oxygen atom was found to be located in the middle of the Hg mesh only. Different formal charges of oxygen and fluorine inserted into reduced 123 structure results in its distinct variations. The fluorine incorporation into strongly reduced YBa2Cu3O6+delta causes a significant structural rearrangement and the formation of a new compound with a composition close to YBa2Cu3O6F2 (tetragonal alpha = 3.87 Angstrom and c approximate to 13 Angstrom), which structure was deduced from the combined results of X-ray diffraction, electron diffraction and high resolution electron microscopy. Fluorination treatment by XeF2 of nonsuperconducting 123 samples causes an appearance of bulk superconductivity with T-c up to 94K.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Place of Publication Amsterdam Editor  
  Language Wos A1997XZ90400019 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.404; 1997 IF: 2.199  
  Call Number UA @ lucian @ c:irua:95866 Serial 3237  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: