toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K. pdf  url
doi  openurl
  Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
  Year 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.  
  Volume Issue (up) Pages anse.202000012  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2629-2742 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved Most recent IF: NA  
  Call Number AXES @ axes @c:irua:173031 Serial 6427  
Permanent link to this record
 

 
Author Dinh, D.K.; Trenchev, G.; Lee, D.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Arc plasma reactor modification for enhancing performance of dry reforming of methane Type A1 Journal article
  Year 2020 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 42 Issue (up) Pages 101352  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Arc plasma technology is gaining increasing interest for a variety of chemical reaction applications. In this study, we demonstrate how modifying the reactor geometry can significantly enhance the chemical reaction perfor­mance. Using dry reforming of methane as a model reaction, we studied different rotating arc reactors (con­ventional rotating arc reactor and nozzle-type rotating arc reactor) to evaluate the effect of attaching a downstream nozzle. The nozzle structure focuses the heat to a confined reaction volume, resulting in enhanced heat transfer from the arc into gas activation and reduced heat losses to the reactor walls. Compared to the conventional rotating arc reactor, this yields much higher CH4 and CO2 conversion (i.e., 74% and 49%, respectively, versus 40% and 28% in the conventional reactor, at 5 kJ/L) as well as energy efficiency (i.e., 53% versus 36%). The different performance in both reactors was explained by both experiments (measurements of temperature and oscillogram of current and voltage) and numerical modelling of the gas flow dynamics, heat transfer and fluid plasma of the reactor chambers. The results provide important insights for design optimization of arc plasma reactors for various chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599717000009 Publication Date 2020-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Korea Institute of Machinery and Materials, NK225F and NG0340) ; This work is supported by the Institutional research program (NK225F and NG0340) of the Korea Institute of Machinery and Materials. Approved Most recent IF: 7.7; 2020 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:173859 Serial 6431  
Permanent link to this record
 

 
Author Irtem, E.; Arenas Esteban, D.; Duarte, M.; Choukroun, D.; Lee, S.; Ibáñez, M.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO2Electroreduction Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume Issue (up) Pages 13468-13478  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592978900031 Publication Date 2020-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 23 Open Access OpenAccess  
  Notes The authors also acknowledge financial support from the University Research Fund (BOF-GOA-PS ID No. 33928). S.L. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie Grant Agreement No. 665385. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:173803 Serial 6432  
Permanent link to this record
 

 
Author Ranjbar, S.; Shahmansouri, M.; Attri, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli Type A1 Journal article
  Year 2020 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 127 Issue (up) Pages 104064  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Antibiotic resistance is one of the world’s most urgent public health problems. Due to its antibacterial properties, cold atmospheric plasma (CAP) may serve as an alternative method to antibiotics. It is claimed that oxidative stress caused by CAP is the main reason of bacteria inactivation. In this work, we computationally investigated the effect of plasma-induced oxidation on various glycolysis metabolites, by monitoring the production of the biomass. We observed that in addition to the significant reduction in biomass production, the rate of some re­actions has increased. These reactions produce anti-oxidant products, showing the bacterial defense mechanism to escape the oxidative damage. Nevertheless, the simulations show that the plasma-induced oxidation effect is much stronger than the defense mechanism, causing killing of the bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603362700001 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited Open Access  
  Notes Ministry of Science and Technology of Iran; Hercules Foundation; Flemish Government; EWI; S. R. acknowledges funding from the Ministry of Science and Tech­nology of Iran. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the universitteit Antwerpen. We also would like to thank Dr. Charlotta Bengtson for her suggestions in writing this paper. Approved Most recent IF: 7.7; 2020 IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:173860 Serial 6437  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title How do nitrated lipids affect the properties of phospholipid membranes? Type A1 Journal article
  Year 2020 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 695 Issue (up) Pages 108548  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Biological membranes are under constant attack of free radicals, which may lead to lipid nitro-oxidation, pro­ ducing a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Despite the latter, nitro-oxidized lipids are also associated with several inflammatory and neuro­ degenerative diseases, the underlying mechanisms of which remain elusive. We perform atomistic molecular dynamics simulations using several isomers of nitro-oxidized lipids to study their effect on the structure and permeability of the membrane, as well as the interaction between the mixture of these products in the phos­pholipid membrane environment. Our results show that the stereo- and positional isomers have a stronger effect on the properties of the membrane composed of oxidized lipids compared to that containing nitrated lipids. Nevertheless, nitrated lipids lead to three-fold increase in water permeability compared to oxidized lipids. In addition, we show that in a membrane consisting of combined nitro-oxidized lipid products, the presence of oxidized lipids protects the membrane from transient pores. Is well stablished that plasma application and photodynamic therapy produces a number of oxidative species used to kill cancer cells, through membrane damage induced by nitro-oxidative stress. This study is important to elucidate the mechanisms and the molecular level properties involving the reactive species produced during that cancer therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000594173400010 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access  
  Notes CAPES; Flanders Research Foundation, 1200219N ; We thank Universidade Federal do ABC for providing the computa­tional resources needed for completion of this work and CAPES for scholarship granted. M.Y. acknowledges the Flanders Research Foun­dation (grant 1200219N) for financial support. Approved Most recent IF: 3.9; 2020 IF: 3.165  
  Call Number PLASMANT @ plasmant @c:irua:173861 Serial 6440  
Permanent link to this record
 

 
Author Attri, P.; Kaushik, N.K.; Kaushik, N.; Hammerschmid, D.; Privat-Maldonado, A.; De Backer, J.; Shiratani, M.; Choi, E.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells Type A1 Journal Article
  Year 2021 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 182 Issue (up) Pages 1724-1736  
  Keywords A1 Journal Article; Lysozyme; Cold atmospheric plasma; Cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This study aims to modify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect. We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichroism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural modification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment, which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were observed in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme significantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have potential as a new cancer cell killing drug.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675794700005 Publication Date 2021-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.671 Times cited Open Access OpenAccess  
  Notes Japan Society for the Promotion of Science; We gratefully acknowledge the European H2020 Marie SkłodowskaCurie Actions Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. NK thanks to National Research Foundation of Korea under Ministry of Science and ICT (NRF2021R1C1C1013875) of Korean Government. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:178813 Serial 6792  
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Barreca, D.; Maccato, C. pdf  doi
openurl 
  Title Au-manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution : a chemico-physical investigation Type A1 Journal article
  Year 2020 Publication Advanced sustainable systems Abbreviated Journal  
  Volume Issue (up) Pages 2000177-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000572376000001 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-7486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.1 Times cited 4 Open Access Not_Open_Access  
  Notes ; Padova University (DOR 2017-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), are gratefully acknowledged for financial support. The Qu-Ant-EM microscope was partially funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project “Solarpaint” from the University of Antwerp and from EU H2020 823717 ESTEEM3 project. The authors thank Dr. Daniele Valbusa, Dr. Gianluca Corr, Dr. Andrea Gallo, and Dr. Dileep Khrishnan for helpful experimental assistance. ; esteem3TA; esteem3reported Approved Most recent IF: 7.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171937 Serial 6457  
Permanent link to this record
 

 
Author Wang, D.; Dasgupta, T.; van der Wee, E.B.; Zanaga, D.; Altantzis, T.; Wu, Y.; Coli, G.M.; Murray, C.B.; Bals, S.; Dijkstra, M.; van Blaaderen, A. pdf  url
doi  openurl
  Title Binary icosahedral clusters of hard spheres in spherical confinement Type A1 Journal article
  Year 2020 Publication Nature Physics Abbreviated Journal Nat Phys  
  Volume Issue (up) Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The influence of geometry on the local and global packing of particles is important to many fundamental and applied research themes, such as the structure and stability of liquids, crystals and glasses. Here we show by experiments and simulations that a binary mixture of hard-sphere-like nanoparticles crystallizing into a MgZn(2)Laves phase in bulk spontaneously forms icosahedral clusters in slowly drying droplets. Using advanced electron tomography, we are able to obtain the real-space coordinates of all the spheres in the icosahedral clusters of up to about 10,000 particles. The local structure of 70-80% of the particles became similar to that of the MgCu(2)Laves phase. These observations are important for photonic applications. In addition, we observed in simulations that the icosahedral clusters nucleated away from the spherical boundary, which is distinctly different from that of the single species clusters. Our findings open the way for particle-level studies of nucleation and growth of icosahedral clusters, and of binary crystallization. The authors investigate out-of-equilibrium crystallization of a binary mixture of sphere-like nanoparticles in small droplets. They observe the spontaneous formation of an icosahedral structure with stable MgCu(2)phases, which are promising for photonic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000564497300002 Publication Date 2020-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.6 Times cited 38 Open Access OpenAccess  
  Notes ; D.W., E.B.v.d.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. T.D. and M. D. acknowledge financial support from the Industrial Partnership Programme, 'Computational Sciences for Energy Research' (grant number 13CSER025), of the Netherlands Organization for Scientific Research (NWO), which was co-financed by Shell Global Solutions International BV G.M.C. was also financially supported by NWO. S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). C.B.M. and Y.W. acknowledge support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. G. A. Blab is gratefully acknowledged for 3D printing numerous truncated tetrahedra, which increased our understanding of the connection between the binary icosahedral cluster and Laves phase structures. N. Tasios is sincerely thanked for providing the code for the diffraction pattern calculation. M. Hermes is sincerely thanked for providing interactive views of the structures in this work. We thank G. van Tendeloo, M. Engel, J. Wang, S. Dussi, L. Filion, E. Boattini, S. Paliwal, N. Tasios, B. van der Meer, I. Lobato, J. Wu and L. Laurens for fruitful discussions. We acknowledge the EM Square centre at Utrecht University for the access to the microscopes. ; sygma Approved Most recent IF: 19.6; 2020 IF: 22.806  
  Call Number UA @ admin @ c:irua:172044 Serial 6460  
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Maccato, C.; Sada, C.; Verbeeck, J.; Andreu, T.; Morante, J.R.; Barreca, D. pdf  doi
openurl 
  Title Dual improvement of beta-MnO₂ oxygen evolution electrocatalysts via combined substrate control and surface engineering Type A1 Journal article
  Year 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem  
  Volume Issue (up) Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO(2)systems. Specifically,beta-MnO(2)nanostructures grown by plasma enhanced-chemical vapor deposition on fluorine-doped tin oxide (FTO) or Ni foams were decorated with Co(3)O(4)or Fe(2)O(3)nanoparticles by radio frequency sputtering. Upon functionalization, FTO-supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 Vvs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm(2)in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO(2)system provided a current density of 17.9 mA/cm(2)at 1.65 Vvs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO(2)and RuO(2)benchmarks. Overall, the control of beta-MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571229000001 Publication Date 2020-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited 5 Open Access Not_Open_Access  
  Notes ; This work has been financially supported by Padova University DOR 2017-2019, P-DiSC #03BIRD2016-UNIPD and #03BIRD2018-UNIPD projects. A.G. acknowledges AMGA Foundation and INSTM Consortium. J.V. gratefully acknowledges funding from the GOA project “Solarpaint” of the University of Antwerp and the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717-ESTEEM3. ; esteem3TA; esteem3reported Approved Most recent IF: 4.5; 2020 IF: 4.803  
  Call Number UA @ admin @ c:irua:171949 Serial 6493  
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal article
  Year 2023 Publication Advanced functional materials Abbreviated Journal Adv Funct Materials  
  Volume Issue (up) Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001129424500001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124  
  Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979  
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Jannis, D.; Cunha, D.M.; Halisdemir, U.; Piamonteze, C.; Lee, J.H.; Belhadi, J.; Eltes, F.; Abel, S.; Jovanovic, Z.; Spreitzer, M.; Fompeyrine, J.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Strain-engineered metal-to-insulator transition and orbital polarization in nickelate superlattices integrated on silicon Type A1 Journal article
  Year 2020 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume Issue (up) Pages 2004995  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial growth of SrTiO3 (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO3/LaFeO3 SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy. Both sets of SLs show a similar thickness-driven metal-to-insulator transition, albeit with resistivity and transition temperature modified by the different amounts of strain. In particular, the large tensile strain promotes a pronounced Ni 3dx2-y2 orbital polarization for the SL grown on Si/STO, comparable to that reported for LaNiO3 SL epitaxially strained to DyScO3 substrate. Those results illustrate the ability to integrate oxide SLs on silicon with structure and property approaching their counterparts grown on STO single crystal, and also open up new prospects of strain engineering in functional oxides based on the Si platform.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588146500001 Publication Date 2020-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 18 Open Access OpenAccess  
  Notes ; This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-9237 and No. P2-0091). This work received support from the ERC CoG MINT (#615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in the Netherlands. This project has received funding as a transnational access project from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. N.G. and J.V. acknowledge GOA project “Solarpaint” of the University of Antwerp. ; esteem3TA; esteem3reported Approved Most recent IF: 29.4; 2020 IF: 19.791  
  Call Number UA @ admin @ c:irua:173516 Serial 6617  
Permanent link to this record
 

 
Author Albrecht, W.; Bals, S. url  doi
openurl 
  Title Fast Electron Tomography for Nanomaterials Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue (up) Pages acs.jpcc.0c08939  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) has become a well-established technique to visualize nanomaterials in three dimensions. A vast richness in information can be gained by ET, but the conventional acquisition of a tomography series is an inherently slow process on the order of 1 h. The slow acquisition limits the applicability of ET for monitoring dynamic processes or visualizing nanoparticles, which are sensitive to the electron beam. In this Perspective, we summarize recent work on the development of emerging experimental and computational schemes to enhance the data acquisition process. We particularly focus on the application of these fast ET techniques for beam-sensitive materials and highlight insight into dynamic transformations of nanoparticles under external stimuli, which could be gained by fast in situ ET. Moreover, we discuss challenges and possible solutions for simultaneously increasing the speed and quality of fast ET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608876900003 Publication Date 2020-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 26 Open Access OpenAccess  
  Notes H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 815128 ; The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grant No. 815128-REALNANO) and the European Commission (EUSMI). The authors furthermore acknowledge funding from the European Union’s Horizon 2020 research and innovation program, ESTEEM3. The authors also acknowledge contributions from all co-workers that have contributed over the years: J. Batenburg and co-workers, A. Béché, E. Bladt, L. Liz-Marzán and co-workers, H. Pérez Garza and co-workers, A. Skorikov, S. Skrabalak and co-workers, S. Van Aert, A. van Blaaderen and co-workers, H. Vanrompay, and J. Verbeeck.; sygma Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number EMAT @ emat @c:irua:173965 Serial 6656  
Permanent link to this record
 

 
Author Lin, A.; Biscop, E.; Breen, C.; Butler, S.J.; Smits, E.; Bogaerts, A.; Jakovljevic, V. pdf  url
doi  openurl
  Title Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy Type A1 Journal article
  Year 2020 Publication Oxidative Medicine And Cellular Longevity Abbreviated Journal Oxid Med Cell Longev  
  Volume 2020 Issue (up) Pages 1-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Non-thermal plasma (NTP), an ionized gas generated at ambient pressure and temperature, has been an emerging technology for medical applications. Through controlled delivery of reactive oxygen and nitrogen species (ROS/RNS), NTP can elicit hormetic cellular responses, thus stimulating broad therapeutic effects. To enable clinical translation of the promising preclinical research into NTP therapy, a deeper understanding of NTP interactions with clinical substrates is profoundly needed. Since NTP-generated ROS/RNS will inevitably interact with blood in several clinical contexts, understanding their stability in this system is crucial. In this study, two medically relevant NTP delivery modalities were used to assess the stability of NTP-generated ROS/RNS in three aqueous solutions with increasing organic complexities: phosphate-buffered saline (PBS), blood plasma (BP), and processed whole blood. NTP-generated RNS collectively (NO2−, ONOO−), H2O2, and ONOO− exclusively were analyzed over time. We demonstrated that NTP-generated RNS and H2O2 were stable in PBS but scavenged by different components of the blood. While RNS remained stable in BP after initial scavenging effects, it was completely reduced in processed whole blood. On the other hand, H2O2 was completely scavenged in both liquids over time. Our previously developed luminescent probe europium(III) was used for precision measurement of ONOO− concentration. NTP-generated ONOO− was detected in all three liquids for up to at least 30 seconds, thus highlighting its therapeutic potential. Based on our results, we discussed the necessary considerations to choose the most optimal NTP modality for delivery of ROS/RNS to and via blood in the clinical context.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000600343500001 Publication Date 2020-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.593 Times cited Open Access  
  Notes This work was supported in part by the Research Foundation Flanders grant 12S9218N (A.L.) ,12S9221N (A.L) and G044420N (A.B. and A.L). This work was also supported by the Methusalem grant (A.B.). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:174000 Serial 6658  
Permanent link to this record
 

 
Author Imran, M.; Ramade, J.; Di Stasio, F.; De Franco, M.; Buha, J.; Van Aert, S.; Goldoni, L.; Lauciello, S.; Prato, M.; Infante, I.; Bals, S.; Manna, L. url  doi
openurl 
  Title Alloy CsCdxPb1–xBr3Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 32 Issue (up) Pages acs.chemmater.0c03825  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Various strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX3 perovskite NCs composed of two different M2+ cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCdxPb1–xBr3 NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden–Popper phases (RP phases). The RP domains spontaneously transform into pure orthorhombic perovskite ones upon NC aging, and the emission color of the NCs shifts from blue to green over days. On the other hand, postsynthesis ligand exchange with various Cs-carboxylate or ammonium bromide salts, right after NC synthesis, provides monocrystalline NCs with cubic phase, highlighting the metastability of RP domains. When NCs are treated with Cs-carboxylates (including Cs-oleate), most of the Cd2+ ions are expelled from NCs upon aging, and the NCs phase evolves from cubic to orthorhombic and their emission color changes from blue to green. Instead, when NCs are coated with ammonium bromides, the loss of Cd2+ ions is suppressed and the NCs tend to retain their blue emission (both in colloidal dispersions and in electroluminescent devices), as well as their cubic phase, over time. The improved compositional and structural stability in the latter cases is ascribed to the saturation of surface vacancies, which may act as channels for the expulsion of Cd2+ ions from NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603288800034 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 44 Open Access OpenAccess  
  Notes European Commission; Fonds Wetenschappelijk Onderzoek, G.0267.18N ; H2020 European Research Council, 770887 815128 851794 ; We acknowledge funding from the FLAG-ERA JTC2019 project PeroGas. S.B., and S.V.A. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants #815128REALNANO and #770887PICOMETRICS) and from the Research Foundation Flanders (FWO, Belgium) through project funding G.0267.18N. F.D.S. acknowledges the funding from ERC starting grant NANOLED (851794). The computational work was carried out on the Dutch National e-infrastructure with the support of the SURF Cooperative; sygma Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:174004 Serial 6659  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue (up) Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Felipe Montiel, N.; Parrilla, M.; Beltrán, V.; Nuyts, G.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title The opportunity of 6-monoacetylmorphine to selectively detect heroin at preanodized screen printed electrodes Type A1 Journal Article
  Year 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume Issue (up) Pages 122005  
  Keywords A1 Journal Article; Antwerp X-ray Analysis, Electrochemistry and Speciation (AXES) ;  
  Abstract The illicit consumption of heroin is an increasing concern in our society. For this reason, rapid analytical methods to seize heroin samples in the field are of paramount importance to hinder drug trafficking, and thus prevent the availability of heroin in the drug market. The present work reports on the enriched electrochemical fingerprint of heroin, allowing its selective detection in street samples, based on the use of electrochemical pretreated screen printed electrodes (p-SPE). The voltammetric identification is built on two oxidation peaks of both heroin and its degradation product 6-monoacetylmorphine (6-MAM), generated in alkaline conditions. Interestingly, an anodic pretreatment of the screen printed electrodes (SPE) shifts the peak potential of paracetamol (the most encountered cutting agent in heroin seizures), allowing the detection of 6-MAM peak, overlapping with the paracetamol signal in the case of untreated SPE. Subsequently, the characterization of the p-SPE with scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, Raman and Fourier transform infrared (FTIR) spectroscopy is provided to demonstrate local changes on the surface of the electrode. From an analytical perspective, p-SPE provide higher sensitivity (0.019 μA μM-1), excellent reproducibility (6-MAM, RSD = 2.85%, and heroin RSD = 0.91%, n = 5) and lower limits of detection (LOD) (5.2 μM) in comparison to untreated SPE. The proposed protocol which integrates a tailor-made script is interrogated against common cutting agents, and finally, validated with the screening of 14 street samples, also analyzed by standard methods. Besides, a comparison with portable spectroscopic techniques on the confiscated samples shows the better performance of the electrochemical strategy. Overall, this sensing approach offers promising results for the rapid on-site profiling of suspicious heroin samples, also in the presence of paracetamol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000656959000033 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 833787, BorderSens. The authors acknowledge financial support from the University of Antwerp (IOF). Approved Most recent IF: 4.162  
  Call Number AXES @ axes @c:irua:174844 Serial 6663  
Permanent link to this record
 

 
Author Liu, P.; Arslan Irmak, E.; De Backer, A.; De wael, A.; Lobato, I.; Béché, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Three-dimensional atomic structure of supported Au nanoparticles at high temperature Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue (up) Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well known that the activity of Au NPs depends on their size and surface structure, their three-dimensional (3D) structure at the atomic scale has not been completely characterized as a function of temperature. In this paper, we overcome the limitations of conventional electron tomography by combining atom counting applied to aberration-corrected scanning transmission electron microscopy images and molecular dynamics relaxation. In this manner, we are able to perform an atomic resolution 3D investigation of supported Au NPs. Our results enable us to characterize the 3D equilibrium structure of single NPs as a function of temperature. Moreover, the dynamic 3D structural evolution of the NPs at high temperatures, including surface layer jumping and crystalline transformations, has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612999200029 Publication Date 2020-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A. D. w. and A. D. B. and project funding G.0267.18N.; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:174858 Serial 6665  
Permanent link to this record
 

 
Author Li, C.; Tardajos, A.P.; Wang, D.; Choukroun, D.; Van Daele, K.; Breugelmans, T.; Bals, S. url  doi
openurl 
  Title A simple method to clean ligand contamination on TEM grids Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue (up) Pages 113195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Colloidal nanoparticles (NPs) including nanowires and nanosheets made by chemical methods involve many organic ligands. When the structure of NPs is investigated via transmission electron microscopy (TEM), the organic ligands act as a source for e-beam induced deposition and this causes substantial build-up of carbon layers in the investigated areas, which is typically referred to as “contamination” in the eld of electron mi- croscopy. This contamination is often more severe for scanning TEM, a technique that is based on a focused electron beam and hence higher electron dose rate. In this paper, we report a simple and effective method to clean drop-cast TEM grids that contain NPs with ligands. Using a combination of activated carbon and ethanol, this method effectively reduces the amount of ligands on TEM grids, and therefore greatly improves the quality of electron microscopy images and subsequent analytical measurements. This ef cient and facile method can be helpful during electron microscopy investigation of different kinds of nanomaterials that suffer from ligand- induced contamination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access OpenAccess  
  Notes This research was funded by the University Antwerp GOA project (ID 33928). DW acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174947 Serial 6666  
Permanent link to this record
 

 
Author Kleinhans, K.; Hallemans, M.; Huysveld, S.; Thomassen, G.; Ragaert, K.; Van Geem, K.M.; Roosen, M.; Mys, N.; Dewulf, J.; De Meester, S. pdf  doi
openurl 
  Title Development and application of a predictive modelling approach for household packaging waste flows in sorting facilities Type A1 Journal Article
  Year 2021 Publication Waste Management Abbreviated Journal Waste Management  
  Volume 120 Issue (up) Pages 290-302  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Household packaging waste sorting facilities consist of complex networks of processes to separate diverse waste streams. These facilities are a key first step to re-enter materials into the recycling chain. However, so far there are no general methods to predict the performance of such sorting facilities, i.e.

how efficiently the heterogeneous packaging waste is sorted into fractions with value for further recycling. In this paper, a model of the material flow in a sorting facility is presented, which allows changing the incoming waste composition, split factors on the sorting units as well as the setup of the sorting facility. The performance of the sorting facility is judged based on the purity of the output material (grade) and the recovery of the input material. A validation of the model was performed via a case study on Belgian post-consumer packaging waste with a selection of typical waste items that can be found in this stream. Moreover, the model was used to predict the possible sorting qualities of future Belgian postconsumer packaging waste after an extension of the allowed waste packaging items in the waste stream. Finally, a sensitivity analysis was performed on the split factors, which are a key data source in the model. Overall, the developed model is flexible and able to predict the performance of packaging waste sorting facilities as well as support waste management and design for recycling decisions, including future

design of packaging, to ensure proper sorting and separation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956053X ISBN Additional Links  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes We would like to thank Indaver (https://www.indaver.com/been/home/), especially Erik Huybrechts, Eric Goddaert, Eline Meyvis and Erik Moerman, for their great support on this research. Furthermore, we would like to acknowledge the help of Colruyt (https://www.colruyt.be/) and CEFLEX (https://ceflex.eu/) for the pre-studies for this research. Moreover, we would like to show our appreciation for the financial support by the Catalisti-ICON project (HBC.2018.0262) MATTER (Mechanical and Thermochemical Recycling of mixed plastic waste) funded by Flanders Innovation & Entrepreneurship (VLAIO). We also thank the Interreg 2 Seas program PlastiCity that is co-funded by the European Regional Development Fund under subsidy contract No. 2S05-021 and the province of East-Flanders for funding this research. Approved Most recent IF: NA  
  Call Number ENM @ enm @ Serial 6667  
Permanent link to this record
 

 
Author Kleshch, V.I.; Porshyn, V.; Orekhov, A.S.; Orekhov, A.S.; Lützenkirchen-Hecht, D.; Obraztsov, A.N. pdf  url
doi  openurl
  Title Carbon single-electron point source controlled by Coulomb blockade Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue (up) Pages 154-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Coulomb blockade effect is commonly used in solid state electronics for the control of electron flow

at the single-particle level. Potentially, it allows the creation of single-electron point sources demanded

for prospective electron microscopy instruments and other vacuum electronics devices. Here we realize

this potential via creation of a stable point electron source composed of a carbon nanowire electrically

coupled to a diamond nanotip by a tunnel junction. Using energy spectroscopy analysis, we characterize

the electrons liberated from the nanometer scale carbon heterostructures in time and energy domains.

Our experimental results demonstrate perfect agreement with theory prediction of Coulomb oscillations

of the Fermi level in the nanowire and allow to determine the mechanisms of their suppression.

Persistence of the oscillations at room temperature, high intensity field emission with currents up to

1 mA, and other characteristics of our emitters are very promising for practical realization of coherent

single-electron guns.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500018 Publication Date 2020-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes The work was supported by Russian Science Foundation (Project No. 19-72-10067). Approved Most recent IF: 6.337  
  Call Number EMAT @ emat @c:irua:175013 Serial 6670  
Permanent link to this record
 

 
Author Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W. url  doi
openurl 
  Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue (up) Pages acsnano.0c09746  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634569100101 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 10 Open Access OpenAccess  
  Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:175872 Serial 6673  
Permanent link to this record
 

 
Author De Meyer, R.; Albrecht, W.; Bals, S. pdf  url
doi  openurl
  Title Effectiveness of reducing the influence of CTAB at the surface of metal nanoparticles during in situ heating studies by TEM Type A1 Journal article
  Year 2021 Publication Micron Abbreviated Journal Micron  
  Volume 144 Issue (up) Pages 103036  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In situ TEM is a valuable technique to offer novel insights in the behavior of nanomaterials under various conditions. However, interpretation of in situ experiments is not straightforward since the electron beam can impact the outcome of such measurements. For example, ligands surrounding metal nanoparticles transform into a protective carbon layer upon electron beam irradiation and may impact the apparent thermal stability during in situ heating experiments. In this work, we explore the effect of different treatments typically proposed to remove such ligands. We found that plasma treatment prior to heating experiments for Au nanorods and nanostars increased the apparent thermal stability of the nanoparticles, while an activated carbon treatment resulted in a decrease of the observed thermal stability. Treatment with HCl barely changed the experimental outcome. These results demonstrate the importance of carefully selecting pre-treatments procedures during in situ heating experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632282600002 Publication Date 2021-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.98 Times cited Open Access OpenAccess  
  Notes H2020; European Research Council; This work was supported by the European Union’s Horizon 2020 research and innovation program [grant agreement No 823717 (ESTEEM3) and No 815128 (REALNANO)]; We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CICbiomaGUNE, Spain for providing the Au nanoparticles.; sygma; esteem3jra; esteem3reported Approved Most recent IF: 1.98  
  Call Number EMAT @ emat @c:irua:175874 Serial 6677  
Permanent link to this record
 

 
Author Buchmayr, A.; Verhofstadt, E.; Van Ootegem, L.; Sanjuan Delmás, D.; Thomassen, G.; Dewulf, J. url  doi
openurl 
  Title The path to sustainable energy supply systems: Proposal of an integrative sustainability assessment framework Type A1 Journal Article
  Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 138 Issue (up) Pages 110666  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Energy supply is essential for the functioning and well-being of a society. Decision-makers are faced with the challenge to balance burdens and benefits of energy supply practices with the aim to achieve environmental, economic, and social sustainability. Literature exhibits a broad variety of sustainability assessment frameworks for energy supply technologies. However, there is no consensus on which aspects need to be covered for a comprehensive assessment of sustainability. While some aspects, such as environmental emission damage, receive predominant attention, there is a lack of coverage and adequate quantification for others. This led in the past to an unbalanced basis for decision-making.

Based on an analysis of literature, 12 impact categories were identified for the assessment of energy technologies. The analysis included the judgement of quantification approaches regarding their significance for describing the impact categories and their maturity resulting in the proposal of 12 concrete indicators. A framework is proposed to manage and integrate the assessment of single impact categories. The framework produces normalized and weighted output indicators to use in the form of a dashboard or alternatively a single sustainability index for informed decision-making.

Finally, the proposed sustainability assessment framework relies on life cycle, local impact, and supply chain risks assessment. It consists of both well-established assessment methods as well as suggestions for new indicators in order to allow a full assessment of all impact categories. It thereby goes beyond the isolated assessment of impacts and offers the basis for comparison of complete energy supply mixes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321 ISBN Additional Links  
  Impact Factor 8.05 Times cited Open Access Not_Open_Access  
  Notes The authors acknowledge the financial support received from the Special Research Fund (Bijzonder Onderzoeksfonds – BOF) of Ghent University under grant agreement number BOF.24Y.2018.003. Approved Most recent IF: 8.05  
  Call Number ENM @ enm @ Serial 6680  
Permanent link to this record
 

 
Author Thomassen, G.; Huysveld, S.; Boone, L.; Vilain, C.; Geysen, D.; Huysman, K.; Cools, B.; Dewulf, J. url  doi
openurl 
  Title The environmental impact of household's water use: A case study in Flanders assessing various water sources, production methods and consumption patterns Type A1 Journal Article
  Year 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 770 Issue (up) Pages 145398  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Responsible water use and sustainable consumption and production are high on the agenda of multiple stakeholders. Different water supply sources are available, including tap water, bottled water, domestically harvested rainwater and domestically abstracted groundwater. The extent to which each of these water supply sources is used, differs over consumption patterns in various housing types, being detached houses, semi-detached houses, terraced houses and apartments. To identify the environmental impact of a household's water use and potential environmental impact reduction strategies, a holistic assessment is required. In this paper, the environmental impact of a household's water use in Flanders (Belgium) was assessed including four different water supply sources and four different consumption patterns by means of a life cycle assessment. The outcomes of this study reveal a large difference between the environmental impact of bottled water use, having a global warming impact of 259 kg CO2-eq.·m−3, compared to the other three supply sources. Tap water supply had the lowest global warming impact (0.17 kg CO2-eq.·m−3) and resource footprint (6.51 MJex·m−3) of all water supply sources. The most efficient strategy to reduce the environmental impact of household's water use is to shift the water consumption from bottled to tap water consumption. This would induce a reduction in global warming impact of the water use of an inhabitant in Flanders by on average 80%, saving 0.1 kg CO2-eq.·day−1 in case of groundwater-based tap water. These results provide insights into sustainable water use for multiple consumption patterns and can be used to better frame the environmental benefits of tap water use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links  
  Impact Factor 4.9 Times cited Open Access Not_Open_Access  
  Notes This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Approved Most recent IF: 4.9  
  Call Number ENM @ enm @ Serial 6681  
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of defects at Σ3 grain boundaries in CuGaSe2 Type A1 Journal article
  Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume Issue (up) Pages 114263  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract We present a first-principles computational study of cation–Se 3 (112) grain boundaries in CuGaSe. We discuss the structure of these grain boundaries, as well as the effect of native defects and Na impurities on their electronic properties. The formation energies show that the defects will tend to form preferentially at the grain boundaries, rather than in the grain interiors. We find that in Ga-rich growth conditions Cu vacancies as well as Ga at Cu and Cu at Ga antisites are mainly responsible for having the equilibrium Fermi level pinned toward the middle of the gap, resulting in carrier depletion. The Na at Cu impurity in its +1 charge state contributes to this. In Ga-poor growth conditions, on the other hand, the formation energies of Cu vacancies and Ga at Cu antisites are comparatively too high for any significant influence on carrier density or on the equilibrium Fermi level position. Thus, under these conditions, the Cu at Ga antisites give rise to a -type grain boundary. Also, their formation energy is lower than the formation energy of Na at Cu impurities. Thus, the latter will fail to act as a hole barrier preventing recombination at the grain boundary, in contrast to what occurs in CuInSe grain boundaries. We also discuss the effect of the defects on the electronic properties of bulk CuGaSe, which we assume reflect the properties of the grain interiors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652668500013 Publication Date 2021-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access OpenAccess  
  Notes Fwo; We acknowledge the financial support of FWO-Vlaanderen, Belgium through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.554  
  Call Number EMAT @ emat @c:irua:176544 Serial 6703  
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J. pdf  url
doi  openurl
  Title The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
  Year 2021 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 219 Issue (up) Pages 110824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000591683500002 Publication Date 2020-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited Open Access OpenAccess  
  Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved Most recent IF: 4.784  
  Call Number EMAT @ emat @c:irua:174337 Serial 6706  
Permanent link to this record
 

 
Author Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am. pdf  url
doi  openurl
  Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 329 Issue (up) Pages 129035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612060700009 Publication Date 2020-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:176123 Serial 6707  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Khalilov, U.; Hamoudi, H.; Neyts, E.C. url  doi
openurl 
  Title Effect of chemical modification on electronic transport properties of carbyne Type A1 Journal article
  Year 2021 Publication Journal Of Computational Electronics Abbreviated Journal J Comput Electron  
  Volume Issue (up) Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using density functional theory in combination with the Green’s functional formalism, we study the effect of surface functionalization on the electronic transport properties of 1D carbon allotrope—carbyne. We found that both hydrogenation and fluorination result in structural changes and semiconducting to metallic transition. Consequently, the current in the functionalization systems increases significantly due to strong delocalization of electronic states along the carbon chain. We also study the electronic transport in partially hydrogenated carbyne and interface structures consisting of pristine and functionalized carbyne. In the latter case, current rectification is obtained in the system with rectification ratio up to 50%. These findings can be useful for developing carbyne-based structures with tunable electronic transport properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000617664900001 Publication Date 2021-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited Open Access OpenAccess  
  Notes Computational resources were provided by the research computing facilities of Qatar Environment and Energy Research Institute. Calculations are also conducted using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. U. Khalilov gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1315N. Approved Most recent IF: 1.526  
  Call Number PLASMANT @ plasmant @c:irua:176169 Serial 6708  
Permanent link to this record
 

 
Author Vanraes, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Laser-induced excitation mechanisms and phase transitions in spectrochemical analysis – Review of the fundamentals Type A1 Journal article
  Year 2021 Publication Spectrochimica Acta Part B-Atomic Spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 179 Issue (up) Pages 106091  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nowadays, lasers are commonly applied in spectrochemical analysis methods, for sampling, plasma formation or a combination of both. Despite the numerous investigations that have been performed on these applications, the underlying processes are still insufficiently understood. In order to fasten progress in the field and in honor of the lifework of professor Rick Russo, we here provide a brief overview of the fundamental mechanisms in lasermatter interaction as proposed in literature, and throw the spotlight on some aspects that have not received much attention yet. For an organized discussion, we choose laser ablation, laser desorption and the associated gaseous plasma formation as the central processes in this perspective article, based on a classification of the laserbased spectrochemical analysis techniques and the corresponding laser-matter interaction regimes. First, we put the looking glass over the excitation and thermalization mechanisms in the laser-irradiated condensed phase, for which we propose the so-called multi-plasma model. This novel model can be understood as an extension of the well-known two-temperature model, featuring multiple thermodynamic dimensions, each of which corresponds to a quasi-particle type. Next, the focus is placed on the mass transfer and ionization mechanisms, after which we shortly highlight the possible role of anisotropic and magnetic effects in the laser-excited material. We hope this perspective article motivates more fundamental research on laser-matter interaction, as a continuation of the lifework of Rick Russo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631868700005 Publication Date 2021-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited Open Access OpenAccess  
  Notes University of Antwerp; We acknowledge funding by a University of Antwerp BOF grant and by a University of Antwerp Methusalem grant. Approved Most recent IF: 3.241  
  Call Number PLASMANT @ plasmant @c:irua:176876 Serial 6710  
Permanent link to this record
 

 
Author Kumar, N.; Perez-Novo, C.; Shaw, P.; Logie, E.; Privat-Maldonado, A.; Dewilde, S.; Smits, E.; Berghe, W.V.; Bogaerts, A. pdf  url
doi  openurl
  Title Physical plasma-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death Type A1 Journal article
  Year 2021 Publication Free Radical Biology And Medicine Abbreviated Journal Free Radical Bio Med  
  Volume 166 Issue (up) Pages 187-200  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Despite modern therapeutic advances, the survival prospects of pancreatic cancer patients remain poor, due to chemoresistance and dysregulated oncogenic kinase signaling networks. We applied a novel kinome activitymapping approach using biological peptide targets as phospho-sensors to identify vulnerable kinase de­pendencies for therapy sensitization by physical plasma. Ser/Thr-kinome specific activity changes were mapped upon induction of ferroptotic cell death in pancreatic tumor cells exposed to reactive oxygen and nitrogen species of plasma-treated water (PTW). This revealed a broad kinome activity response involving the CAMK, the AGC and CMGC family of kinases. This systems-level kinome network response supports stress adaptive switches between chemoresistant anti-oxidant responses of Kelch-like ECH-associated protein 1 (KEAP1)/Heme Oxy­genase 1 (HMOX1) and ferroptotic cell death sensitization upon suppression of Nuclear factor (erythroid derived 2)-like 2 (NRF2) and Glutathione peroxidase 4 (GPX4). This is further supported by ex vivo experiments in the chicken chorioallantoic membrane assay, showing decreased GPX4 and Glutathione (GSH) expression as well as increased lipid peroxidation, along with suppressed BxPC-3 tumor growth in response to PTW. Taken all together, we demonstrate that plasma treated water-derived oxidants sensitize pancreatic cancer cells to fer­roptotic cell death by targeting a NRF2-HMOX1-GPX4 specific kinase signaling network.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632703400001 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0891-5849 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.606 Times cited Open Access OpenAccess  
  Notes We gratefully acknowledge the financial support obtained from the Research Foundation Flanders (FWO), Belgium, grant number 12J5617 N and Department of Biotechnology (DBT) Ramalingaswami Re-entry Fellowship, India, grant number D.O.NO.BT/HRD/35/02/2006. We are thankful to the Laboratory of Experimental Hematology, for providing the facilities for the experimental and fluorescence micro­scopy work. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), Belgium. The Kinome profiling was performed at the Epigenetic Signaling service facility (PPES-UA) funded by the Hercules Foundation and Foundation against cancer Belgium (KOTK 7872). Approved Most recent IF: 5.606  
  Call Number PLASMANT @ plasmant @c:irua:176878 Serial 6711  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: