|   | 
Details
   web
Records
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J.
Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules
Volume 27 Issue 6 Pages 1997-21
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776369800001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1420-3049 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188053 Serial 7218
Permanent link to this record
 

 
Author Avranovich Clerici, E.; De Meyer, S.; Vanmeert, F.; Legrand, S.; Monico, L.; Miliani, C.; Janssens, K.
Title Multi-scale X-ray imaging of the pigment discoloration processes triggered by chlorine compounds in the Upper Basilica of Saint Francis of Assisi Type A1 Journal article
Year 2023 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal
Volume 28 Issue 16 Pages 6106-6123
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract In this paper, the chromatic alteration of various types of paints, present on mural painting fragments derived from the vaults of The Upper Basilica of Saint Francis of Assisi in Italy (12th-13th century), is studied using synchrotron radiation. Six painted mural fragments, several square centimeters in size, were available for analysis, originating from the ceiling paintings attributed to Cimabue and Giotto; they correspond to originally white, blue/green, and brown/yellow/orange areas showing discoloration. As well as collecting macroscopic X-ray fluorescence and diffraction maps from the entire fragments in the laboratory and at the SOLEIL synchrotron, corresponding paint cross-sections were also analyzed using microscopic X-ray fluorescence and powder diffraction mapping at the PETRA-III synchrotron. Numerous secondary products were observed on the painted surfaces, such as (a) copper tri-hydroxychloride in green/blue areas; (b) corderoite and calomel in vermillion red/cinnabar-rich paints; (c) plattnerite and/or scrutinyite assumed to be oxidation products of (hydro)cerussite (2PbCO(3)center dot Pb(OH)(2)) in the white areas, and (d) the calcium oxalates whewellite and weddellite. An extensive presence of chlorinated metal salts points to the central role of chlorine-containing compounds during the degradation of the 800-year-old paint, leading to, among other things, the formation of the rare mineral cumengeite (21PbCl(2)center dot 20Cu(OH) (2) center dot 6H(2)O).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056388600001 Publication Date 2023-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1420-3049 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6; 2023 IF: 2.861
Call Number UA @ admin @ c:irua:199265 Serial 8902
Permanent link to this record
 

 
Author Bengtson, C.; Bogaerts, A.
Title The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling Type A1 Journal article
Year 2021 Publication International Journal Of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 22 Issue 9 Pages 5033
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide () has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous . We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000650366900001 Publication Date 2021-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1422-0067 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.226 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.226
Call Number PLASMANT @ plasmant @c:irua:178123 Serial 6757
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Verloy, R.; Cardenas Delahoz, E.; Lin, A.; Vanlanduit, S.; Smits, E.; Bogaerts, A.
Title Cold Atmospheric Plasma Does Not Affect Stellate Cells Phenotype in Pancreatic Cancer Tissue in Ovo Type A1 Journal article
Year 2022 Publication International Journal Of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 23 Issue 4 Pages 1954
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is a challenging neoplastic disease, mainly due to the development of resistance to radio- and chemotherapy. Cold atmospheric plasma (CAP) is an alternative technology that can eliminate cancer cells through oxidative damage, as shown in vitro, in ovo, and in vivo. However, how CAP affects the pancreatic stellate cells (PSCs), key players in the invasion and metastasis of PDAC, is poorly understood. This study aims to determine the effect of an anti-PDAC CAP treatment on PSCs tissue developed in ovo using mono- and co-cultures of RLT-PSC (PSCs) and Mia PaCa-2 cells (PDAC). We measured tissue reduction upon CAP treatment and mRNA expression of PSC activation markers and extracellular matrix (ECM) remodelling factors via qRT-PCR. Protein expression of selected markers was confirmed via immunohistochemistry. CAP inhibited growth in Mia PaCa-2 and co-cultured tissue, but its effectiveness was reduced in the latter, which correlates with reduced ki67 levels. CAP did not alter the mRNA expression of PSC activation and ECM remodelling markers. No changes in MMP2 and MMP9 expression were observed in RLT-PSCs, but small changes were observed in Mia PaCa-2 cells. Our findings support the ability of CAP to eliminate PDAC cells, without altering the PSCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000763630900001 Publication Date 2022-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1422-0067 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.6 Times cited Open Access OpenAccess
Notes The authors would like to thank Hanne Verswyvel for her support with sample collection from the in ovo model and Peter Ponsaerts for providing the facilities for the microscopy studies. Approved Most recent IF: 5.6
Call Number PLASMANT @ plasmant @c:irua:187155 Serial 7049
Permanent link to this record
 

 
Author Verberck, B.
Title Symmetry-adapted rotator functions for molecules in cylindrical confinement Type A1 Journal article
Year 2011 Publication International journal of molecular sciences Abbreviated Journal Int J Mol Sci
Volume 12 Issue 1 Pages 317-333
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a general description of the formalism of symmetry-adapted rotator functions (SARFs) for molecules in cylindrical confinement. Molecules are considered as clusters of interaction centers (ICs), can have any symmetry, and can display different types of ICs. Cylindrical confinement can be realized by encapsulation in a carbon nanotube (CNT). The potential energy of a molecule surrounded by a CNT can be calculated by evaluating a limited number of terms of an expansion into SARFs, which offers a significant reduction of the computation time. Optimal molecular orientations can be deduced from the resulting potential energy landscape. Examples, including the case of a molecule with cubic symmetry inside a CNT, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286583400017 Publication Date 2011-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1422-0067; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.226 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.226; 2011 IF: NA
Call Number UA @ lucian @ c:irua:88048 Serial 3402
Permanent link to this record
 

 
Author Lin, A.; Truong, B.; Patel, S.; Kaushik, N.; Choi, E.H.; Fridman, G.; Fridman, A.; Miller, V.
Title Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress Type A1 Journal article
Year 2017 Publication International journal of molecular sciences Abbreviated Journal
Volume 18 Issue 5 Pages 966
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404113900073 Publication Date 2017-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1422-0067; 1661-6596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:155654 Serial 8292
Permanent link to this record
 

 
Author Samal, S.K.; Soenen, S.; Puppi, D.; De Wael, K.; Pati, S.; De Smedt, S.; Braeckmans, K.; Dubruel, P.
Title Bio-nanohybrid gelatin/quantum dots for cellular imaging and biosensing applications Type A1 Journal article
Year 2022 Publication International journal of molecular sciences Abbreviated Journal
Volume 23 Issue 19 Pages 11867-12
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow CdS QDs without any agglomeration. The H-1 NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities. The prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated. The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical sensors purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000867759600001 Publication Date 2022-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1422-0067; 1661-6596 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:191566 Serial 8836
Permanent link to this record
 

 
Author Vos, W.; de Backer, J.; Poli, G.; De Volder, A.; Ghys, L.; Van Holsbeke, C.; Vinchurkar, S.; De Backer, L.; de Backer, W.
Title Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol Type A1 Journal article
Year 2013 Publication Respiration Abbreviated Journal Respiration
Volume 86 Issue 5 Pages 393-401
Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract Background: Inhaled formulations using extrafine particles of long-acting beta(2)-agonists and corticosteroids were developed to optimize asthma treatment. Findings that these combinations reach and treat smaller airways more effectively are predominantly based on general non-specific outcomes with little information on regional characteristics. Objectives: This study aims to assess long-term effects of extrafine beclomethasone/formoterol on small airways of asthmatic patients using novel functional imaging methods. Methods: Twenty-four stable asthma patients were subdivided into three groups (steroid naive, n = 7; partially controlled, n = 6; well controlled, n = 11). Current treatment was switched to a fixed combination of extrafine beclomethasone/formoterol (Foster (R); Chiesi Pharmaceuticals, Parma, Italy). Patients underwent lung function evaluation and thorax high-resolution computerized tomography (HRCT) scan. Local airway resistance was obtained from computational fluid dynamics (CFD). Results: After 6 months, the entire population showed improvement in pre-bronchodilation imaging parameters, including small airway volume (p = 0.0007), resistance (p = 0.011), and asthma control score (p = 0.016). Changes in small airway volume correlated with changes in asthma control score (p = 0.004). Forced expiratory volume in 1 s (p = 0.044) and exhaled nitric oxide (p = 0.040) also improved. Functional imaging provided more detail and clinical relevance compared to lung function tests, especially in the well-controlled group where only functional imaging parameters showed significant improvement, while the correlation with asthma control score remained. Conclusions: Extrafine beclomethasone/formoterol results in a significant reduction of small airway obstruction, detectable by functional imaging (HRCT/CFD). Changes in imaging parameters correlated significantly with clinically relevant improvements. This indicates that functional imaging is a useful tool for sensitive assessment of changes in the respiratory system after asthma treatment. Copyright (C) 2013 S. Karger AG, Basel
Address
Corporate Author Thesis
Publisher Place of Publication Basel Editor
Language Wos 000329046200006 Publication Date 2013-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1423-0356;0025-7931; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.772 Times cited 30 Open Access
Notes ; ; Approved Most recent IF: 2.772; 2013 IF: 2.924
Call Number UA @ lucian @ c:irua:113762 Serial 2376
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Blust, R.; De Wael, K.
Title An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine Type A1 Journal article
Year 2015 Publication Sensors Abbreviated Journal Sensors-Basel
Volume 15 Issue 4 Pages 7605-7618
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Because of the biocompatible properties of gelatine and the good affinity of aptamers for their targets, the combination of aptamer and gelatine type B is reported as promising for the development of biosensing devices. Here, an aptamer for chloramphenicol (CAP) is mixed with different types of gelatine and dropped on the surface of disposable gold screen printed electrodes. The signal of the CAP reduction is investigated using differential pulse voltammetry. The diagnostic performance of the sensor is described and a detection limit of 1.83 x 10(-10) M is found. The selectivity and the stability of the aptasensor are studied and compared to those of other CAP sensors described in literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000354236100025 Publication Date 2015-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.677 Times cited 21 Open Access
Notes ; Ezat Hamidi-Asl was financially supported by IOF-POC (University of Antwerp). ; Approved Most recent IF: 2.677; 2015 IF: 2.245
Call Number UA @ admin @ c:irua:126071 Serial 5464
Permanent link to this record
 

 
Author Pilehvar, S.; Dierckx, T.; Blust, R.; Breugelmans, T.; De Wael, K.
Title An electrochemical impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol Type A1 Journal article
Year 2014 Publication Sensors Abbreviated Journal Sensors-Basel
Volume 14 Issue 7 Pages 12059-12069
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract We report on the aptadetection of chloramphenicol (CAP) using electrochemical impedance spectroscopy. The detection principle is based on the changes of the interfacial properties of the electrode after the interaction of the ssDNA aptamers with the target molecules. The electrode surface is partially blocked due to the formation of the aptamer-CAP complex, resulting in an increase of the interfacial electron-transfer resistance of the redox probe detected by electrochemical impedance spectroscopy or cyclic voltammetry. We observed that the ratio of polarization resistance had a linear relationship with the concentrations of CAP in the range of 1.76127 nM, and a detection limit of 1.76 nM was obtained. The covalent binding of CAP-aptamer on the electrode surface combined with the unique properties of aptamers and impedimetric transduction leads to the development of a stable and sensitive electrochemical aptasensor for CAP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000340035700041 Publication Date 2014-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.677 Times cited 34 Open Access
Notes ; We are thankful to UA-DOCPRO and UA-BOFACA for financial support. ; Approved Most recent IF: 2.677; 2014 IF: 2.245
Call Number UA @ admin @ c:irua:117845 Serial 5592
Permanent link to this record
 

 
Author Moro, G.; Cristofori, D.; Bottari, F.; Cattaruzza, E.; De Wael, K.; Moretto, L.M.
Title Redesigning an electrochemical MIP sensor for PFOS : practicalities and pitfalls Type A1 Journal article
Year 2019 Publication Sensors Abbreviated Journal Sensors-Basel
Volume 19 Issue 20 Pages 4433
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract There is a growing interest in the technological transfer of highly performing electrochemical sensors within portable analytical devices for the in situ monitoring of environmental contaminants, such as perfluorooctanesulfonic acid (PFOS). In the redesign of biomimetic sensors, many parameters should be taken into account from the working conditions to the electrode surface roughness. A complete characterization of the surface modifiers can help to avoid time-consuming optimizations and better interpret the sensor responses. In the present study, a molecularly imprinted polymer electrochemical sensor (MIP) for PFOS optimized on gold disk electrodes was redesigned on commercial gold screen-printed electrodes. However, its performance investigated by differential pulse voltammetry was found to be poor. Before proceeding with further optimization, a morphological study of the bare and modified electrode surfaces was carried out by scanning electron microscopy-energy-dispersive X-ray spectrometry (SEM-EDS), atomic force microscopy (AFM) and profilometry revealing an heterogeneous distribution of the polymer strongly influenced by the electrode roughness. The high content of fluorine of the target-template molecule allowed to map the distribution of the molecularly imprinted polymer before the template removal and to define a characterization protocol. This case study shows the importance of a multi-analytical characterization approach and identify significant parameters to be considered in similar redesigning studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000497864700081 Publication Date 2019-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.677 Times cited Open Access
Notes ; ; Approved Most recent IF: 2.677
Call Number UA @ admin @ c:irua:164686 Serial 5808
Permanent link to this record
 

 
Author Truta, F.; Drăgan, A.-M.; Tertis, M.; Parrilla, M.; Slosse, A.; Van Durme, F.; De Wael, K.; Cristea, C.
Title Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform Type A1 Journal article
Year 2023 Publication Sensors Abbreviated Journal
Volume 23 Issue 13 Pages 6193-18
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1–500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033277900001 Publication Date 2023-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198181 Serial 8857
Permanent link to this record
 

 
Author Gjorgievska, E.; Van Tendeloo, G.; Nicholson, J.W.; Coleman, N.J.; Slipper, I.J.; Booth, S.
Title The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements Type A1 Journal article
Year 2015 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 21 Issue 21 Pages 392-406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Conventional glass-ionomer cements (GICs) are popular restorative materials, but their use is limited by their relatively low mechanical strength. This paper reports an attempt to improve these materials by incorporation of 10 wt% of three different types of nanoparticles, aluminum oxide, zirconium oxide, and titanium dioxide, into two commercial GICs (ChemFil((R)) Rock and EQUIA (TM) Fil). The results indicate that the nanoparticles readily dispersed into the cement matrix by hand mixing and reduced the porosity of set cements by filling the empty spaces between the glass particles. Both cements showed no significant difference in compressive strength with added alumina, and ChemFil((R)) Rock also showed no significant difference with zirconia. By contrast, ChemFil((R)) Rock showed significantly higher compressive strength with added titania, and EQUIA (TM) Fil showed significantly higher compressive strength with both zirconia and titania. Fewer air voids were observed in all nanoparticle-containing cements and this, in turn, reduced the development of cracks within the matrix of the cements. These changes in microstructure provide a likely reason for the observed increases in compressive strength, and overall the addition of nanoparticles appears to be a promising strategy for improving the physical properties of GICs.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000353514700014 Publication Date 2015-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 15 Open Access
Notes Approved Most recent IF: 1.891; 2015 IF: 1.877
Call Number UA @ lucian @ c:irua:132523 Serial 4194
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author Jones, L.; Martinez, G.T.; Béché, A.; Van Aert, S.; Nellist, P.D.
Title Getting the best from an imperfect detector : an alternative normalisation procedure for quantitative HAADF STEM Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue S3 Pages 126-127
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:136445 Serial 4500
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J.
Title Towards Reproducible and Transparent Science of (Big) Electron Microscopy Data Using Version Control Type P1 Proceeding
Year 2019 Publication Microscopy and microanalysis T2 – Microscopy & Microanalysis 2019, 4-8 August, 2019, Portland, Oregon Abbreviated Journal Microsc Microanal
Volume 25 Issue S2 Pages 232-233
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @c:irua:164058 Serial 5377
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J.
Title Open Source Development Tools for Robust and Reproducible Electron Microscopy Data Analysis Type P3
Year 2019 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 25 Issue S2 Pages 138-139
Keywords P3; Electron Microscopy for Materials Science (EMAT) ;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @ Serial 5378
Permanent link to this record
 

 
Author Denecke, M.A.; Somogyi, A.; Janssens, K.; Simon, R.; Dardenne, K.; Noseck, U.
Title Microanalysis (micro-XRF, micro-XANES, and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation Type A1 Journal article
Year 2007 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 13 Issue 3 Pages 165-172
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000246814100004 Publication Date 2007-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 31 Open Access
Notes Approved Most recent IF: 1.891; 2007 IF: 1.941
Call Number UA @ admin @ c:irua:64739 Serial 5721
Permanent link to this record
 

 
Author van der Linden, V.; Meesdom, E.; Devos, A.; van Dooren, R.; Nieuwdorp, H.; Janssen, E.; Balace, S.; Vekemans, B.; Vincze, L.; Janssens, K.
Title PXRF, \mu-XRF, vacuum \mu-XRF, and EPMA analysis of Email Champlevé objects present in Belgian museums Type A1 Journal article
Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 17 Issue 5 Pages 674-685
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The enamel of 20 Email Champlevé objects dating between the 12th and 19th centuries was investigated by means of microscopic and portable X-ray fluorescence analysis (μ-XRF and PXRF). Seven of these objects were microsampled and the fragments were analyzed with electron probe microanalysis (EPMA) and vacuum μ-XRF to obtain quantitative data about the composition of the glass used to produce these enameled objects. As a result of the evolution of the raw materials employed to produce the base glass, three different compositional groups could be discriminated. The first group consisted of soda-lime-silica glass with a sodium source of mineral origin (with low K content) that was opacified by addition of calcium antimonate crystals. This type of glass was only used in objects made in the 12th century. Email Champlevé objects from the beginning of the 13th century onward were enameled with soda-lime-silica glass with a sodium source of vegetal origin. This type of glass, which has a higher potassium content, was opacified with SnO2 crystals. The glass used for 19th century Email Champlevé artifacts was produced with synthetic and purified components resulting in a different chemical composition compared to the other groups. Although the four analytical techniques employed in this study have their own specific characteristics, they were all found to be suitable for classifying the objects into the different chronological categories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000295609100005 Publication Date 2011-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 9 Open Access
Notes ; ; Approved Most recent IF: 1.891; 2011 IF: 3.007
Call Number UA @ admin @ c:irua:92827 Serial 5791
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; O'Leary, C.M.; Yang, H.; Nellist, P.D.
Title Efficient Phase Contrast Imaging via Electron Ptychography, a Tutorial Type A1 Journal article
Year 2019 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 25 Issue S2 Pages 2684-2685
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number EMAT @ emat @c:irua:172444 Serial 6424
Permanent link to this record
 

 
Author Nord, M.; Webster, R.W.H.; Paton, K.A.; McVitie, S.; McGrouther, D.; MacLaren, I.; Paterson, G.W.
Title Fast pixelated detectors in scanning transmission electron microscopy. Part I: data acquisition, live processing, and storage Type A1 Journal article
Year 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 26 Issue 4 Pages Pii S1431927620001713-666
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The use of fast pixelated detectors and direct electron detection technology is revolutionizing many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualization, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software are available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000555537900004 Publication Date 2020-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 4 Open Access OpenAccess
Notes ; The performance of this work was mainly supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (grant no. EP/M009963/1). G.W.P. received additional support from the EPSRC under grant no. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 838001. The studentship of R.W.H.W. was supported by the EPSRC Doctoral Training Partnership grant no. EP/N509668/1. S.McV. was supported by EPSRC grant no. EP/M024423/1. I.M. was supported by EPSRC grant no. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (no. ST/P002471/1) with Quantum Detectors Ltd. as the industrial partner. D.McG. was also supported by EPSRC grant no. EP/M009963/1. As an inventor of intellectual property related to the MERLIN detector hardware, he is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under grant no. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891
Call Number UA @ admin @ c:irua:171185 Serial 6518
Permanent link to this record
 

 
Author Paterson, G.W.; Webster, R.W.H.; Ross, A.; Paton, K.A.; Macgregor, T.A.; McGrouther, D.; MacLaren, I.; Nord, M.
Title Fast pixelated detectors in scanning transmission electron microscopy. part II : post-acquisition data processing, visualization, and structural characterization Type A1 Journal article
Year 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 26 Issue 5 Pages 944-963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Fast pixelated detectors incorporating direct electron detection (DED) technology are increasingly being regarded as universal detectors for scanning transmission electron microscopy (STEM), capable of imaging under multiple modes of operation. However, several issues remain around the post-acquisition processing and visualization of the often very large multidimensional STEM datasets produced by them. We discuss these issues and present open source software libraries to enable efficient processing and visualization of such datasets. Throughout, we provide examples of the analysis methodologies presented, utilizing data from a 256 x 256 pixel Medipix3 hybrid DED detector, with a particular focus on the STEM characterization of the structural properties of materials. These include the techniques of virtual detector imaging; higher-order Laue zone analysis; nanobeam electron diffraction; and scanning precession electron diffraction. In the latter, we demonstrate a nanoscale lattice parameter mapping with a fractional precision <= 6 x 10(-4) (0.06%).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000576859800011 Publication Date 2020-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 3 Open Access OpenAccess
Notes ; G.W.P. and M.N. were the principal authors of the fpd and pixStem libraries reported herein (details of all contributions are documented in the repositories) and have made all of these available under open source licence GPLv3 for the benefit of the community. R.W.H.W., A.R., and K.A.P. have also made contributions to the source codes in these libraries. G.W.P and M.N. have led the data acquisition and analysis, and the drafting of this manuscript. The performance of this work was mainly supported by Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (Grant No. EP/M009963/1). G.W.P. received additional support from the EPSRC under Grant No. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 838001. R.W.H.W., A.R., K.A.P., T.A.M., D.McG., and I.M. have all contributed either through acquisition and analysis of data or through participation in the revision of the manuscript. The studentships of R.W.H.W. and T.A.M. were supported by the EPSRC Doctoral Training Partnership Grant No. EP/N509668/1. I.M. and D.McG. were supported by EPSRC Grant No. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (No. ST/ P002471/1) with Quantum Detectors Ltd. as the industrial partner. As an inventor of intellectual property related to the MERLIN detector hardware, D.McG. is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. We thank Diamond Quantum Detectors Ltd. for Medipix3 detector support; Dr. Bruno Humbel from Okinawa Institute of Science and Technology; and Dr. Caroline Kizilyaprak from the University of Lausanne for providing the liver sample; Dr. Ingrid Hallsteinsen and Prof. Thomas Tybell from the Norwegian University of Science and Technology (NTNU) for providing the La0.7Sr0.3MnO3/LaFeO3/SrTiO3 sample shown in Figure 4; and NanoMEGAS for the loan of the DigiSTAR precession system and TopSpin acquisition software. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under Grant No. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891
Call Number UA @ admin @ c:irua:172695 Serial 6519
Permanent link to this record
 

 
Author MacArthur, K.E.; Yankovich, A.B.; Béché, A.; Luysberg, M.; Brown, H.G.; Findlay, S.D.; Heggen, M.; Allen, L.J.
Title Optimizing Experimental Conditions for Accurate Quantitative Energy-Dispersive X-ray Analysis of Interfaces at the Atomic Scale Type A1 Journal article
Year 2021 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-15
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000664532400007 Publication Date 2021-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited Open Access OpenAccess
Notes The authors would like to thank Jürgen Schubert for helping to supply the sample and valuable discussions on the topic. K. E. MacArthur and M. Heggen acknowledge the Helmholtz Funding agency and the DFG (grant number HE 7192/1-2) for their financial support of this work. L. J. Allen acknowledges the support of the Alexander von Humboldt Foundation. This research was supported under the Discovery Projects funding scheme of the Australian Research Council (Projects DP140102538 and FT190100619). K.E. MacArthur, A.B. Yankovich and A. Béché acknowledge support from the European Union’s Horizon 2020 research innovation program under grant agreement No. 823717 – ESTEEM3. A.B. Yankovich also acknowledges support from the Materials Science Area of Advance at Chalmers and the Swedish Research Council (VR, under grant No: 2020-04986).; esteem3TA; esteem3reported Approved Most recent IF: 1.891
Call Number EMAT @ emat @c:irua:178129 Serial 6760
Permanent link to this record
 

 
Author Esteban, D.A.; Vanrompay, H.; Skorikov, A.; Béché, A.; Verbeeck, J.; Freitag, B.; Bals, S.
Title Fast electron low dose tomography for beam sensitive materials Type A1 Journal article
Year 2021 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 27 Issue S1 Pages 2116-2118
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @c:irua:183278 Serial 6813
Permanent link to this record
 

 
Author Neelisetty, K.K.; Kumar C.N., S.; Kashiwar, A.; Scherer, T.; Chakravadhanula, V.S.K.; Kuebel, C.
Title Novel thin film lift-off process for in situ TEM tensile characterization Type A1 Journal article
Year 2021 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 27 Issue S1 Pages 216-217
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.891
Call Number UA @ admin @ c:irua:183617 Serial 6873
Permanent link to this record
 

 
Author Ning, S.; Xu, W.; Ma, Y.; Loh, L.; Pennycook, T.J.; Zhou, W.; Zhang, F.; Bosman, M.; Pennycook, S.J.; He, Q.; Loh, N.D.
Title Accurate and Robust Calibration of the Uniform Affine Transformation Between Scan-Camera Coordinates for Atom-Resolved In-Focus 4D-STEM Datasets Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Accurate geometrical calibration between the scan coordinates and the camera coordinates is critical in four-dimensional scanning transmission electron microscopy (4D-STEM) for both quantitative imaging and ptychographic reconstructions. For atomic-resolved, in-focus 4D-STEM datasets, we propose a hybrid method incorporating two sub-routines, namely a J-matrix method and a Fourier method, which can calibrate the uniform affine transformation between the scan-camera coordinates using raw data, without a priori knowledge about the crystal structure of the specimen. The hybrid method is found robust against scan distortions and residual probe aberrations. It is also effective even when defects are present in the specimen, or the specimen becomes relatively thick. We will demonstrate that a successful geometrical calibration with the hybrid method will lead to a more reliable recovery of both the specimen and the electron probe in a ptychographic reconstruction. We will also show that, although the elimination of local scan position errors still requires an iterative approach, the rate of convergence can be improved, and the residual errors can be further reduced if the hybrid method can be firstly applied for initial calibration. The code is made available as a simple-to-use tool to correct affine transformations of the scan-camera coordinates in 4D-STEM experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000767045700001 Publication Date 2022-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited Open Access OpenAccess
Notes N. D. Loh kindly acknowledges support from NUS Early Career Research Award (R-154-000-B35-133), MOE’s AcRF Tier 1 grant nr. R-284-000-172-114 and NRF CRP grant number NRF-CRP16-2015-05. Q. He would also like to acknowledge the support of the National Research Foundation (NRF) Singapore, under its NRF Fellowship (NRF-NRFF11-2019-0002). W. Zhou acknowledges the support from Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). F. Zhang acknowledges the support of the National Natural Science Foundation of China (11775105, 12074167). T. J. Pennycook acknowledges funding under the European Union’s Horizon 2020 research and innovation programme from the European Research Council (ERC) Grant agreement No. 802123-HDEM. Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:186958 Serial 6957
Permanent link to this record
 

 
Author Yu, C.-P.; Friedrich, T.; Jannis, D.; Van Aert, S.; Verbeeck, J.
Title Real-Time Integration Center of Mass (riCOM) Reconstruction for 4D STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A real-time image reconstruction method for scanning transmission electron microscopy (STEM) is proposed. With an algorithm requiring only the center of mass of the diffraction pattern at one probe position at a time, it is able to update the resulting image each time a new probe position is visited without storing any intermediate diffraction patterns. The results show clear features at high spatial frequency, such as atomic column positions. It is also demonstrated that some common post-processing methods, such as band-pass filtering, can be directly integrated in the real-time processing flow. Compared with other reconstruction methods, the proposed method produces high-quality reconstructions with good noise robustness at extremely low memory and computational requirements. An efficient, interactive open source implementation of the concept is further presented, which is compatible with frame-based, as well as event-based camera/file types. This method provides the attractive feature of immediate feedback that microscope operators have become used to, for example, conventional high-angle annular dark field STEM imaging, allowing for rapid decision-making and fine-tuning to obtain the best possible images for beam-sensitive samples at the lowest possible dose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000792176100001 Publication Date 2022-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 7 Open Access OpenAccess
Notes Bijzonder Onderzoeksfonds UGent; H2020 European Research Council, 770887 ; H2020 European Research Council, 823717 ; H2020 European Research Council, ESTEEM3 / 823717 ; H2020 European Research Council, PICOMETRICS / 770887 ; Fonds Wetenschappelijk Onderzoek, 30489208 ; Herculesstichting; esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:188538 Serial 7068
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Yu, C.-P.; Sentürk, D.G.; Lobato, I.; Faes, C.; Van Aert, S.
Title Three Approaches for Representing the Statistical Uncertainty on Atom-Counting Results in Quantitative ADF STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A decade ago, a statistics-based method was introduced to count the number of atoms from annular dark-field scanning transmission electron microscopy (ADF STEM) images. In the past years, this method was successfully applied to nanocrystals of arbitrary shape, size, and composition (and its high accuracy and precision has been demonstrated). However, the counting results obtained from this statistical framework are so far presented without a visualization of the actual uncertainty about this estimate. In this paper, we present three approaches that can be used to represent counting results together with their statistical error, and discuss which approach is most suited for further use based on simulations and an experimental ADF STEM image.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000854930500001 Publication Date 2022-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.8 Times cited Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp. The authors are grateful to L.M. Liz-Marzán (CIC biomaGUNE and Ikerbasque) for providing the samples. esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:190585 Serial 7119
Permanent link to this record
 

 
Author Vega Ibañez, F.; Béché, A.; Verbeeck, J.
Title Can a programmable phase plate serve as an aberration corrector in the transmission electron microscope (TEM)? Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages Pii S1431927622012260-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Current progress in programmable electrostatic phase plates raises questions about their usefulness for specific applications. Here, we explore different designs for such phase plates with the specific goal of correcting spherical aberration in the transmission electron microscope (TEM). We numerically investigate whether a phase plate could provide down to 1 angstrom ngstrom spatial resolution on a conventional uncorrected TEM. Different design aspects (fill factor, pixel pattern, symmetry) were evaluated to understand their effect on the electron probe size and current density. Some proposed designs show a probe size () down to 0.66 angstrom, proving that it should be possible to correct spherical aberration well past the 1 angstrom limit using a programmable phase plate consisting of an array of electrostatic phase-shifting elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000849975400001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 3 Open Access OpenAccess
Notes All authors acknowledge funding from the Flemish Research Fund under contract G042820N “Exploring adaptive optics in transmission electron microscopy”. J.V. acknowledges funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3 and from the University of Antwerp through a TOP BOF project.; esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number UA @ admin @ c:irua:190627 Serial 7134
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeeck, J.; Van Aert, S.
Title Phase object reconstruction for 4D-STEM using deep learning Type A1 Journal article
Year 2023 Publication Microscopy and microanalysis Abbreviated Journal
Volume 29 Issue 1 Pages 395-407
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full-phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033590800038 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 1 Open Access OpenAccess
Notes We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 770887 PICOMETRICS) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823717 ESTEEM3. J.V. and S.V.A acknowledge funding from the University of Antwerp through a TOP BOF project. The direct electron detector (Merlin, Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. This work was supported by the FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). Approved Most recent IF: 2.8; 2023 IF: 1.891
Call Number UA @ admin @ c:irua:198221 Serial 8912
Permanent link to this record