toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wittner, N.; Slezsák, J.; Broos, W.; Geerts, J.; Gergely, S.; Vlaeminck, S.E.; Cornet, I. pdf  url
doi  openurl
  Title Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy Type A1 Journal article
  Year 2023 Publication Spectrochimica acta: part A: molecular and biomolecular spectroscopy Abbreviated Journal  
  Volume Issue Pages 121912  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Lignin determination in lignocellulose with the conventional two-step acid hydrolysis method is highly laborious and time-consuming. However, its quantification is crucial to monitor fungal pretreatment of wood, as the increase of acid-insoluble lignin (AIL) degradation linearly correlates with the achievable enzymatic saccharification yield. Therefore, in this study, a new attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy method was developed to track fungal delignification in an easy and rapid manner. Partial least square regression (PLSR) with cross-validation (CV) was applied to correlate the ATR-FTIR spectra with the AIL content (19.9%–27.1%). After variable selection and normalization, a PLSR model with a high coefficient of determination (  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985309100010 Publication Date 2022-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1386-1425 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.4; 2023 IF: 2.536  
  Call Number UA @ admin @ c:irua:190328 Serial 7201  
Permanent link to this record
 

 
Author Vingerhoets, R.; Brienza, C.; Sigurnjak, I.; Buysse, J.; Vlaeminck, S.E.; Spiller, M.; Meers, E. pdf  doi
openurl 
  Title Ammonia stripping and scrubbing followed by nitrification and denitrification saves costs for manure treatment based on a calibrated model approach Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 477 Issue Pages 146984-14  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource-efficient nitrogen management is of high environmental and economic interest, and manure represents the major nutrient flow in livestock-intensive regions. Ammonia stripping/scrubbing (SS) is an appealing nitrogen recovery route from manure, yet its real-life implementation has been limited thus far. In nutrient surplus regions like Flanders, treatment of the liquid fraction (LF) of (co–)digested manure typically consists of nitrification/denitrification (NDN) removing most N as nitrogen gas. Integrating SS before NDN in existing plants would expand treatment capacity and recover N while maintaining low N effluent values, yet cost estimations of this novel approach after process optimisation are not yet available. A programming model was developed and calibrated to minimise the treatment costs of this approach and find the balance between N recovery versus N removal. Four crucial operational parameters (CO2 stripping time, NH3 stripping time, temperature and NaOH addition) were optimised for 18 scenarios which were different in terms of technical set-up, influent characteristics and scrubber acid. The model shows that SS before NDN can decrease the costs by 1 to 56% under optimal conditions compared to treatment with NDN only, with 1 to 8% reduction for the LF of manure (22–29% recovered of N treated), and 11 to 56% reduction for the LF of co-digested manure (42–67% recovered of N treated), primarily dependent on resource pricing. This study shows the power of modelling for minimum-cost design and operation of manure treatment yielding savings while producing useful N recovery products with SS followed by NDN.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001108935900001 Publication Date 2023-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:200649 Serial 9003  
Permanent link to this record
 

 
Author Ilgrande, C.; Christiaens, M.; Clauwaert, P.; Vlaeminck, S.E.; Boon, N. openurl 
  Title Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in Life Support Systems Type A2 Journal article
  Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 81 Issue 1 Pages 74-79  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The development cost-effective life support technologies is a highly relevant topic for space biology. Currently, food and water supply during space flights is currently restricted by technical and economic constraints: daily water consumption of an average crew of 6 members is about 72 L, with an estimated cost of 2,160,000 d-1. To reduce these costs and sustain long term space missions, the European Space Agency designed MELiSSA, an artificial ecosystem based on 5 compartments for the recycling gas, liquid and solid waste (Lasseur et al., 2011). In the CI stage, crew and inedible solid waste is fermented by thermophilic anaerobic bacteria, producing volatile fatty acids (VFAs), CO2 and ammonium (NH4+). In the CII compartment the VFAs are converted into edible biomass, using the photoheterotroph Rodospirillum rubrum. Afterwards, the nitrifying CIII unit converts toxic levels of ammonia/ammonium into nitrate, which enables the effluent to be fed to the photoautotrohopic CIV stage, that provides food and oxygen for the crew (Godia et al., 2002). The highest nitrogen flux in a Life Support System is human urine. As nitrate is the preferred form of nitrogen fertilizer for hydroponic plant cultivation, urine nitrification is an essential process in the MELiSSA loop. The development of the Additional Unit for Water Treatment or Urine NItrification ConsortiUM (UNICUM) requires the selection and characterization of the microorganisms that will be used. The key microorganisms in the biological treatment of urine are heterotrophs, for the hydrolysis of urea into ammonia and carbon dioxide, Ammonia Oxidizing Bacteria (AOB), for the ammonia oxidation into nitrite and Nitrite Oxidizing Bacteria (NOB), for the conversion of nitrite into nitrate. The strains were selected according to predefined safety (non sporogenic and BSL 1) and metabolic (Ks, μmax) criteria. To evaluate functional consortia for space applications, ureolysis, nitritation and nitratation of the selected microorganisms and synthetic communities were elucidated. Additionally, urine is a matrix with a high salt content. Unhydrolised urine's EC ranges from 1.1 to 33.9 mS/cm, the mean value being 21.5 mS/cm (Marickar, 2010), while hydrolysed urine can reach higher levels, up to 75 mS/cm. This conditions could inhibit microbial metabolism, therefore the effect of salinity on urine nitrification was also elucidated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151151 Serial 7573  
Permanent link to this record
 

 
Author Sui, Y.; Vlaeminck, S.E. openurl 
  Title Exploring Dunaliella salina as single cell protein (SCP) : the influence of light/dark regime on the growth and protein synthesis Type A2 Journal article
  Year 2017 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 82 Issue 1 Pages 6-11  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Single cell protein (SCP), or originally named microbial protein, is the edible microbial biomass derived from e.g. microalgae, bacteria and fungi, which can be used as protein sources replacing conventional protein sources for animal feed or human food such as fishmeal and soybean (Anupama & Ravindra 2000). SCP presents great potential as protein supplement to alleviate the problem of food scarcity in the future (Nasseri et al. 2011). In general, microalgae as SCP contains above 50% protein over dry weight and specifically for the marine microalgae Dunaliella salina the amount stays around 57% (Becker 2007). Commercially the most common system for Dunaliella sp. production is the outdoor open pond, thus the microalgal cells are subjected to a natural light/dark cycle (Hosseini Tafreshi & Shariati 2009). Being photo-autotrophic microorganisms, the lack of light energy sources is a risk leading to night biomass loss (Ogbonna & Tanaka 1996). On the other hand, for some microalgae species cell division occurs primarily during the night suggesting its night protein synthesis (Cuhel et al. 1984). As a consequence, day and night metabolisms of microalgae introduced by light/dark cycles potentially will have big impacts on the biomass development, both in growth and biochemical composition. In this study, the effect of the light/dark cycle on the growth and protein synthesis of Dunaliella salina was explored in comparison with continuous light cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151148 Serial 7950  
Permanent link to this record
 

 
Author Grunert, O.; Robles Aguilar, A.A.; Hernandez-Sanabria, E.; Reheul, D.; Vlaeminck, S.E.; Boon, N.; Jablonowski, N.D. openurl 
  Title Fertilizer type influences dynamics of the microbial community structure in the rhizosphere of tomato and impact the nutrient turnover and plant performance Type A2 Journal article
  Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 81 Issue 1 Pages 67-73  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Ammonia-oxidizing microorganisms (AOB and AOA) and nitrite oxidizing bacteria (NOB) are the most important organisms responsible for ammonia and nitrite oxidation in agricultural ecosystems and growing media. Ammonia and nitrite oxidation are critical steps in the soil nitrogen cycle and can be affected by the application of mineral fertilizers or organic fertilizers. The functionality of the microbial community has a major impact on the nutrient turnover and will finally influence plant performance. The microbial community associated with the growing medium and its functionality will also be influenced by the rhizosphere and the bulk soil. In our study, we used a tomato plant with a high root exudation capacity in order to stimulate microbial activity. We studied plant performance in rhizotrons (a phentotyping system for imaging roots), including an optical method (planar optodes) for non-invasive, quantitative and high-resolution imaging of pH dynamics in the rhizosphere and adjacent medium. The horticultural growing medium was supplemented with organic-derived nitrogen or ammonium derived from struvite. The possible differences in the root structure between treatments is compared with the total root length. Destructive growing medium sampling and high throughput sequencing analysis of the bacterial abundance of the communities present in the rhizosphere and the bulk soil is used to study the growing medium-associated microbial community structure and functionality, and this will be related to pH changes in the rhizosphere and the bulk soil. Our hypothesis is that the growing medium-associated microbial community structure changes depending on the nitrogen form provided and we expect a higher abundance of bacteria in the treatment with organic fertilizer and a higher abundance of AOB and NOB in the rhizosphere in comparison to the bulk soil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151149 Serial 7964  
Permanent link to this record
 

 
Author Muys, M.; Derese, S.; Verliefde, A.; Vlaeminck, S.E. openurl 
  Title Solubilization of struvite as a sustainable nutrient source for single cell protein production Type A2 Journal article
  Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 81 Issue 1 Pages 179-184  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract By 2050, the world population will have considerably expanded and the life standard of many will increase, yielding a 50% higher demand in protein (FAO, 2011), and even increases of 82 and 102% for diary and meat products, respectively (Boland et al., 2013). To provide in this increasing demand we are highly dependent on our classical fertilizer to food chain which has a high environmental impact and lacks efficiency. Nutrient losses cause eutrophication and biodiversity loss and the input of resources is already beyond the boundaries of environmental sustainability (Steffen et al., 2015). Phosphate fertilizers are made from phosphate rock (apatite), of which the reserves are predicted to be depleted within 50 100 years if we continue business as usual (Cordell et al., 2009). Next to problems related to the unbalanced geopolitical distribution with dominance in China and Morocco, the decreasing quality of the remaining apatite will result in an increasing environmental impact of fertilizer production. Finally, our traditional food production model requires 30% of all ice-free land, 70% of all available freshwater and produces up to one third of the global greenhouse gas emission, of which 80 to 86% is linked to agricultural production (Vermeulen et al., 2012). To ensure food security, nutrient recovery from waste streams can provide an important strategy. In this context, struvite ( ) crystallisation may be applied to recover phosphorus, along with some nitrogen. Reusing these nutrients as agricultural fertilizer on the field will lead to considerable losses to the environment. In contrast, their use to cultivate micro-organisms, e.g. for single cell protein (SCP), offers to potential of a near perfect conversion efficiency (Moed et al., 2015). At this moment, microalgae represent the most developed type of SCP, and are a promising protein source due to their growth rate, high nutritional quality and extremely high nutrient usage efficiency (Becker, 2007). Reliable solubilisation data are essential to design a technological strategy for struvite dosage in bioreactors for SCP production. The effect on solubility and solubilisation rate of relevant physicochemical parameters was studied experimentally in aqueous solutions. Because pH and temperature greatly affect solubilisation kinetics they were set at a constant value of 7 and 20°C respectively. The effect of some parameters on struvite solubility was already studied (Bhuiyan et al., 2007; Ariyanto et al., 2014; Roncal-Herrero and Oelkers, 2011), but solubilisation rates were not yet considered and pH was not controlled at a constant value. The chemical parameters considered in this study include the concentration of different common ions ( and ), foreign ions ( and the chelating agent ethylenediaminetetraacetic acid, EDTA) present in micro-algal cultivation media as well as ionic strength (as set by NaCl). The main physical parameter included was contact surface, through variation in initial particle size and as well as in struvite dosage concentration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151150 Serial 8550  
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Halet, D.; Van Winckel, T.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Vlaeminck, S.E. file  openurl
  Title Ik drink (geen) afval! Een exploratieve studie naar socio-demografische verschillen in publieke steun voor het hergebruik van afvalwater in Vlaanderen Type A1 Journal article
  Year 2020 Publication Vlaams tijdschrift voor overheidsmanagement Abbreviated Journal  
  Volume Issue 3 Pages 51-69  
  Keywords A1 Journal article; Sociology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract In een context van stijgende waterschaarste verkennen wij, naar ons weten voor het eerst in Vlaanderen, publieke steun voor de behandeling en het hergebruik van afvalwater als drinkwater. Vlaanderen is vandaag een van de weinige regio’s waar afvalwater reeds gerecycleerd wordt voor drinkwaterdoeleinden. Dit gebeurt op kleinschalig niveau en de uitbreiding hiervan is vandaag een van de Vlaamse beleidsdoelstellingen. Internationale voorbeelden toonden echter dat een gebrek aan publieke steun een aanzienlijk obstakel kan zijn. Vaak worden gezondheids- en veiligheidsbezorgdheden aangehaald als oorzaak voor het beperkte draagvlak. Minder is geweten over de socio-demografische distributie van dit draagvlak. Daarbovenop blijft er onduidelijkheid over de samenhang tussen socio-demografische kenmerken en gezondheids- en veiligheidsbezorgdheden. Met behulp van een enquête uitgevoerd in Vlaanderen (N=2309), bestudeerden wij ten eerste deze socio-demografische verschillen op basis van bivariate associaties (gender, opleidingsniveau, leeftijd en woonplaats). Ten tweede construeerden we een padmodel om te onderzoeken of deze verschillen verklaard kunnen worden aan de hand van gezondheids- en veiligheidsbezorgdheden. Onze resultaten toonden dat publieke steun voor afvalwaterhergebruik voor drinkwaterdoeleinden in Vlaanderen beperkt is. Het draagvlak was het laagst bij oudere mensen, vrouwen, lager geschoolde groepen en mensen die niet in de Provincie Antwerpen wonen. Voor een groot deel konden socio-demografische verschillen verklaard worden door hogere gezondheids- en veiligheidsbezorgdheden bij vrouwen, lager geschoolden en mensen uit West- en Oost-Vlaanderen. Dit suggereert een gebrek aan vertrouwen in waterexperts en -technologie bij bepaalde socio-demografische groepen, wat zich vertaalt in een verminderde publieke steun voor afvalwaterhergebruik. Op basis van deze bevindingen bespreken we een aantal potentiële actiestrategieën om publieke oppositie te anticiperen en proactief publieke steun te verwerven via doelgerichte (risico)communicatie.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1373-0509 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171478 Serial 6541  
Permanent link to this record
 

 
Author Segura, P.C.; De Meur, Q.; Alloul, A.; Tanghe, A.; Onderwater, R.; Vlaeminck, S.E.; Vande Wouwer, A.; Wattiez, R.; Dewasme, L.; Leroy, B. pdf  url
doi  openurl
  Title Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria : experimental kinetics and dynamic modelling Type A1 Journal article
  Year 2022 Publication Biochemical engineering journal Abbreviated Journal Biochem Eng J  
  Volume 186 Issue Pages 108547-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) are known for their metabolic versatility and thrive as anoxygenic photoheterotrophs. In environmental engineering and resource recovery, cells would grow on mixtures of volatile fatty acids (VFA) generated by anaerobic fermentation of waste streams. In this study, we aim to better understand the behavior of Rhodospirillum rubrum, a model PNSB species, grown using multiple VFA as carbon sources. We highlighted that assimilation of individual VFA follows a sequential pattern. Based on observations in other PNSB, this seems to be specific to isocitrate lyase-lacking organisms. We hypothesized that the inhibition phenomenon could be due to the regulation of the metabolic fluxes in the substrate cycle between acetoacetyl-CoA and crotonyl-CoA. Developed macroscopic dynamic models showed a good predictive capability for substrate competition for every VFA mixture containing acetate, propionate, and/or butyrate. These novel insights provide valuable input for better design and operation of PNSB-based waste treatment solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891992900005 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:192741 Serial 7332  
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I. pdf  doi
openurl 
  Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
  Year 2024 Publication Process biochemistry (1991) Abbreviated Journal  
  Volume 137 Issue Pages 229-238  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1359-5113 ISBN Additional Links UA library record  
  Impact Factor 4.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.4; 2024 IF: 2.497  
  Call Number UA @ admin @ c:irua:202365 Serial 9087  
Permanent link to this record
 

 
Author Decostere, B.; Coppens, J.; Vervaeren, H.; Vlaeminck, S.E.; De Gelder, L.; Boon, N.; Nopens, I.; Van Hulle, S.W.H. pdf  doi
openurl 
  Title Kinetic exploration of intracellular nitrate storage in marine microalgae Type A1 Journal article
  Year 2017 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal  
  Volume 52 Issue 14 Pages 1303-1311  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, a recently developed model accounting for intracellular nitrate storage kinetics was thoroughly studied to understand and compare the storage capacity of Phaeodactylum tricornutum and Amphora coffeaeformis. In the first stage the identifiability of the biokinetic parameters was examined. Next, the kinetic model was calibrated for both microalgal species based on experimental observations during batch growth experiments. Two kinetic parameters were calibrated, namely the maximum specific growth rate (mu(max)) and the nitrate storage rate (k(sto)). A significant difference was observed for the nitrate storage rate between both species. For P. tricornutum, the nitrate storage rate was much higher (k(sto) = 0.036m(3) g(-1) DW d(-1)) compared to A. coffeaeformis (k(sto) = 0.0004m(3) g(-1) DW d(-1)). This suggests that P. tricornutum has a more efficient nitrate uptake ability and intracellular nitrate storage capacity and also indicates the need for determination of k(sto) in order to quantify nitrate storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415634300004 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1093-4529; 1532-4117 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147467 Serial 8137  
Permanent link to this record
 

 
Author Ngo, K.N.; Tampon, P.; Van Winckel, T.; Massoudieh, A.; Sturm, B.; Bott, C.; Wett, B.; Murthy, S.; Vlaeminck, S.E.; DeBarbadillo, C.; De Clippeleir, H. pdf  url
doi  openurl
  Title Introducing bioflocculation boundaries in process control to enhance effluent quality of high‐rate contact‐stabilization systems Type A1 Journal article
  Year 2022 Publication Water environment research Abbreviated Journal Water Environ Res  
  Volume 94 Issue 8 Pages e10772-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52–0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000840360100001 Publication Date 2022-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1061-4303; 1554-7531 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:189409 Serial 7174  
Permanent link to this record
 

 
Author Muys, M.; Papini, G.; Spiller, M.; Sakarika, M.; Schwaiger, B.; Lesueur, C.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 307 Issue Pages 123242-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528857700051 Publication Date 2020-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; The authors kindly thank (i) i-Cleantech Flanders MIP (Milieu-innovatieplatform) for financial support through the MicroNOD project (Microbial Nutrients on Demand), (ii) Erik Fransen (StatUA) for the helpful advice on the statistical analysis, and (iii) Ilse De Leersnyder and Diederik Leenknecht for assistance with the EAA analysis. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:169452 Serial 6491  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal Arroyo, J.M.; Van Tendeloo, M.; Chatzigiannidou, I.; Molina, J.; Nop, S.; Boon, N.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Mainstream partial nitritation/anammox with integrated fixed-film activated sludge : combined aeration and floc retention time control strategies limit nitrate production Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 314 Issue Pages 123711-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Implementation of mainstream partial nitritation/anammox (PN/A) can lead to more sustainable and cost-effective sewage treatment. For mainstream PN/A reactor, an integrated fixed-film activated sludge (IFAS) was operated (26 °C). The effects of floccular aerobic sludge retention time (AerSRT_floc), a novel aeration strategy, and N-loading rate were tested to optimize the operational strategy. The best performance was observed with a low, but sufficient AerSRTfloc (~7d) and continuous aeration with two alternating dissolved oxygen setpoints: 10 min at 0.07–0.13 mg O2 L−1 and 5 min at 0.27–0.43 mg O2 L−1. Nitrogen removal rates were 122 ± 23 mg N L−1 d−1, and removal efficiencies 73 ± 13%. These conditions enabled flocs to act as nitrite sources while the carriers were nitrite sinks, with low abundance of nitrite oxidizing bacteria. The operational strategies in the source-sink framework can serve as a guideline for successful operation of mainstream PN/A reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558601200004 Publication Date 2020-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 3 Open Access  
  Notes ; D.S. was supported by a Ph.D. grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWTVlaanderen, SB-131769). M.V.T. was supported by a Ph.D. SB Fellowship from the Research Foundation -Flanders (FWO-Vlaanderen, 1S03218N). ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:170054 Serial 6559  
Permanent link to this record
 

 
Author Blansaer, N.; Alloul, A.; Verstraete, W.; Vlaeminck, S.E.; Smets, B.F. pdf  url
doi  openurl
  Title Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation : impact of organic loading rate, hydraulic retention time and water composition Type A1 Journal article
  Year 2022 Publication Bioresource technology Abbreviated Journal Bioresource Technol  
  Volume 348 Issue Pages 126806-126809  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) form an interesting group of microbes for resource recovery from wastewater. Solid/liquid separation is key for biomass and value-added products recovery, yet insights into PNSB aggregation are thus far limited. This study explored the effects of organic loading rate (OLR), hydraulic retention time (HRT) and water composition on the aggregation of Rhodobacter capsulatus in an anaerobic upflow photobioreactor. Between 2.0 and 14.6 gCOD/(L.d), the optimal OLR for aggregation was 6.1 gCOD/(L.d), resulting in a sedimentation flux of 5.9 kgTSS/(m2.h). With HRT tested between 0.04 and 1.00 d, disaggregation occurred at the relatively long HRT (1 d), possibly due to accumulation of thus far unidentified heat-labile metabolites. Chemical oxygen demand (COD) to nitrogen ratios (6–35 gCOD/gN) and the nitrogen source (ammonium vs. glutamate) also impacted aggregation, highlighting the importance of the type of wastewater and its pre-treatment. These novel insights to improve purple biomass separation pave the way for cost-efficient PNSB applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800442200008 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4  
  Call Number UA @ admin @ c:irua:185843 Serial 7123  
Permanent link to this record
 

 
Author Papini, G.; Muys, M.; Van Winckel, T.; Meerburg, F.A.; Van Beeck, W.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Boosting aerobic microbial protein productivity and quality on brewery wastewater : impact of anaerobic acidification, high-rate process and biomass age Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 368 Issue Pages 128285  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Consortia of aerobic heterotrophic bacteria (AHB) are appealing as sustainable alternative protein ingredient for aquaculture given their high nutritional qualities, and their production potential on feed-grade industrial wastewater. Today, the impacts of pre-treatment, bioprocess choice and key parameter settings on AHB productivity and nutritional properties are unknown. This study investigated for the first time AHB microbial protein production effects based on (i) raw vs anaerobically fermented brewery wastewater, (ii) high-rate activated sludge (HRAS) without vs with feast-famine conditions, and (iii) three short solid retention time (SRT): 0.25, 0.50 and 1.00 d. High biomass (4.4–8.0 g TSS/L/d) and protein productivities (1.9–3.2 g protein/L/d) were obtained while achieving COD removal efficiencies up to 98 % at SRT 0.50 d. The AHB essential amino acid (EAA) profiles were above rainbow trout requirements, excluding the S-containing EAA, highlighting the AHB biomass replacement potential for unsustainable fishmeal in salmonid diets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000902092100009 Publication Date 2022-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:191780 Serial 7133  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Towards mainstream partial nitritation/anammox in four seasons : feasibility of bioaugmentation with stored summer sludge for winter anammox assistance Type A1 Journal article
  Year 2022 Publication Bioresource technology Abbreviated Journal Bioresource Technol  
  Volume 347 Issue Pages 126619-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The strong effect of low temperatures on anammox challenges its mainstream application over the winter in temperate climates. Winter bioaugmentation with stored summer surplus sludge is a potential solution to guarantee sufficient nitrogen removal in winter. Firstly, the systems for which nitrogen removal deteriorated by the temperature decrease (25 °C → 20 °C) could be fully restored bioaugmenting with granules resp. flocs stored for 6 months at 118 resp. 220% of the initial biomass levels. Secondly, the reactivation of these stored sludges was tested in lower temperature systems (15.3 ± 0.4/10.4 ± 0.4 °C). Compared to the activity before storage, between 56% and 41% of the activity of granules was restored within one month, and 41%–32% for flocs. Additionally, 85–87% of granules and 50–53% of flocs were retained in the systems. After reactivation (15.3 ± 0.4/10.4 ± 0.4 °C), a more specialized community was formed (diversity decreased) with Candidatus Brocadia still dominant in terms of relative abundance. Capital and operating expenditures (CAPEX, OPEX) were negligible, representing only 0.19–0.36% of sewage treatment costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000781730900001 Publication Date 2021-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4  
  Call Number UA @ admin @ c:irua:185210 Serial 7220  
Permanent link to this record
 

 
Author Xie, Y.; Jia, M.; De Wilde, F.; Daeninck, K.; De Clippeleir, H.; Verstraete, W.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Feasibility of packed-bed trickling filters for partial nitritation/anammox : effects of carrier material, bottom ventilation openings, hydraulic loading rate and free ammonia Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 373 Issue Pages 128713-128719  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study pioneers the feasibility of cost-effective partial nitritation/anammox (PN/A) in packed-bed trickling filters (TFs). Three parallel TFs tested different carrier materials, the presence or absence of bottom ventilation openings, hydraulic loading rates (HLR, 0.4–2.2 m3 m−2 h−1), and free ammonia (FA) levels on synthetic medium. The inexpensive Argex expanded clay was recommended due to the similar nitrogen removal rates as commercially used plastics. Top-only ventilation at an optimum HLR of 1.8 m3 m−2 h−1 could remove approximately 60% of the total nitrogen load (i.e., 300 mg N L-1 d−1, 30 °C) and achieve relatively low NO3–-N accumulation (13%). Likely FA levels of around 1.3–3.2 mg N L-1 suppressed nitratation. Most of the total nitrogen removal took place in the upper third of the reactor, where anammox activity was highest. Provided further optimizations, the results demonstrated TFs are suitable for low-energy shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000945892500001 Publication Date 2023-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:193652 Serial 7306  
Permanent link to this record
 

 
Author Alloul, A.; Muys, M.; Hertoghs, N.; Kerckhof, F.-M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 319 Issue Pages 124192  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aerobic heterotrophic bacteria (AHB) and purple non-sulfur bacteria (PNSB) are typically explored as two separate types of microbial protein, yet their properties as respectively a bulk and added-value feed ingredient make them appealing for combined use. The feasibility of cocultivation in a sequential photo- and chemotrophic approach was investigated. First, mapping the chemotrophic growth kinetics for four Rhodobacter, Rhodopseudomonas and Rhodospirillum species on different carbon sources showed a preference for fructose (µmax 2.4–3.9 d−1 28 °C; protein 36–59%DW). Secondly, a continuous photobioreactor inoculated with Rhodobacter capsulatus (VFA as C-source) delivered the starter culture for an aerobic batch reactor (fructose as C-source). This two-stage system showed an improved nutritional quality compared to AHB production: higher protein content (45–71%DW), more attractive amino/fatty acid profile and contained up to 10% PNSB. The findings strengthen protein production with cocultures and might enable the implementation of the technology for resource recovery on streams such as wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613136600013 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:171766 Serial 7677  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Van de Waal, D.; D'Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 287 Issue Pages 121398  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D. salina to co-produce intracellular pools of both compounds, however, are yet unknown. This study investigated a two-phase cultivation strategy to optimize combined high-quality protein and carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. Results reveal optimized protein quantity, quality (expressed as essential amino acid index EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation in phase-one was followed by high illumination during phase-two. Adopting this strategy, productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469414500008 Publication Date 2019-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159661 Serial 7916  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mozo, I.; Gaval, G.; Caligaris, M.; Barillon, B.; Vlaeminck, S.E.; Sperandio, M. pdf  url
doi  openurl
  Title Enrichment and adaptation yield high anammox conversion rates under low temperatures Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 250 Issue Pages 505-512  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study compared two anammox sequencing batch reactors (SBR) for one year. SBRconstantT was kept at 30 °C while temperature in SBRloweringT was decreased step-wise from 30 °C to 20 °C and 15 °C followed by over 140 days at 12.5 °C and 10 °C. High retention of anammox bacteria (AnAOB) and minimization of competition with AnAOB were key. 5-L anoxic reactors with the same inoculum were fed synthetic influent containing 25.9 mg NH4+-N/L and 34.1 mg NO2−-N/L (no COD). Specific ammonium removal rates continuously increased in SBRconstantT, reaching 785 mg NH4+-N/gVSS/d, and were maintained in SBRloweringT, reaching 82.2 and 91.8 mg NH4+-N/gVSS/d at 12.5 and 10 °C respectively. AnAOB enrichment (increasing hzsA and 16S rDNA gene concentrations) and adaptation (shift from Ca. Brocadia to Ca. Kuenenia in SBRloweringT) contributed to these high rates. Rapidly settling granules developed, with average diameters of 1.2 (SBRconstantT) and 1.6 mm (SBRloweringT). Results reinforce the potential of anammox for mainstream applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430740000062 Publication Date 2017-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148998 Serial 7920  
Permanent link to this record
 

 
Author Cagnetta, C.; Saerens, B.; Meerburg, F.A.; Decru, S.O.; Broeders, E.; Menkveld, W.; Vandekerckhove, T.G.L.; De Vrieze, J.; Vlaeminck, S.E.; Verliefde, A.R.D.; De Gusseme, B.; Weemaes, M.; Rabaey, K. pdf  url
doi  openurl
  Title High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 291 Issue Pages 121833  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) systems typically generate diluted sludge which requires further thickening prior to anaerobic digestion (AD), besides the need to add considerable coagulant and flocculant for the solids separation. As an alternative to conventional gravitational settling, a dissolved air flotation (DAF) unit was coupled to a HRAS system or a high-rate contact stabilization (HiCS) system. The HRAS-DAF system allowed up to 78% removal of the influent solids, and the HiCS-DAF 67%. Both were within the range of values typically obtained for HRAS-settler systems, albeit at a lower chemical requirement. The separated sludge had a high concentration of up to 47 g COD L−1, suppressing the need of further thickening before AD. Methanation tests showed a biogas yield of up to 68% on a COD basis. The use of a DAF separation system can thus enable direct organics removal at high sludge concentration and with low chemical needs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480326200048 Publication Date 2019-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161098 Serial 8036  
Permanent link to this record
 

 
Author Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 247-257  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalgal biomass production is a resource-efficient answer to the exponentially increasing demand for protein, yet variability in biomass quality is largely unexplored. Nutritional value and safety were determined for Chlorella and Spirulina biomass from different producers, production batches and the same production batch. Chlorella presented a similar protein content (47 ± 8%) compared to Spirulina (48 ± 4%). However, protein quality, expressed as essential amino acid index, and digestibility were lower for Chlorella (1.1 ± 0.1 and 51 ± 9%, respectively) compared to Spirulina (1.3 ± 0.1 and 61 ± 4%, respectively). Generally, variability was lower between batches and within a batch. Heavy metals, pesticides, mycotoxins, antibiotics and nitrate did not violate regulatory limits, while polycyclic aromatic hydrocarbon levels exceeded the norm for some samples, indicating the need for continuous monitoring. This first systematic screening of commercial microalgal biomass revealed a high nutritional variability, necessitating further optimization of cultivation and post-processing conditions. Based on price and quality, Spirulina was preferred above Chlorella.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000030 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155979 Serial 8040  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Vermeir, P.; D'Adamo, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 145-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its protein production for human nutrition has rarely been reported. This study unveils the effects of growth phase and light regime on protein and essential amino acid (EAA) levels in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. Light/dark conditions inferred a higher light-usage efficiency, yielding 597% higher protein and 1828% higher EAA mass on light energy throughout the growth, accompanied by 138% faster growth during the light phase of the light/dark cycle, compared to continuous light. The findings revealed D. salina to be especially suitable for high-quality protein production, particularly grown under light/dark conditions, with nitrogen limitation as possible trigger, and harvested in the stationary phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000018 Publication Date 2018-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155981 Serial 8173  
Permanent link to this record
 

 
Author Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 337 Issue Pages 125364  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694862500007 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:178752 Serial 8243  
Permanent link to this record
 

 
Author Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 211 Issue Pages 41-50  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75 mS cm−1 and loading rate above 450 mg N L−1 d−1. The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375186700006 Publication Date 2016-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139913 Serial 8307  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Cagnetta, C.; Coma, M.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Production of carboxylates from high rate activated sludge through fermentation Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 217 Issue Pages 165-172  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141 mg C g−1 VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35 °C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380226300023 Publication Date 2016-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139912 Serial 8421  
Permanent link to this record
 

 
Author De Vrieze, J.; Colica, G.; Pintucci, C.; Sarli, J.; Pedizzi, C.; Willeghems, G.; Bral, A.; Varga, S.; Prat, D.; Peng, L.; Spiller, M.; Buysse, J.; Colsen, J.; Benito, O.; Carballa, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Resource recovery from pig manure via an integrated approach : a technical and economic assessment for full-scale applications Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 272 Issue Pages 582-593  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Intensive livestock farming cannot be uncoupled from the massive production of manure, requiring adequate management to avoid environmental damage. The high carbon, nitrogen and phosphorus content of pig manure enables targeted resource recovery. Here, fifteen integrated scenarios for recovery of water, nutrients and energy are compared in terms of technical feasibility and economic viability. The recovery of refined nutrients with a higher market value and quality, i.e., (NH4)2SO4 for N and struvite for P, coincided with higher net costs, compared to basic composting. The inclusion of anaerobic digestion promoted nutrient recovery efficiency, and enabled energy recovery through electricity production. Co-digestion of the manure with carbon-rich waste streams increased electricity production, but did not result in lower process costs. Overall, key drivers for the selection of the optimal manure treatment scenario will include the market demand for more refined (vs. separated or concentrated) products, and the need for renewable electricity production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451625700071 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155236 Serial 8476  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Kobayashi, K.; Janda, J.; Van Nevel, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 257 Issue Pages 266-273  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Autotrophic denitrification with sulfur is an underexplored alternative to heterotrophic denitrification to remove nitrate from wastewater poor in organics. The application on ion exchange regeneration water (19.432.1 mS cm−1) is novel. Three fixed bed reactors were tested at 15 °C for >4 months, inoculated with activated sludge from sewage treatment. All were fast in start-up (<10 days) with high performance (94 ± 2% removal efficiency). pH control with NaOH rendered higher nitrate removal rates than limestone addition to the bed (211 ± 13 vs. 102 ± 13 mg N L−1 d−1), related to higher pH (6.64 vs. 6.24) and sulfur surface area. Bacterial communities were strongly enriched in Sulfurimonas (6367%) and Thiobacillus (2426%). In an economic comparison, sulfur-based denitrification (5.3 kg−1 N) was 15% cheaper than methanol-based denitrification (6.22 kg−1 N) and both treatments were opex dominated (85.9 vs. 86.5%). Overall, the technological and economic feasibility should boost further implementation of sulfurotrophic denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430401100033 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149975 Serial 8619  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; De Mulder, C.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Temperature impact on sludge yield, settleability and kinetics of three heterotrophic conversions corroborates the prospect of thermophilic biological nitrogen removal Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 269 Issue Pages 104-112  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In specific municipal and industrial cases, thermophilic wastewater treatment (>45 °C) might bring cost advantages over commonly applied mesophilic processes (1035 °C). To develop such a novel process, one needs sound parameters on kinetics, sludge yield and sludge settleability of three heterotrophic conversions: aerobic carbon removal, denitritation and denitrification. These features were evaluated in acetate-fed sequencing batch reactors (30, 40, 50 and 60 °C). Higher temperatures were accompanied by lower sludge production and maximum specific removal rates, resulting mainly from lower maximum growth rates. Thermophilic denitritation was demonstrated for the first time, with lower sludge production (1826%), higher nitrogen removal rates (2492%) and lower carbon requirement (40%) compared to denitrification. Acceptable settling of thermophilic aerobic (60 °C) and anoxic biomass (50 and 60 °C) was obtained. Overall, this parameter set may catalyze the establishment of thermophilic nitrogen removal, once nitritation and nitratation are characterized. Furthermore, waters with low COD/N ratio might benefit from thermophilic nitritation/denitritation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445897400014 Publication Date 2018-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152946 Serial 8646  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: