toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Muys, M.; Derese, S.; Verliefde, A.; Vlaeminck, S.E. openurl 
  Title Struvite solubilisation rates enable direct addition To single cell protein bioreactors Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 10 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151129 Serial 8590  
Permanent link to this record
 

 
Author Vlaeminck, S.E.; Kobayashi, K.; Jandra, J.; Van Nevel, S.; Vandekerckhove, T.G.L. openurl 
  Title Sulphidotrophic denitrification treating regeneration water from ion exchange at high performance and low opex Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA 2017 Conference on Sustainable Waste  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151108 Serial 8620  
Permanent link to this record
 

 
Author De Clippeleir, H.; Vlaeminck, S.E.; Courtens, E.N.P.; Jimenez, J.; Wadhawan, T.; Zhang, Q. isbn  openurl
  Title Toward energy autarky : carbon redirection coupled with shortcut nitrogen processes Type H3 Book chapter
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 129-150 T2 - Shortcut nitrogen removal : nitrite s  
  Keywords H3 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN 978-1-57278-313-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130470 Serial 8676  
Permanent link to this record
 

 
Author Mozo, I.; Lacoste, L.; aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Graveleau, L.; Barillon, B.; Martin Ruel, S. openurl 
  Title Towards application of mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 4 p. T2 - World Cities Summit, Singapore Internati  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151124 Serial 8678  
Permanent link to this record
 

 
Author Mozo, I.; Lacoste, L.; Aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Barillon, B.; Martin Ruel, S. openurl 
  Title Towards application of mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 4 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151136 Serial 8679  
Permanent link to this record
 

 
Author Alloul, A.; Vlaeminck, S.E. pdf  openurl
  Title Towards upgrading of wastewater resources to microbial protein : volatile fatty acids impacting growth kinetics and yield of purple bacteria Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 2 p. T2 - 5th IWA Benelux Young Water Professional  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151115 Serial 8683  
Permanent link to this record
 

 
Author Vandekerckhove, T.; Courtens, E.N.P.; Prat, D.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Meerbergen, K.; Lievens, B.; Boon, N.; Vlaeminck, S.E. openurl 
  Title Transitioning from mesophilic to thermophilic nitrification: shaping a niche for archaeal ammonia oxidizers Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 9 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151126 Serial 8697  
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; Clauwaert, P.; Alloul, A.; Coessens, W.; Christiaens, M.; Vanoppen, M.; Rabaey, K.; Verliefde, A.R.D.; Vlaeminck, S.E. pdf  openurl
  Title Water and nutrient recovery from combined urine and grey water treatment in Space Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151143 Serial 8747  
Permanent link to this record
 

 
Author Han, M.; Seuntjens, D.; Al-Omari, A.; Takacs, I.; Meerburg, F.; Murthy, S.; Vlaeminck, S.E.; De Clippeleir, H. openurl 
  Title Water and process parameters as controllers for the ammonia to nitrite oxidation rate ratio in activated sludge Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA 2017 Conference on Sustainable Waste  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151110 Serial 8748  
Permanent link to this record
 

 
Author de Paepe, J.; Lindeboom, R.E.F.; Vanoppen, M.; Alonso Farinas, B.; Coessens, W.; Abbas, A.; Christiaens, M.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Rabaey, K.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E. pdf  openurl
  Title Water treatment unit breadboard : ground test facility for the recycling of urine and shower water for one astronaut Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 2 p. T2 - 5th IWA Benelux Young Water Professional  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151114 Serial 8749  
Permanent link to this record
 

 
Author Faust, V.; Vlaeminck, S.E.; Ganigué, R.; Udert, K.M. url  doi
openurl 
  Title Influence of pH on urine nitrification : community shifts of ammonia-oxidizing bacteria and inhibition of nitrite-oxidizing bacteria Type A1 Journal article
  Year 2024 Publication ACS ES&T engineering Abbreviated Journal  
  Volume 4 Issue 2 Pages 342-353  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine nitrification is pH-sensitive due to limited alkalinity and high residual ammonium concentrations. This study aimed to investigate how the pH affects nitrogen conversion and the microbial community of urine nitrification with a pH-based feeding strategy. First, kinetic parameters for NH3, HNO2, and NO2– limitation and inhibition were determined for nitrifiers from a urine nitrification reactor. The turning point for ammonia-oxidizing bacteria (AOB), i.e., the substrate concentration at which a further increase would lead to a decrease in activity due to inhibitory effects, was at an NH3 concentration of 12 mg-N L–1, which was reached only at pH values above 7. The total nitrite turning point for nitrite-oxidizing bacteria (NOB) was pH-dependent, e.g., 18 mg-N L–1 at pH 6.3. Second, four years of data from two 120 L reactors were analyzed, showing that stable nitrification with low nitrite was most likely between pH 5.8 and 6.7. And third, six 12 L urine nitrification reactors were operated at total nitrogen concentrations of 1300 and 3600 mg-N L–1 and pH values between 2.5 and 8.5. At pH 6, the AOB Nitrosomonas europaea was found, and the NOB belonged to the genus Nitrobacter. At pH 7, nitrite accumulated, and Nitrosomonas halophila was the dominant AOB. NOB were inhibited by HNO2 accumulation. At pH 8.5, the AOB Nitrosomonas stercoris became dominant, and NH3 inhibited NOB. Without influent, the pH dropped to 2.5 due to the growth of the acid-tolerant AOB “Candidatus Nitrosacidococcus urinae”. In conclusion, pH is a decisive process control parameter for urine nitrification by influencing the selection and kinetics of nitrifiers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203306 Serial 9048  
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; De Paepe, J.; Vanoppen, M.; Alonso-Fariñas, B.; Coessens, W.; Alloul, A.; Christiaens, M.E.R.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E. url  doi
openurl 
  Title A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions Type A1 Journal article
  Year 2020 Publication Desalination Abbreviated Journal Desalination  
  Volume 495 Issue Pages 114634  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions will rely on regenerative life support as resupply of water, oxygen and food comes with constraints. The International Space Station (ISS) relies on an evaporation/condensation system to recover 74–85% of the water in urine, yet suffers from repetitive scaling and biofouling while employing hazardous chemicals. In this study, an alternative non-sanitary five-stage treatment train for one “astronaut” was integrated through a sophisticated monitoring and control system. This so-called Water Treatment Unit Breadboard (WTUB) successfully treated urine (1.2-L-d−1) with crystallisation, COD-removal, ammonification, nitrification and electrodialysis, before it was mixed with shower water (3.4-L-d−1). Subsequently, ceramic nanofiltration and single-pass flat-sheet RO were used. A four-months proof-of-concept period yielded: (i) chemical water quality meeting the hygienic standards of the European Space Agency, (ii) a 87-±-5% permeate recovery with an estimated theoretical primary energy requirement of 0.2-kWhp-L−1, (iii) reduced scaling potential without anti-scalant addition and (iv) and a significant biological reduction in biofouling potential resulted in stable but biofouling-limited RO permeability of 0.5 L-m−2-h−1-bar−1. Estimated mass breakeven dates and a comparison with the ISS Water Recovery System for a hypothetical Mars transit mission show that WTUB is a promising biological membrane-based alternative to heat-based systems for manned Space missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582172900007 Publication Date 2020-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0011-9164 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.9 Times cited Open Access  
  Notes Approved Most recent IF: 9.9; 2020 IF: 5.527  
  Call Number UA @ admin @ c:irua:171514 Serial 6523  
Permanent link to this record
 

 
Author Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N₂O emission for mainstream partial nitritation/anammox Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 9 Pages 5822-5831  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system’s nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530651900057 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was supported by the European Commission Horizon 2020 Program through Marie Curie Individual Fellowship (N2OPNA-708592). W. V.B. and S. L. were supported by grants from the Flanders Innovation and Entrepreneurship Agency [IWT-SBO ProCure project (IWT/50052) by IWT-SBO ProCure and internal Uantwerpen funding]. The authors are grateful to the research collaboration. The authors declare no conflict of interest. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:168829 Serial 6596  
Permanent link to this record
 

 
Author Alloul, A.; Ganigue, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Capture-ferment-upgrade : a three-step approach for the valorization of sewage organics as commodities Type A1 Journal article
  Year 2018 Publication Environmental science and technology Abbreviated Journal  
  Volume 52 Issue 12 Pages 6729-6742  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent(-1) day(-1) in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent(-1) day(-1). Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436018900004 Publication Date 2018-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151968 Serial 7574  
Permanent link to this record
 

 
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8287-8298  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900052 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179779 Serial 7862  
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.T.G.; Vlaeminck, S.E. doi  openurl
  Title Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater Type A1 Journal article
  Year 2016 Publication Environmental science and technology Abbreviated Journal  
  Volume 50 Issue 17 Pages 9781-9790  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 degrees C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (t(c); 8 and 15 min), and stabilization times (t(s); 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and t(c) of 15 min and t(s) of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382805800097 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:138270 Serial 8176  
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8278-8286  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900051 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179768 Serial 8334  
Permanent link to this record
 

 
Author Seuntjens, D.; Van Tendeloo, M.; Chatzigiannidou, I.; Carvajal-Arroyo, J.M.; Vandendriessche, S.; Vlaeminck, S.E.; Boon, N. pdf  doi
openurl 
  Title Synergistic exposure of return-sludge to anaerobic starvation, sulfide and free ammonia to suppress nitrite oxidizing bacteria Type A1 Journal article
  Year 2018 Publication Environmental science and technology Abbreviated Journal  
  Volume 52 Issue 15 Pages 8725-8732  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A key step toward energy-positive sewage treatment is the development of mainstream partial nitritation/anammox, a nitrogen removal technology where aerobic ammonium-oxidizing bacteria (AerAOB) are desired, while nitrite-oxidizing bacteria (NOB) are not. To suppress NOB, a novel return-sludge treatment was investigated. Single and combined effects of sulfide (0-600 mg S L-1), anaerobic starvation (0-8 days), and a free ammonia (FA) shock (30 mg FA-N L-1 for 1 h) were tested for immediate effects and long-term recovery. AerAOB and NOB were inhibited immediately and proportionally by sulfide, with AerAOB better coping with the inhibition, while the short FA shock and anaerobic starvation had minor effects. Combinatory effects inhibited AerAOB and NOB more strongly. A combined treatment of sulfide (150 mg S L-1), 2 days of anaerobic starvation, and FA shock (30 mg FA-N L-1) inhibited AerAOB 14% more strongly compared to sulfide addition alone, while the AerAOB/NOB activity ratio remained constant. Despite no positive change being observed in the immediate-stress response, AerAOB recovered much faster than NOB, with a nitrite accumulation ratio (effluent nitrite on nitrite + nitrate) peak of 50% after 12 days. Studying long-term recovery is therefore crucial for design of an optimal NOB-suppression treatment, while applying combined stressors regularly may lead toward practical implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441477600073 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152909 Serial 8635  
Permanent link to this record
 

 
Author Defoirdt, T.; Vlaeminck, S.E.; Sun, X.; Boon, N.; Clauwaert, P. pdf  url
doi  openurl
  Title Ureolytic activity and its regulation in vibrio campbellii and vibrio harveyi in relation to nitrogen recovery from human urine Type A1 Journal article
  Year 2017 Publication Environmental science and technology Abbreviated Journal  
  Volume 51 Issue 22 Pages 13335-13343  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Human urine contains a high concentration of nitrogen and is therefore an interesting source for nutrient recovery. Ureolysis is a key requirement in many processes aiming at nitrogen recovery from urine. Although ureolytic activity is widespread in terrestrial and aquatic environments, very little is known about the urease activity and regulation in specific bacteria other than human pathogens. Given the relatively high salt concentration of urine, marine bacteria would be particularly well suited for biotechnological applications involving nitrogen recovery from urine, and therefore, in this study, we investigated ureolytic activity and its regulation in marine vibrios. Thirteen out of 14 strains showed ureolytic activity. The urease activity was induced by urea, since complete and very rapid hydrolysis, up to 4 g L-1 of urea, was observed in synthetic human urine when the bacteria were pretreated with 10 g L-1 urea, whereas slow hydrolysis occurred when they were pretreated with 1 g L-1 urea (14-35% hydrolysis after 2 days). There was no correlation between biofilm formation and "motility on one hand, and ureolysis on the other hand, and biofilm and motility inhibitors did not affect ureolysis. Together, our data demonstrate for the first time the potential of marine vibrios as fast urea hydrolyzers for biotechnological applications aiming at nutrient recovery from human urine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416496700032 Publication Date 2017-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147703 Serial 8716  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Props, R.; Carvajal-Arroyo, J.M.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Adaptation and characterization of thermophilic anammox in bioreactors Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 172 Issue Pages 115462  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Anammox, the oxidation of ammonium with nitrite, is a key microbial process in the nitrogen cycle. Under mesophilic conditions (below 40 °C), it is widely implemented to remove nitrogen from wastewaters lacking organic carbon. Despite evidence of the presence of anammox bacteria in high-temperature environments, reports on the cultivation of thermophilic anammox bacteria are limited to a short-term experiment of 2 weeks. This study showcases the adaptation of a mesophilic inoculum to thermophilic conditions, and its characterization. First, an attached growth technology was chosen to obtain the process. In an anoxic fixed-bed biofilm bioreactor (FBBR), a slow linear temperature increase from 38 to over 48 °C (0.05–0.07 °C d−1) was imposed to the community over 220 days, after which the reactor was operated at 48 °C for over 200 days. Maximum total nitrogen removal rates reached up to 0.62 g N L−1 d−1. Given this promising performance, a suspended growth system was tested. The obtained enrichment culture served as inoculum for membrane bioreactors (MBR) operated at 50 °C, reaching a maximum total nitrogen removal rate of 1.7 g N L−1 d−1 after 35 days. The biomass in the MBR had a maximum specific anammox activity of 1.1 ± 0.1 g NH4+-N g−1 VSS d−1, and the growth rate was estimated at 0.075–0.19 d−1. The thermophilic cultures displayed nitrogen stoichiometry ratios typical for mesophilic anammox: 0.93–1.42 g NO2--Nremoved g−1 NH4+-Nremoved and 0.16–0.35 g NO3--Nproduced g−1 NH4+-Nremoved. Amplicon and Sanger sequencing of the 16S rRNA genes revealed a disappearance of the original “Ca. Brocadia” and “Ca. Jettenia” taxa, yielding Planctomycetes members with only 94–95% similarity to “Ca. Brocadia anammoxidans” and “Ca. B. caroliniensis”, accounting for 45% of the bacterial FBBR community. The long-term operation of thermophilic anammox reactors and snapshot views on the nitrogen stoichiometry, kinetics and microbial community open up the development path of thermophilic partial nitritation/anammox. A first economic assessment highlighted that treatment of sludge reject water from thermophilic anaerobic digestion of sewage sludge may become attractive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517663600014 Publication Date 2020-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 5 Open Access  
  Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding T.G.L.V., (ii) Ghent University (BOFDOC2015000601) and the Belgian Nuclear Research Centre (SCK.CEN) for funding R.P., (iii) Bart De Gusseme from Farys/UGent for providing the hollow fiber membranes, (iv) Tim Lacoere for performing the DNA extraction and data processing of the Sanger sequencing and 16S rRNA gene amplicon sequencing data, (v) Tim Hendrickx from Paques BV for providing the inoculum, (vi) Bert Bundervoet and Wim Groen in 't Woud from Colsen for the valuable input on the economic assessment and (vii) Joop Colsen, Stijn Van Hulle, Mark Van Loosdrecht, Erik Smolders and Leen De Gelder for their constructive discussions on this work. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:165392 Serial 6449  
Permanent link to this record
 

 
Author De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. pdf  doi
openurl 
  Title Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 185 Issue Pages 116223  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery from source-separated urine can shorten nutrient cycles on Earth and is essential in regenerative life support systems for deep-space exploration. In this study, a robust two-stage, energy-efficient, gravity-independent urine treatment system was developed to transform fresh real human urine into a stable nutrient solution. In the first stage, up to 85% of the COD was removed in a microbial electrolysis cell (MEC), converting part of the energy in organic compounds (27-46%) into hydrogen gas and enabling full nitrogen recovery by preventing nitrogen losses through denitrification in the second stage. Besides COD removal, all urea was hydrolysed in the MEC, resulting in a stream rich in ammoniacal nitrogen and alkalinity, and low in COD. This stream was fed into a membrane-aerated biofilm reactor (MABR) in order to convert the volatile and toxic ammoniacal nitrogen to non-volatile nitrate by nitrification. Bio-electrochemical pre-treatment allowed to recover all nitrogen as nitrate in the MABR at a bulk-phase dissolved oxygen level below 0.1 mg O2 L-1. In contrast, feeding the MABR directly with raw urine (omitting the first stage), at the same nitrogen loading rate, resulted in nitrogen loss (18%) due to denitrification. The MEC and MABR were characterised by very distinct and diverse microbial communities. While (strictly) anaerobic genera, such as Geobacter (electroactive bacteria), Thiopseudomonas, a Lentimicrobiaceae member, Alcaligenes and Proteiniphilum prevailed in the MEC, the MABR was dominated by aerobic genera, including Nitrosomonas (a known ammonium oxidiser), Moheibacter and Gordonia. The two-stage approach yielded a stable nitrate-rich, COD-low nutrient solution, suitable for plant and microalgae cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580639800035 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited Open Access  
  Notes Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:170524 Serial 6461  
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Van Winckel, T.; Halet, D.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Borregán-Ochando, E.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Bottle or tap? Toward an integrated approach to water type consumption Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 173 Issue Pages 115578-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract While in many countries, people have access to cheap and safe potable tap water, the global consumption of bottled water is rising. Flanders, Belgium, where this study is located, has an exceptionally high consumption of bottled water per capita. However, in the interest of resource efficiency and global environmental challenges, the consumption of tap water is preferable. To our knowledge, an integrated analysis of the main reasons why people consume tap and bottled water is absent in Flanders, Belgium. Using Flemish survey data (N = 2309), we first compared tap and bottled water consumers through bivariate correlation analysis. Subsequently, path modelling techniques were used to further investigate these correlations. Our results show that bottled water consumption in Flanders is widespread despite environmental and financial considerations. For a large part, this is caused by negative perceptions about tap water. Many consumers consider it unhealthy, unsafe and prefer the taste of bottled water. Furthermore, we found that the broader social context often inhibits the consumption of tap water. On the one hand, improper infrastructures (e.g. lead piping) can limit access to potable tap water. On the other hand, social norms exist that promote bottled water. Lastly, results suggest that the consumption of bottled water is most common among men, older people and less educated groups. We conclude that future research and policy measures will benefit from an approach that integrates all behavioural aspects associated with water type consumption. This will enable both governments and tap water companies to devise more effective policies to manage and support tap water supply networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523569000012 Publication Date 2020-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 2 Open Access  
  Notes ; This was supported by a grant from Water-link. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:165873 Serial 6464  
Permanent link to this record
 

 
Author Spiller, M.; Muys, M.; Papini, G.; Sakarika, M.; Buyle, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Environmental impact of microbial protein from potato wastewater as feed ingredient : comparative consequential life cycle assessment of three production systems and soybean meal Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 171 Issue Pages 115406  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Livestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.e. dried microbial biomass. To date, only few life cycle assessments (LCAs) for MP have been carried out, none of which has used a consequential modelling approach nor has been investigating the production of MP on food and beverage wastewater. Therefore, the objective of this study is to evaluate the environmental impact of MP production on a food and beverage effluent as a substitute for soybean meal using a consequential modelling approach. Three different types of MP production were analysed, namely consortia containing Aerobic Heterotrophic Bacteria (AHB), Microalgae and AHB (MaB), and Purple Non-Sulfur Bacteria (PNSB). The production of MP was modelled for high-strength potato wastewater (COD = 10 kg/m3) at a flow rate of 1,000 m3/day. LCA results were compared against soybean meal production for the endpoint impact categories human health, ecosystems, and resources. Soybean meal showed up to 52% higher impact on human health and up to 87% higher impact on ecosystems than MP. However, energy-related aspects resulted in an 8–88% higher resource exploitation for MP. A comparison between the MP production systems showed that MaB performed best when considering ecosystems (between 13 and 14% better) and resource (between 71 and 80% better) impact categories, while AHB and PNSB had lower values for the impact category human health (8–12%). The sensitivity analysis suggests that the conclusions drawn are robust as in the majority of 1,000 Monte Carlo runs the initial results are confirmed. In conclusion, it is suggested that MP is an alternative protein source of comparatively low environmental impact that should play a role in the future protein transition, in particular when further process improvements can be implemented and more renewable or waste energy sources will be used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514748900032 Publication Date 2019-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 10 Open Access  
  Notes ; The authors would like to thank (i) the MIP i-Cleantech Flanders (Milieu innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD; 150360) for financial support, (ii) the Research Foundation Flanders (FWO-Vlaanderen) for supporting Gustavo Papini with a doctoral fellowship (strategic basic research; 1S38917N), (iii) Research Foundation Flanders (FWO-Vlaanderen) for supporting Matthias Buyle with a post-doctoral fellowship (Postdoctoral Fellow junior; 1207520N), and (iv) Bo Weidema, Abbas Alloul, Yixing Sui and Tim Van Winckel for their insightful discussions. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:164944 Serial 6509  
Permanent link to this record
 

 
Author Vanderkerckhove, T.G.L.; Kerckhof, F.-M.; De Mulder, C.; Vlaeminck, S.E.; Boon, N. pdf  url
doi  openurl
  Title Determining stoichiometry and kinetics of two thermophilic nitrifying communities as a crucial step in the development of thermophilic nitrogen removal Type A1 Journal article
  Year 2019 Publication Water research Abbreviated Journal  
  Volume 156 Issue Pages 34-45  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrification and denitrification, the key biological processes for thermophilic nitrogen removal, have separately been established in bioreactors at 50 °C. A well-characterized set of kinetic parameters is essential to integrate these processes while safeguarding the autotrophs performing nitrification. Knowledge on thermophilic nitrifying kinetics is restricted to isolated or highly enriched batch cultures, which do not represent bioreactor conditions. This study characterized the stoichiometry and kinetics of two thermophilic (50 °C) nitrifying communities. The most abundant ammonia oxidizing archaea (AOA) were related to the Nitrososphaera genus, clustering relatively far from known species Nitrososphaera gargensis (95.5% 16S rRNA gene sequence identity). The most abundant nitrite oxidizing bacteria (NOB) were related to Nitrospira calida (97% 16S rRNA gene sequence identity). The nitrification biomass yield was 0.200.24 g VSS g−1 N, resulting mainly from a high AOA yield (0.160.20 g VSS g−1 N), which was reflected in a high AOA abundance in the community (5776%) compared to NOB (511%). Batch-wise determination of decay rates (AOA: 0.230.29 d−1; NOB: 0.320.43 d−1) rendered an overestimation compared to in situ estimations of overall decay rate (0.0260.078 d−1). Possibly, the inactivation rate rather than the actual decay rate was determined in batch experiments. Maximum growth rates of AOA and NOB were 0.120.15 d−1 and 0.130.33 d−1 respectively. NOB were susceptible to nitrite, opening up opportunities for shortcut nitrogen removal. However, NOB had a similar growth rate and oxygen affinity (0.150.55 mg O2 L−1) as AOA and were resilient towards free ammonia (IC50 > 16 mg NH3-N L−1). This might complicate NOB outselection using common practices to establish shortcut nitrogen removal (SRT control; aeration control; free ammonia shocks). Overall, the obtained insights can assist in integrating thermophilic conversions and facilitate single-sludge nitrification/denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466618400004 Publication Date 2019-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158226 Serial 7798  
Permanent link to this record
 

 
Author Courtens, E.N.P.; Vandekerckhove, T.; Prat, D.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Meerbergen, K.; Lievens, B.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Empowering a mesophilic inoculum for thermophilic nitrification : growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers Type A1 Journal article
  Year 2016 Publication Water research Abbreviated Journal  
  Volume 92 Issue Pages 94-103  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L-1 d-1 after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d-1) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d-1) and the moving bed biofilm reactor (0.08 °C d-1) could not reach nitrification at temperatures higher than 46°C. However, nitrification rates up to 800 mg N L-1 d-1 and 150 mg N g-1 volatile suspended solids d-1 were achieved at a temperature as high as 49°C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49°C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371555200011 Publication Date 2016-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130444 Serial 7900  
Permanent link to this record
 

 
Author Meerburg, F.A.; Vlaeminck, S.E.; Roume, H.; Seuntjens, D.; Pieper, D.H.; Jauregui, R.; Vilchez-Vargas, R.; Boon, N. pdf  url
doi  openurl
  Title High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables Type A1 Journal article
  Year 2016 Publication Water research Abbreviated Journal  
  Volume 100 Issue Pages 137-145  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge processes allow for the recovery of organics and energy from wastewaters. These systems are operated at a short sludge retention time and high sludge-specific loading rates, which results in a higher sludge yield and better digestibility than conventional, low-rate activated sludge. Little is known about the microbial ecology of high-rate systems. In this work, we address the need for a fundamental understanding of how high-rate microbial communities differ from low-rate communities. We investigated the high-rate and low-rate communities in a sewage treatment plant in relation to environmental and operational variables over a period of ten months. We demonstrated that (1) high-rate and low-rate communities are distinctly different in terms of richness, evenness and composition, (2) high-rate community dynamics are more variable and less shaped by deterministic factors compared to low-rate communities, (3) sub-communities of continuously core and transitional members are more shaped by deterministic factors than the continuously rare members, both in high-rate and low-rate communities, and (4) high-rate community members showed a co-occurrence pattern similar to that of low-rate community members, but were less likely to be correlated to environmental and operational variables. These findings provide a basis for further optimization of high-rate systems, in order to facilitate resource recovery from wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378448800014 Publication Date 2016-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139914 Serial 8035  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal-Arroyo, J.M.; Ruopp, M.; Bunse, P.; De Mulder, C.P.; Lochmatter, S.; Agrawal, S.; Boon, N.; Lackner, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 144 Issue Pages 522-531  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Oxygen inhibits anammox, a bioconversion executed by anoxic ammonium oxidizing bacteria (AnAOB). Nonetheless, oxygen is mostly found in the proximity of AnAOB in nitrogen removal applications, being a substrate for nitritation. The experiments performed to date were mostly limited to batch activity tests where AnAOB activity is estimated during oxygen exposure. However, little attention has been paid to the recovery and reversibility of activity following aerobic conditions, of direct relevance for bioreactor operation. In this work, anoxic and autotrophic reactor cultivation at 20 degrees C yielded an enriched microbial community in AnAOB, consisting for 75% of a member of the genus Brocadia. High-resolution kinetic data were obtained with online ammonium measurements and further processed with a newly developed Python data pipeline. The experimentally obtained AnAOB response showed complete inhibition until micro-aerobic conditions were reached again (<0.02 mg O-2 L-1). After oxygen inhibition, AnAOB recovered gradually, with recovery times of 5-37 h to reach a steady-state activity, dependent on the perceived inhibition. The recovery immediately after inhibition was lowest when exposed to higher oxygen concentrations (range: 0.5-8 mg O-2 L-1) with long contact times (range: 9-24 h). The experimental data did not fit well with a conventional 'instant recovery' Monod-type inhibition model. Yet, the fit greatly improved by incorporating a dynamic growth rate formula accurately describing gradual activity recovery. With the upgraded model, long-term kinetic simulations for partial nitritation/anammox (PN/A) with intermittent aeration showed a decrease in growth rate compared to the instant recovery mode. These results indicate that recovery of AnAOB after oxygen exposure was previously overlooked. It is recommended to account for this effect in the intensification of partial nitritation/anammox. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447569300051 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152910 Serial 8037  
Permanent link to this record
 

 
Author Seuntjens, D.; Han, M.; Kerckhof, F.-M.; Boon, N.; Al-Omari, A.; Takacs, I.; Meerburg, F.; De Mulder, C.; Wett, B.; Bott, C.; Murthy, S.; Carvajal Arroyo, J.M.; De Clippeleir, H.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 138 Issue Pages 37-46  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 °C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (ΘAOB = 1.10, ΘNOB = 1.061.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431747300005 Publication Date 2017-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149976 Serial 8385  
Permanent link to this record
 

 
Author De Paepe, J.; Lindeboom, R.E.F.; Vanoppen, M.; De Paepe, K.; Demey, D.; Coessens, W.; Lamaze, B.; Verliefde, A.R.D.; Clauwaert, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 144 Issue Pages 76-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Human urine is a valuable resource for nutrient recovery, given its high levels of nitrogen, phosphorus and potassium, but the compositional complexity of urine presents a challenge for an energy-efficient concentration and refinery of nutrients. In this study, a pilot installation combining precipitation, nitrification and electrodialysis (ED), designed for one person equivalent (1.2 L-urine d(-l)), was continuously operated for similar to 7 months. First, NaOH addition yielded calcium and magnesium precipitation, preventing scaling in ED. Second, a moving bed biofilm reactor oxidized organics, preventing downstream biofouling, and yielded complete nitrification on diluted urine (20-40%, i.e. dilution factors 5 and 2.5) at an average loading rate of 215 mg N L-1 d(-1). Batch tests demonstrated the halotolerance of the nitrifying community, with nitrification rates not affected up to an electrical conductivity of 40 mS cm(-1) and gradually decreasing, yet ongoing, activity up to 96 mS cm(-1) at 18% of the maximum rate. Next-generation 16S rRNA gene amplicon sequencing revealed that switching from a synthetic influent to real urine induced a profound shift in microbial community and that the AOB community was dominated by halophilic species closely related to Nitrosomonas aestuarii and Nitrosomonas marina. Third, nitrate, phosphate and potassium in the filtered (0.1 mu m) bioreactor effluent were concentrated by factors 43, 2.6 and 4.6, respectively, with ED. Doubling the urine concentration from 20% to 40% further increased the ED recovery efficiency by similar to 10%. Batch experiments at pH 6, 7 and 8 indicated a more efficient phosphate transport to the concentrate at pH 7. The newly proposed three-stage strategy opens up opportunities for energy- and chemical-efficient nutrient recovery from urine. Precipitation and nitrification enabled the long-term continuous operation of ED on fresh urine requiring minimal maintenance, which has, to the best of our knowledge, never been achieved before. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447569300008 Publication Date 2018-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152907 Serial 8468  
Permanent link to this record
 

 
Author Peng, L.; Carvajal-Arroyo, J.M.; Seuntjens, D.; Prat, D.; Colica, G.; Pintucci, C.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate Type A1 Journal article
  Year 2017 Publication Water research Abbreviated Journal  
  Volume 127 Issue Pages 1-10  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N2O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (CODrem/N-rem). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N2O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O-2/L; CODrem/N-rem of 2.8) with similar to 68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (similar to 2.2 mg O-2/L) lowered the aerobic N2O emission and weakened the dependency on nitrite concentration, suggesting a shift in N2O production pathway. The most effective N2O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to similar to 0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low CODrem/N-rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. (c) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418219000001 Publication Date 2017-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148521 Serial 8548  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: