toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grunert, O.; Robles-Aguilar, A.A.; Hernandez-Sanabria, E.; Schrey, S.D.; Reheul, D.; Van Labeke, M.-C.; Vlaeminck, S.E.; Vanderkerckhove, T.G.L.; Mysara, M.; Monsieurs, P.; Temperton, V.M.; Boon, N.; Jablonowski, N.D. url  doi
openurl 
  Title Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media Type A1 Journal article
  Year 2019 Publication Scientific reports Abbreviated Journal  
  Volume 9 Issue Pages 9561  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Synthetic fertilizer production is associated with a high environmental footprint, as compounds typically dissolve rapidly leaching emissions to the atmosphere or surface waters. We tested two recovered nutrients with slower release patterns, as promising alternatives for synthetic fertilizers: struvite and a commercially available organic fertilizer. Using these fertilizers as nitrogen source, we conducted a rhizotron experiment to test their effect on plant performance and nutrient recovery in juvenile tomato plants. Plant performance was significantly improved when organic fertilizer was provided, promoting higher shoot biomass. Since the microbial community influences plant nitrogen availability, we characterized the root-associated microbial community structure and functionality. Analyses revealed distinct root microbial community structure when different fertilizers were supplied. However, plant presence significantly increased the similarity of the microbial community over time, regardless of fertilization. Additionally, the presence of the plant significantly reduced the potential ammonia oxidation rates, implying a possible role of the rhizosheath microbiome or nitrification inhibition by the plant. Our results indicate that nitrifying community members are impacted by the type of fertilizer used, while tomato plants influenced the potential ammonia-oxidizing activity of nitrogen-related rhizospheric microbial communities. These novel insights on interactions between recovered fertilizers, plant and associated microbes can contribute to develop sustainable crop production systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473418000003 Publication Date 2019-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:160582 Serial 8674  
Permanent link to this record
 

 
Author Slavkovic, S.; Shoara, A.A.; Churcher, Z.R.; Daems, E.; De Wael, K.; Sobott, F.; Johnson, P.E. url  doi
openurl 
  Title DNA binding by the antimalarial compound artemisinin Type A1 Journal article
  Year 2022 Publication Scientific reports Abbreviated Journal  
  Volume 12 Issue 1 Pages 133  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Artemisinin (ART) is a vital medicinal compound that is used alone or as part of a combination therapy against malaria. ART is thought to function by attaching to heme covalently and alkylating a range of proteins. Using a combination of biophysical methods, we demonstrate that ART is bound by three-way junction and duplex containing DNA molecules. Binding of ART by DNA is first shown for the cocaine-binding DNA aptamer and extensively studied using this DNA molecule. Isothermal titration calorimetry methods show that the binding of ART is both entropically and enthalpically driven at physiological NaCl concentration. Native mass spectrometry methods confirm DNA binding and show that a non-covalent complex is formed. Nuclear magnetic resonance spectroscopy shows that ART binds at the three-way junction of the cocaine-binding aptamer, and that binding results in the folding of the structure-switching variant of this aptamer. This structure-switching ability was exploited using the photochrome aptamer switch assay to demonstrate that ART can be detected using this biosensing assay. This study is the first to demonstrate the DNA binding ability of ART and should lay the foundation for further work to study implications of DNA binding for the antimalarial activity of ART.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740510500120 Publication Date 2022-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:184507 Serial 8851  
Permanent link to this record
 

 
Author Soltan, S.; Macke, S.; Ilse, S.E.; Pennycook, T.; Zhang, Z.L.; Christiani, G.; Benckiser, E.; Schuetz, G.; Goering, E. url  doi
openurl 
  Title Ferromagnetic order controlled by the magnetic interface of LaNiO3/La2/3Ca1/3MnO3 superlattices Type A1 Journal article
  Year 2023 Publication Scientific reports Abbreviated Journal  
  Volume 13 Issue 1 Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Interface engineering in complex oxide superlattices is a growing field, enabling manipulation of the exceptional properties of these materials, and also providing access to new phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex charge and spin structure in a bulk paramagnetic material. We investigate a superlattice (SLs) consisting of paramagnetic LaNiO3 (LNO) and highly spin-polarized ferromagnetic La2/3Ca1/3MnO3 (LCMO), grown on SrTiO3 (001) substrate. We observed emerging magnetism in LNO through an exchange bias mechanism at the interfaces in X-ray resonant magnetic reflectivity. We find non-symmetric interface induced magnetization profiles in LNO and LCMO which we relate to a periodic complex charge and spin superstructure. High resolution scanning transmission electron microscopy images reveal that the upper and lower interfaces exhibit no significant structural variations. The different long range magnetic order emerging in LNO layers demonstrates the enormous potential of interfacial reconstruction as a tool for tailored electronic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985158100013 Publication Date 2023-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.259  
  Call Number UA @ admin @ c:irua:197426 Serial 8867  
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F. url  doi
openurl 
  Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
  Year 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol  
  Volume 12 Issue 22 Pages 6676-6686  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865542600001 Publication Date 2022-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5  
  Call Number UA @ admin @ c:irua:191389 Serial 7185  
Permanent link to this record
 

 
Author Samaee, V.; Dupraz, M.; Pardoen, T.; VAn Swygenhoven, H.; Schryvers, D.; Idrissi, H. url  doi
openurl 
  Title Deciphering the interactions between single arm dislocation sources and coherent twin boundary in nickel bi-crystal Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 962  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The introduction of a well-controlled population of coherent twin boundaries (CTBs) is an attractive route to improve the strength ductility product in face centered cubic (FCC) metals. However, the elementary mechanisms controlling the interaction between single arm dislocation sources (SASs), often present in nanotwinned FCC metals, and CTB are still not well understood. Here, quantitative in-situ transmission electron microscopy (TEM) observations of these mechanisms under tensile loading are performed on submicron Ni bi-crystal. We report that the absorption of curved screw dislocations at the CTB leads to the formation of constriction nodes connecting pairs of twinning dislocations at the CTB plane in agreement with large scale 3D atomistic simulations. The coordinated motion of the twinning dislocation pairs due to the presence of the nodes leads to a unique CTB sliding mechanism, which plays an important role in initiating the fracture process at a CTB ledge. TEM observations of the interactions between non-screw dislocations and the CTB highlight the importance of the synergy between the repulsive force of the CTB and the back stress from SASs when the interactions occur in small volumes. Interactions of dislocations with coherent twin boundaries contribute to strength and ductility in metals, but investigating the interaction mechanisms is challenging. Here the authors unravel these mechanisms through quantitative in-situ transmission electron microscopy observations in nickel bi-crystal samples under tensile loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620142700024 Publication Date 2021-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:176680 Serial 6722  
Permanent link to this record
 

 
Author Haug, C.; Ruebeling, F.; Kashiwar, A.; Gumbsch, P.; Kübel, C.; Greiner, C. doi  openurl
  Title Early deformation mechanisms in the shear affected region underneath a copper sliding contact Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 11 Issue 1 Pages 839-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dislocation mediated plastic deformation decisively influences the friction coefficient and the microstructural changes at many metal sliding interfaces during tribological loading. This work explores the initiation of a tribologically induced microstructure in the vicinity of a copper twin boundary. Two distinct horizontal dislocation traces lines (DTL) are observed in their interaction with the twin boundary beneath the sliding interface. DTL formation seems unaffected by the presence of the twin boundary but the twin boundary acts as an indicator of the occurring deformation mechanisms. Three concurrent elementary processes can be identified: simple shear of the subsurface area in sliding direction, localized shear at the primary DTL and crystal rotation in the layers above and between the DTLs around axes parallel to the transverse direction. Crystal orientation analysis demonstrates a strong compatibility of these proposed processes. Quantitatively separating these different deformation mechanisms is crucial for future predictive modeling of tribological contacts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2041-1723 ISBN Additional Links UA library record  
  Impact Factor 16.6 Times cited Open Access  
  Notes Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:183619 Serial 6863  
Permanent link to this record
 

 
Author Zalalutdinov, M.K.; Robinson, J.T.; Fonseca, J.J.; LaGasse, S.W.; Pandey, T.; Lindsay, L.R.; Reinecke, T.L.; Photiadis, D.M.; Culbertson, J.C.; Cress, C.D.; Houston, B.H. url  doi
openurl 
  Title Acoustic cavities in 2D heterostructures Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 3267  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) materials offer unique opportunities in engineering the ultrafast spatiotemporal response of composite nanomechanical structures. In this work, we report on high frequency, high quality factor (Q) 2D acoustic cavities operating in the 50-600GHz frequency (f) range with f x Q up to 1 x 10(14). Monolayer steps and material interfaces expand cavity functionality, as demonstrated by building adjacent cavities that are isolated or strongly-coupled, as well as a frequency comb generator in MoS2/h-BN systems. Energy dissipation measurements in 2D cavities are compared with attenuation derived from phonon-phonon scattering rates calculated using a fully microscopic ab initio approach. Phonon lifetime calculations extended to low frequencies (<1THz) and combined with sound propagation analysis in ultrathin plates provide a framework for designing acoustic cavities that approach their fundamental performance limit. These results provide a pathway for developing platforms employing phonon-based signal processing and for exploring the quantum nature of phonons. Here, authors report on acoustic cavities in 2D materials operating in the 50-600GHz range and show that quality factors approach the limit set by lattice anharmonicity. Functionality expanded by heterogeneities (steps and interfaces) is demonstrated through coupled cavities and frequency comb generation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000660772400004 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:179597 Serial 6968  
Permanent link to this record
 

 
Author Lee, Y.; Forte, J.D.'arf S.; Chaves, A.; Kumar, A.; Tran, T.T.; Kim, Y.; Roy, S.; Taniguchi, T.; Watanabe, K.; Chernikov, A.; Jang, J.I.; Low, T.; Kim, J. url  doi
openurl 
  Title Boosting quantum yields in two-dimensional semiconductors via proximal metal plates Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 7095  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The short exciton lifetime and strong exciton-exciton interaction in transition metal dichalcogenides limit the efficiency of exciton emission. Here, the authors show that exciton-exciton interaction in monolayer WS2 can be screened using proximal metal plates, leading to an improved quantum yield. Monolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton interaction in 1L-WS2 can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride. Under this geometry, induced dipolar exciton-exciton interaction becomes quadrupole-quadrupole interaction because of effective image dipoles formed within the metal. The suppressed exciton-exciton interaction leads to a significantly improved quantum yield by an order of magnitude, which is also accompanied by a reduction in the exciton-exciton annihilation (EEA) rate, as confirmed by time-resolved optical measurements. A theoretical model accounting for the screening of the dipole-dipole interaction is in a good agreement with the dependence of EEA on exciton densities. Our results suggest that fundamental EEA processes in the TMD can be engineered through proximal metallic screening, which represents a practical approach towards high-efficiency 2D light emitters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728559600014 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:184870 Serial 7566  
Permanent link to this record
 

 
Author Wang, F.; Wang, C.; Chaves, A.; Song, C.; Zhang, G.; Huang, S.; Lei, Y.; Xing, Q.; Mu, L.; Xie, Y.; Yan, H. doi  openurl
  Title Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 5628  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Hyperbolic polaritons exhibit large photonic density of states and can be collimated in certain propagation directions. The majority of hyperbolic polaritons are sustained in man-made metamaterials. However, natural-occurring hyperbolic materials also exist. Particularly, natural in-plane hyperbolic polaritons in layered materials have been demonstrated in MoO3 and WTe2, which are based on phonon and plasmon resonances respectively. Here, by determining the anisotropic optical conductivity (dielectric function) through optical spectroscopy, we predict that monolayer black phosphorus naturally hosts hyperbolic exciton-polaritons due to the pronounced in-plane anisotropy and strong exciton resonances. We simultaneously observe a strong and sharp ground state exciton peak and weaker excited states in high quality monolayer samples in the reflection spectrum, which enables us to determine the exciton binding energy of similar to 452 meV. Our work provides another appealing platform for the in-plane natural hyperbolic polaritons, which is based on excitons rather than phonons or plasmons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000698984500003 Publication Date 2021-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:191688 Serial 8404  
Permanent link to this record
 

 
Author Sasaki, S.; Giri, S.; Cassidy, S.J.; Dey, S.; Batuk, M.; Vandemeulebroucke, D.; Cibin, G.; Smith, R.I.; Holdship, P.; Grey, C.P.; Hadermann, J.; Clarke, S.J. url  doi
openurl 
  Title Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal  
  Volume 14 Issue 1 Pages 2917-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr(2)MnO(2)Cu(1.5)Ch(2) (Ch=S, Se) into Cu-deintercalated phases where antifluorite type [Cu(1.5)Ch(2)](2.5-) slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr(2)MnO(2)Ch(2) slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures. Low temperature chemical transformations of solids using high-energy intermediates have enabled the synthesis of a new series of layered oxide chalcogenide containing oxidised chalcogenide dimers promising a new range of solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001024186000011 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number UA @ admin @ c:irua:199281 Serial 8832  
Permanent link to this record
 

 
Author Cui, W.; Lin, W.; Lu, W.; Liu, C.; Gao, Z.; Ma, H.; Zhao, W.; Van Tendeloo, G.; Zhao, W.; Zhang, Q.; Sang, X. url  doi
openurl 
  Title Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal  
  Volume 14 Issue 1 Pages 554-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBi2Te4 (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM). The cation concentration variation during diffusion was correlated with the local Te-6 octahedron distortion based on a quantitative analysis of the atomic column intensity and position in time-elapsed STEM images. The in-plane cation diffusion leads to out-of-plane surface etching through complex structural evolutions involving the formation and propagation of a non-centrosymmetric GeTe2 triple layer surface reconstruction on fresh vdW surfaces, and GBT subsurface reconstruction from a septuple layer to a quintuple layer. Our results provide atomistic insight into the cation diffusion and surface reconstruction in vdW layered materials. Weak interlayer van der Waals (vdW) bonding has significant impact on the structure and properties of vdW layered materials. Here authors use in-situ aberration-corrected ADF-STEM for an atomistic insight into the cation diffusion in the vdW gaps and the etching of vdW surfaces at high temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076227200001 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited Open Access  
  Notes Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number UA @ admin @ c:irua:201342 Serial 9021  
Permanent link to this record
 

 
Author Fabri, C.; Tsagris, M.; Moretti, M.; Van Passel, S. pdf  doi
openurl 
  Title Adaptation to climate change : the irrigation technology mix of Italian farmers Type A1 Journal article
  Year 2023 Publication Applied economic perspectives and policy Abbreviated Journal  
  Volume Issue Pages 1-22  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Farmers should increasingly adopt more water‐efficient irrigation technologies—such as drip irrigation—as a result of climate warming and aggravating water scarcity. We analyze how Italian farmers adapt to climate change by changing their irrigation technology mix. We apply a two‐stage econometric model to data from 5876 Italian farms. We find that farmers' initial reaction to increasing temperatures is reducing their surface‐irrigated fractions. When temperatures increase further, farmers switch toward more sprinkler irrigation. Our results show that farmers are not autonomously moving to drip irrigation in response to climate change, suggesting that government incentives are needed to encourage this transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001125360800001 Publication Date 2023-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2040-5790 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.8 Times cited Open Access  
  Notes Approved Most recent IF: 5.8; 2023 IF: 1.361  
  Call Number UA @ admin @ c:irua:201688 Serial 9184  
Permanent link to this record
 

 
Author Frolov, A.S.; Callaert, C.; Batuk, M.; Hadermann, J.; Volykhov, A.A.; Sirotina, A.P.; Amati, M.; Gregoratti, L.; Yashina, L.V. doi  openurl
  Title Nanoscale phase separation in the oxide layer at GeTe (111) surfaces Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 14 Issue 35 Pages 12918-12927  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract As a semiconductor ferroelectric, GeTe has become a focus of renewed attention due to the recent discovery of giant Rashba splitting. It already has a wide range of applications, from thermoelectricity to data storage. Its stability in ambient air, as well as the structure and properties of an oxide layer, define the processing media for device production and operation. Here, we studied a reaction between the GeTe (111) surface and molecular oxygen for crystals having solely inversion domains. We evaluated the reaction kinetics both ex situ and in situ using NAP XPS. The structure of the oxide layer is extensively discussed, where, according to HAADF-STEM and STEM-EDX, nanoscale phase separation of GeO2 and Te is observed, which is unusual for semiconductors. We believe that such behaviour is closely related to the ferroelectric properties and the domain structure of GeTe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000847743300001 Publication Date 2022-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:190665 Serial 7181  
Permanent link to this record
 

 
Author Kocabas, T.; Cakir, D.; Gulseren, O.; Ay, F.; Perkgoz, N.K.; Sevik, C. doi  openurl
  Title A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal  
  Volume 10 Issue 16 Pages 7803-7812  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The investigation of thermal transport properties of novel two-dimensional materials is crucially important in order to assess their potential to be used in future technological applications, such as thermoelectric power generation. In this respect, the lattice thermal transport properties of the monolayer structures of group VA elements (P, As, Sb, Bi, PAs, PSb, PBi, AsSb, AsBi, SbBi, P3As1, P3Sb1, P1As3, and As3Sb1) with a black phosphorus like puckered structure were systematically investigated by first-principles calculations and an iterative solution of the phonon Boltzmann transport equation. Phosphorene was found to have the highest lattice thermal conductivity, , due to its low average atomic mass and strong interatomic bonding character. As a matter of course, anisotropic was obtained for all the considered materials, owing to anisotropy in frequency values and phonon group velocities calculated for these structures. However, the determined linear correlation between the anisotropy in the values of P, As, and Sb is significant. The results corresponding to the studied compound structures clearly point out that thermal (electronic) conductivity of pristine monolayers might be suppressed (improved) by alloying them with the same group elements. For instance, the room temperature of PBi along the armchair direction was predicted to be as low as 1.5 W m(-1) K-1, whereas that of P was predicted to be 21 W m(-1) K-1. In spite of the apparent differences in structural and vibrational properties, we peculiarly revealed an intriguing correlation between the values of all the considered materials as = c(1) + c(2)/m(2), in particular along the zigzag direction. Furthermore, our calculations on compound structures clearly showed that the thermoelectric potential of these materials can be improved by suppressing their thermal properties. The presence of ultra-low values and high electrical conductivity (especially along the armchair direction) makes this class of monolayers promising candidates for thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431030000054 Publication Date 2018-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193785 Serial 7388  
Permanent link to this record
 

 
Author Chinnabathini, V.C.; Dingenen, F.; Borah, R.; Abbas, I.; van der Tol, J.; Zarkua, Z.; D'Acapito, F.; Nguyen, T.H.T.; Lievens, P.; Grandjean, D.; Verbruggen, S.W.; Janssens, E. doi  openurl
  Title Gas phase deposition of well-defined bimetallic gold-silver clusters for photocatalytic applications Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 14 Pages 6696-6708  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968631100001 Publication Date 2023-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196040 Serial 7988  
Permanent link to this record
 

 
Author Sarikurt, S.; Çakir, D.; Keceli, M.; Sevik, C. doi  openurl
  Title The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal  
  Volume 10 Issue 18 Pages 8859-8868  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The newest members of a two-dimensional material family, involving transition metal carbides and nitrides (called MXenes), have garnered increasing attention due to their tunable electronic and thermal properties depending on the chemical composition and functionalization. This flexibility can be exploited to fabricate efficient electrochemical energy storage (batteries) and energy conversion (thermoelectric) devices. In this study, we calculated the Seebeck coefficients and lattice thermal conductivity values of oxygen terminated M2CO2 (where M = Ti, Zr, Hf, Sc) monolayer MXene crystals in two different functionalization configurations (model-II (MD-II) and model-III (MD-III)), using density functional theory and Boltzmann transport theory. We estimated the thermoelectric figure-of-merit, zT, of these materials by two different approaches, as well. First of all, we found that the structural model (i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials. The lattice thermal conductivity kappa(l), Seebeck coefficient and zT values may vary by 40% depending on the structural model. The MD-III configuration always has the larger band gap, Seebeck coefficient and zT, and smaller kappa(l) as compared to the MD-II structure due to a larger band gap, highly flat valence band and reduced crystal symmetry in the former. The MD-III configuration of Ti2CO2 and Zr2CO2 has the lowest kappa(l) as compared to the same configuration of Hf2CO2 and Sc2CO2. Among all the considered structures, the MD-II configuration of Hf2CO2 has the highest kappa(l), and Ti2CO2 and Zr2CO2 in the MD-III configuration have the lowest kappa(l). For instance, while the band gap of the MD-II configuration of Ti2CO2 is 0.26 eV, it becomes 0.69 eV in MD-III. The zT(max) value may reach up to 1.1 depending on the structural model of MXene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432096400055 Publication Date 2018-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193788 Serial 8654  
Permanent link to this record
 

 
Author Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. doi  openurl
  Title Gaussian approximation potentials for accurate thermal properties of two-dimensional materials Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 19 Pages 8772-8780  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000976615200001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196722 Serial 8873  
Permanent link to this record
 

 
Author Sevik, C.; Bekaert, J.; Milošević, M.V. url  doi
openurl 
  Title Superconductivity in functionalized niobium-carbide MXenes Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 19 Pages 8792-8799  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We detail the effects of Cl and S functionalization on the superconducting properties of layered (bulk) and monolayer niobium carbide (Nb2C) MXene crystals, based on first-principles calculations combined with Eliashberg theory. For bulk layered Nb2CCl2, the calculated superconducting transition temperature (T-c) is in very good agreement with the recently measured value of 6 K. We show that T-c is enhanced to 10 K for monolayer Nb2CCl2, due to an increase in the density of states at the Fermi level, and the corresponding electron-phonon coupling. We further demonstrate feasible gate- and strain-induced enhancements of T-c for both bulk-layered and monolayer Nb2CCl2 crystals, resulting in T-c values of around 38 K. In the S-functionalized Nb2CCl2 crystals, our calculations reveal the importance of phonon softening in understanding their superconducting properties. Finally, we predict that Nb3C2S2 in bulk-layered and monolayer forms is also superconducting, with a T-c of around 28 K. Considering that Nb2C is not superconducting in pristine form, our findings promote functionalization as a pathway towards robust superconductivity in MXenes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000976973900001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196711 Serial 8938  
Permanent link to this record
 

 
Author Gielis, J. openurl 
  Title Er bestaan geen absurde, irrationele, onregelmatige of onderling niet-onmeetbare meetkundige getallen Type A2 Journal article
  Year 2021 Publication Wiskunde en onderwijs Abbreviated Journal  
  Volume 47 Issue 188 Pages 23-33  
  Keywords A2 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2032-0485 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183083 Serial 7934  
Permanent link to this record
 

 
Author Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A. openurl 
  Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
  Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal  
  Volume 17 Issue 7 Pages 54-58  
  Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2030-2738 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202271 Serial 9004  
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Vancauteren, M.; Van Passel, S. doi  openurl
  Title How do western European farms behave and respond to climate change? A simultaneous irrigation-crop decision model Type A1 Journal article
  Year 2022 Publication Climate change economics Abbreviated Journal  
  Volume 13 Issue 4 Pages 2250009-2250038  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Most farm adaptations are reactive actions that run the risk of locking farm systems into suboptimal long-term trajectories. This is especially the case with regard to water management as water scarcity will be aggravated by climate change. This paper looks into farm irrigation choices in combination with crop choices because a proper crop choice has the potential to reduce water requirements. It proposes an extended Ricardian model to capture multiple adaptation decisions explicitly. The new simultaneous irrigation-crop farm decision model uses spatially detailed farm-level data of over 18,000 European farms on irrigation and seven different crop choices. The analysis shows that larger farmers and farmers in less water-scarce regions that use irrigation are more sensitive to temperature increases than rain-fed agriculture. This might be explained by the fact that these farmers do not experience the real cost of water scarcity because of which they take less efficient decisions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000791485900001 Publication Date 2022-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2010-0086 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188680 Serial 7359  
Permanent link to this record
 

 
Author Okamura, I.; Van Passel, S.; Fabri, C.; Senda, T. url  doi
openurl 
  Title A Ricardian analysis of climate change impacts on Japan's agriculture : accounting for solar radiation Type A1 Journal article
  Year 2023 Publication Climate change economics Abbreviated Journal  
  Volume 14 Issue 4 Pages 2350022-2350025  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract This study evaluates the effects of climate change on the net revenue of farmers in Japan. We adopted the Ricardian model, which implicitly accounts for farmers’ full adaptation. The main findings of this study are as follows. First, the Ricardian regression shows that changes in temperature significantly impact farmers’ net revenue. In contrast, changes in precipitation have limited effects on farmers’ net revenue. The results of future predictions showed that the effects of climate change are positive across the country, with varying degrees between north and south. These results are more optimistic than those in the existing literature, which frequently reveal negative climate change impacts in southern Japan. However, it should be noted that this model assumes full adaptation and does not consider the transition costs of farmers, and understanding the actual adaptive measures is an important remaining issue.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001075308800001 Publication Date 2023-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2010-0086 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199659 Serial 9223  
Permanent link to this record
 

 
Author Shi, P.; Ratkowsky, D.A.; Li, Y.; Zhang, L.; Lin, S.; Gielis, J. url  doi
openurl 
  Title A general leaf area geometric formula exists for plants evidence from the simplified Gielis equation Type A1 Journal article
  Year 2018 Publication Forests (19994907) Abbreviated Journal  
  Volume 9 Issue 11 Pages 714  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Plant leaves exhibit diverse shapes that enable them to utilize a light resource maximally. If there were a general parametric model that could be used to calculate leaf area for different leaf shapes, it would help to elucidate the adaptive evolutional link among plants with the same or similar leaf shapes. We propose a simplified version of the original Gielis equation (SGE), which was developed to describe a variety of object shapes ranging from a droplet to an arbitrary polygon. We used this equation to fit the leaf profiles of 53 species (among which, 48 bamboo plants, 5 woody plants, and 10 geographical populations of a woody plant), totaling 3310 leaves. A third parameter (namely, the floating ratio c in leaf length) was introduced to account for the case when the theoretical leaf length deviates from the observed leaf length. For most datasets, the estimates of c were greater than zero but less than 10%, indicating that the leaf length predicted by the SGE was usually smaller than the actual length. However, the predicted leaf areas approximated their actual values after considering the floating ratios in leaf length. For most datasets, the mean percent errors of leaf areas were lower than 6%, except for a pooled dataset with 42 bamboo species. For the elliptical, lanceolate, linear, obovate, and ovate shapes, although the SGE did not fit the leaf edge perfectly, after adjusting the parameter c, there were small deviations of the predicted leaf areas from the actual values. This illustrates that leaves with different shapes might have similar functional features for photosynthesis, since the leaf areas can be described by the same equation. The anisotropy expressed as a difference in leaf shape for some plants might be an adaptive response to enable them to adapt to different habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451310300054 Publication Date 2018-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156324 Serial 7389  
Permanent link to this record
 

 
Author Shi, P.; Yu, K.; Niinemets, Ü.; Gielis, J. url  doi
openurl 
  Title Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae) Type A1 Journal article
  Year 2021 Publication Forests Abbreviated Journal Forests  
  Volume 12 Issue 1 Pages 41  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Leaf shape is closely related to economics of leaf support and leaf functions, including light interception, water use, and CO2 uptake, so correct quantification of leaf shape is helpful for studies of leaf structure/function relationships. There are some extant indices for quantifying leaf shape, including the leaf width/length ratio (W/L), leaf shape fractal dimension (FD), leaf dissection index, leaf roundness index, standardized bilateral symmetrical index, etc. W/L ratio is the simplest to calculate, and recent studies have shown the importance of the W/L ratio in explaining the scaling exponent of leaf dry mass vs. leaf surface area and that of leaf surface area vs. leaf length. Nevertheless, whether the W/L ratio could reflect sufficient geometrical information of leaf shape has been not tested. The FD might be the most accurate measure for the complexity of leaf shape because it can characterize the extent of the self-similarity and other planar geometrical features of leaf shape. However, it is unknown how strongly different indices of leaf shape complexity correlate with each other, especially whether W/L ratio and FD are highly correlated. In this study, the leaves of nine Magnoliaceae species (>140 leaves for each species) were chosen for the study. We calculated the FD value for each leaf using the box-counting approach, and measured leaf fresh mass, surface area, perimeter, length, and width. We found that FD is significantly correlated to the W/L ratio and leaf length. However, the correlation between FD and the W/L ratio was far stronger than that between FD and leaf length for each of the nine species. There were no strong correlations between FD and other leaf characteristics, including leaf area, ratio of leaf perimeter to area, fresh mass, ratio of leaf fresh mass to area, and leaf roundness index. Given the strong correlation between FD and W/L, we suggest that the simpler index, W/L ratio, can provide sufficient information of leaf shape for similarly-shaped leaves. Future studies are needed to characterize the relationships among FD and W/L in leaves with strongly varying shape, e.g., in highly dissected leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000611074700001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.951 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.951  
  Call Number UA @ admin @ c:irua:174473 Serial 7572  
Permanent link to this record
 

 
Author Shi, P.; Liu, M.; Yu, X.; Gielis, J.; Ratkowsky, D.A. url  doi
openurl 
  Title Proportional relationship between leaf area and the product of leaf length and width of four types of special leaf shapes Type A1 Journal article
  Year 2019 Publication Forests (19994907) Abbreviated Journal  
  Volume 10 Issue 2 Pages 178  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The leaf area, as an important leaf functional trait, is thought to be related to leaf length and width. Our recent study showed that the Montgomery equation, which assumes that leaf area is proportional to the product of leaf length and width, applied to different leaf shapes, and the coefficient of proportionality (namely the Montgomery parameter) range from 1/2 to π/4. However, no relevant geometrical evidence has previously been provided to support the above findings. Here, four types of representative leaf shapes (the elliptical, sectorial, linear, and triangular shapes) were studied. We derived the range of the estimate of the Montgomery parameter for every type. For the elliptical and triangular leaf shapes, the estimates are π/4 and 1/2, respectively; for the linear leaf shape, especially for the plants of Poaceae that can be described by the simplified Gielis equation, the estimate ranges from 0.6795 to π/4; for the sectorial leaf shape, the estimate ranges from 1/2 to π/4. The estimates based on the observations of actual leaves support the above theoretical results. The results obtained here show that the coefficient of proportionality of leaf area versus the product of leaf length and width only varies in a small range, maintaining the allometric relationship for leaf area and thereby suggesting that the proportional relationship between leaf area and the product of leaf length and width broadly remains stable during leaf evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460744000102 Publication Date 2019-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157200 Serial 8427  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
  Year 2021 Publication Materials Abbreviated Journal Materials  
  Volume 14 Issue 15 Pages 4167  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682047700001 Publication Date 2021-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.654  
  Call Number UA @ admin @ c:irua:180540 Serial 6966  
Permanent link to this record
 

 
Author Peeters, H.; Lenaerts, S.; Verbruggen, S.W. url  doi
openurl 
  Title Benchmarking the photocatalytic self-cleaning activity of industrial and experimental materials with ISO 27448:2009 Type A1 Journal article
  Year 2023 Publication Materials Abbreviated Journal Materials  
  Volume 16 Issue 3 Pages 1119-13  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Various industrial surface materials are tested for their photocatalytic self-cleaning activity by performing the ISO 27448:2009 method. The samples are pre-activated by UV irradiation, fouled with oleic acid and irradiated by UV light. The degradation of oleic acid over time is monitored by taking water contact angle measurements using a contact angle goniometer. The foulant, oleic acid, is an organic acid that makes the surface more hydrophobic. The water contact angle will thus decrease over time as the photocatalytic material degrades the oleic acid. In this study, we argue that the use of this method is strongly limited to specific types of surface materials, i.e., only those that are hydrophilic and smooth in nature. For more hydrophobic materials, the difference in the water contact angles of a clean surface and a fouled surface is not measurable. Therefore, the photocatalytic self-cleaning activity cannot be established experimentally. Another type of material that cannot be tested by this standard are rough surfaces. For rough surfaces, the water contact angle cannot be measured accurately using a contact angle goniometer as prescribed by the standard. Because of these limitations, many potentially interesting industrial substrates cannot be evaluated. Smooth samples that were treated with an in-house developed hydrophilic titania thin film (PCT/EP2018/079983) showed a great photocatalytic self-cleaning performance according to the ISO standard. Apart from discussing the pros and cons of the current ISO standard, we also stress how to carefully interpret the results and suggest alternative testing solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930734100001 Publication Date 2023-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: 2.654  
  Call Number UA @ admin @ c:irua:193337 Serial 7284  
Permanent link to this record
 

 
Author Saviuc, I.; Peremans, H.; Van Passel, S.; Milis, K. url  doi
openurl 
  Title Economic performance of using batteries in European residential microgrids under the net-metering scheme Type A1 Journal article
  Year 2019 Publication Energies Abbreviated Journal Energies  
  Volume 12 Issue 1 Pages 165-28  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Decentralized energy production offers an increased share of renewable energy and autonomy compared to the conventional, grid-only solution. However, under the net-metering scheme, the energy losses in batteries translate into financial losses to an investor seeking to move away from grid-only electricity and set up a residential PV+Battery microgrid. Our paper examines a hypothetical support scheme for such a project, designed to balance the economic disadvantage through partially supporting the acquisition of batteries, and thus ensure that the microgrid solution is more attractive than no investment. For this we develop four case studies based on experiments carried out in Greece, Italy, Denmark and Finland. Using the minimization of the Net Present Cost for each project, we compare the PV+Battery solution to the grid-only scenario over 25 years, for a range of electricity prices. The results illustrate first how the success of this project depends on the price of electricity. Second, we find that under current conditions in the respective countries the need for battery support varies between zero in Denmark and 86% in Italy, which reflects how the disadvantages of net metering can only be counterbalanced by either very high electricity price or very high solar resource. Our paper contributes thus to the discussion about the favourable environment for batteries in residential microgrids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1996-1073 ISBN Additional Links UA library record  
  Impact Factor 2.262 Times cited Open Access  
  Notes Approved Most recent IF: 2.262  
  Call Number UA @ admin @ c:irua:156009 Serial 6189  
Permanent link to this record
 

 
Author Perreault, P.; Boruntea, C.-R.; Dhawan Yadav, H.; Portela Soliño, I.; Kummamuru, N.B. url  doi
openurl 
  Title Combined methane pyrolysis and solid carbon gasification for electrified CO₂-free hydrogen and syngas production Type A1 Journal article
  Year 2023 Publication Energies Abbreviated Journal  
  Volume 16 Issue 21 Pages 7316-7320  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The coupling of methane pyrolysis with the gasification of a solid carbon byproduct provides CO2-free hydrogen and hydrogen-rich syngas, eliminating the conundrum of carbon utilization. Firstly, the various types of carbon that are known to result during the pyrolysis process and their dependencies on the reaction conditions for catalytic and noncatalytic systems are summarized. The synchronization of the reactions’ kinetics is considered to be of paramount importance for efficient performance. This translates to the necessity of finding suitable reaction conditions, carbon reactivities, and catalysts that might enable control over competing reactions through the manipulation of the reaction rates. As a consequence, the reaction kinetics of methane pyrolysis is then emphasized, followed by the particularities of carbon deposition and the kinetics of carbon gasification. Given the urgency in finding suitable solutions for decarbonizing the energy sector and the limited information on the gasification of pyrolytic carbon, more research is needed and encouraged in this area. In order to provide CO2-free hydrogen production, the reaction heat should also be provided without CO2. Electrification is one of the solutions, provided that low-carbon sources are used to generate the electricity. Power-to-heat, i.e., where electricity is used for heating, represents the first step for the chemical industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001103312100001 Publication Date 2023-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1996-1073 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200456 Serial 8842  
Permanent link to this record
 

 
Author Potgieter-Vermaak, S.; Van Grieken, R.; Potgieter, H. pdf  openurl
  Title Die risikoprofiel van Pb en Cr in stedelike padstof Type A2 Journal article
  Year 2012 Publication Litnet akademies : 'n joernaal vir die geesteswetenskappe Abbreviated Journal  
  Volume 9 Issue 3 Pages 1-22  
  Keywords A2 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The risk profile of Cr and Pb in urban road deposited sediment Exponential urbanisation and industrial growth occur on a global scale and result in an ecological burden, of which one important part is pollution. It is well known that the extent of air pollution has escalated over the past two decades in several parts of the world, despite mitigating measures and legislation. Current research points to the fact that air pollution in urban and industrial areas is substantially different from that found in rural areas. Road dust (RD) contributes up to 35% of airborne particulate matter due to resuspension thereof, and poses a health concern due to carcinogenic and toxic components potentially present in the micron-sized fractions. Although literature does report on the concentrations of trace, toxic metals and metalloids present in RD (Hooker and Nathanail 2006), the molecular make-up of particulates generated due to the resuspension of the RD is not well documented. In vitro and animal toxicological studies have confirmed that the chemical composition of inhaled particles plays a major role in its toxic, genotoxic and carcinogenic mechanisms, but the component-specific toxic effects are still not understood. Transition metals binding to air particle matter can result in reactive oxygen species in the human body (particularly in the lungs), and this is a significant risk, especially for vulnerable population groups like elderly people, children and terminally ill patients. The characterisation of the molecular composition of the fine fraction is evidently of importance for public health. During an earlier study, road dust from an inner-city environment in the UK was collected and partially characterised (Barrett e.a. 2010). These same-size fractions were analysed for their elemental concentrations, using X-ray Fluorescence Spectrometry (XRFS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In addition, single-particle analysis was performed on the different fractions by means of Computer Controlled Electron Probe X-ray Micro Analysis (CC-EPXMA) and their molecular structure probed by studying elemental associations. These findings were correlated with Micro Raman Spectroscopy (MRS) results. It was found that the fine fraction (<38 μm) had the highest Pb (238 ppm) and Cr (171 ppm) concentrations. The CC-EPXMA data showed >50% association of Cr-rich particles with Pb and the MRS data showed that the Cr was mostly present as lead chromate and therefore in the Cr(VI) oxidation state. Concentrations of both Pb and Cr decreased substantially (279 (<38 mm) 13 ppm (<1mm); 171 (<38 mm) 91 ppm (<1mm) respectively) in the larger fractions. Apart from rather alarmingly high concentrations of oxidative stressors (Cu, Fe, Mn), the carcinogenic and toxic potential of the inhalable fraction is evident. Preliminary bioaccessibility data indicated that both Cr and Pb are readily  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1995-5928 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:102566 Serial 8482  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: