|
Record |
Links |
|
Author |
Zalalutdinov, M.K.; Robinson, J.T.; Fonseca, J.J.; LaGasse, S.W.; Pandey, T.; Lindsay, L.R.; Reinecke, T.L.; Photiadis, D.M.; Culbertson, J.C.; Cress, C.D.; Houston, B.H. |
|
|
Title |
Acoustic cavities in 2D heterostructures |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Nature Communications |
Abbreviated Journal |
Nat Commun |
|
|
Volume |
12 |
Issue |
1 |
Pages |
3267 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
Two-dimensional (2D) materials offer unique opportunities in engineering the ultrafast spatiotemporal response of composite nanomechanical structures. In this work, we report on high frequency, high quality factor (Q) 2D acoustic cavities operating in the 50-600GHz frequency (f) range with f x Q up to 1 x 10(14). Monolayer steps and material interfaces expand cavity functionality, as demonstrated by building adjacent cavities that are isolated or strongly-coupled, as well as a frequency comb generator in MoS2/h-BN systems. Energy dissipation measurements in 2D cavities are compared with attenuation derived from phonon-phonon scattering rates calculated using a fully microscopic ab initio approach. Phonon lifetime calculations extended to low frequencies (<1THz) and combined with sound propagation analysis in ultrathin plates provide a framework for designing acoustic cavities that approach their fundamental performance limit. These results provide a pathway for developing platforms employing phonon-based signal processing and for exploring the quantum nature of phonons. Here, authors report on acoustic cavities in 2D materials operating in the 50-600GHz range and show that quality factors approach the limit set by lattice anharmonicity. Functionality expanded by heterogeneities (steps and interfaces) is demonstrated through coupled cavities and frequency comb generation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000660772400004 |
Publication Date |
2021-06-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2041-1723 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
12.124 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
|
Approved |
Most recent IF: 12.124 |
|
|
Call Number |
UA @ admin @ c:irua:179597 |
Serial |
6968 |
|
Permanent link to this record |