toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bahrami, F.; Hammad, M.; Fivel, M.; Huet, B.; D'Haese, C.; Ding, L.; Nysten, B.; Idrissi, H.; Raskin, J.P.; Pardoen, T. pdf  url
doi  openurl
  Title Single layer graphene controlled surface and bulk indentation plasticity in copper Type A1 Journal article
  Year 2021 Publication International Journal Of Plasticity Abbreviated Journal Int J Plasticity  
  Volume 138 Issue Pages 102936  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The impact of graphene reinforcement on the mechanical properties of metals has been a subject of intense investigation over the last decade in surface applications to mitigate the impact of tribological loadings or for strengthening purposes when dispersed into a bulk material. Here, the effect on the plastic indentation response of a single graphene layer grown on copper is analyzed for two configurations: one with graphene at the surface, the other with graphene sandwiched under a 100 nm thick copper cap layer. Nanoindentation under both displacement and load control conditions show both earlier and shorter pop-in excursions compared to systems without graphene. Atomic force microscopy reveals much smoother pile-ups with no slip traces in the presence of a surface graphene layer. The configuration with the intercalated graphene layer appears as an ideal elementary system to address bulk hardening mechanisms by indentation testing. Transmission electron microscopy (TEM) cross-sections below indents show more diffuse and homogeneous dislocation activity in the presence of graphene. 3D dislocation dynamics simulations allow unraveling of the origin of these 3D complex phenomena and prove that the collective dislocation mechanisms are dominantly controlled by the strong back stress caused by the graphene barrier. These results provide a quantitative understanding of the impact of graphene on dislocation mechanisms for both surface and bulk applications, but with an impact that is not as large as anticipated from other studies or general literature claims.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623869800001 Publication Date 2021-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6419 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.702 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.702  
  Call Number UA @ admin @ c:irua:176729 Serial 6735  
Permanent link to this record
 

 
Author González-Rubio, G.; Milagres de Oliveira, T.; Albrecht, W.; Díaz-Núñez, P.; Castro-Palacio, J.C.; Prada, A.; González, R.I.; Scarabelli, L.; Bañares, L.; Rivera, A.; Liz-Marzán, L.M.; Peña-Rodríguez, O.; Bals, S.; Guerrero-Martínez, A. pdf  url
doi  openurl
  Title Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 11 Pages 670-677  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irradiation of spherical gold nanoparticles (AuNPs) with nanosecond laser pulses induces shape transformations yielding nanocrystals with an inner cavity. The concentration of the stabilizing surfactant, the use of moderate pulse fluences, and the size of the irradiated AuNPs determine the efficiency of the process and the nature of the void. Hollow nanocrystals are obtained when molecules from the surrounding medium (e.g., water and organic matter derived from the surfactant) are trapped during laser pulse irradiation. These experimental observations suggest the existence of a subtle balance between the heating and cooling processes experienced by the nanocrystals, which induce their expansion and subsequent recrystallization keeping exogenous matter inside. The described approach provides valuable insight into the mechanism of interaction of pulsed nanosecond laser with AuNPs, along with interesting prospects for the development of hollow plasmonic nanoparticles with potential applications related to gas and liquid storage at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512223400012 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.7 Times cited 15 Open Access OpenAccess  
  Notes This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00, PGC2018-096444-B-I00, ENE2015-70300-C3-3, and MAT2017-86659-R), the EUROfusion Consortium (Grant ENR-IFE19.CCFE-01) and the Madrid Regional Government (Grants P2018/NMT-4389 and P2018/EMT-4437). This project has received funding from the European Commission (grant 731019, EUSMI & grant 823717, ESTEEM3). The publication is based also upon work from COST Action TUMIEE (CA17126). The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by the Centro de Supercomputacion y Visualizacion de Madrid (CeSViMa). L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant MDM-2017-0720). This project has also received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant 797153, SOPMEN). A.P. and R.I.G. acknowledge the support of FONDECYT under Grants 3190123 and 11180557 and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:166504 Serial 6334  
Permanent link to this record
 

 
Author Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z. url  doi
openurl 
  Title Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 9 Pages 3339-3344  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535177500024 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.7 Times cited 24 Open Access OpenAccess  
  Notes Universiteit Gent, GOA 01G01019 ; Fonds Wetenschappelijk Onderzoek, 17006602 FWO17/PDO/184 ; H2020 European Research Council, 714876 Phocona 815128 Realnano ; SIM-Flanders, SBO-QDOCCO ; Z.H. and S.B. acknowledge support by SIM-Flanders (SBO-QDOCCO). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602). Z.H. and I.M. acknowledge support by Ghent University (GOA n◦ 01G01019). J.L. acknowledges FWO-vlaanderen for a fellowship (SB PhD fellow at FWO). Sh.S acknowledges FWO postdoctoral funding (FWO17/PDO/184). This project has further received funding from the European Research Counsil under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator grant no. 815128 REALNANO and starting grant no. 714876 PHOCONA).; sygma Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:173994 Serial 6657  
Permanent link to this record
 

 
Author Rogolino, A.; Claes, N.; Cizaurre, J.; Marauri, A.; Jumbo-Nogales, A.; Lawera, Z.; Kruse, J.; Sanroman-Iglesias, M.; Zarketa, I.; Calvo, U.; Jimenez-Izal, E.; Rakovich, Y.P.; Bals, S.; Matxain, J.M.; Grzelczak, M. url  doi
openurl 
  Title Metal-polymer heterojunction in colloidal-phase plasmonic catalysis Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 13 Issue 10 Pages 2264-2272  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD+ to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal-polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst. The tight binding of polymer to the gold surface precludes the need for conventional transition-metal surface cocatalysts, which were previously shown to be essential for photocatalytic NAD(+) reduction but are known to hinder the optical properties of plasmonic nanocrystals. Moreover, computational studies indicated that the coating polymer fosters a closer interaction between the sacrificial electron-donor triethanolamine and the nanoparticles, thus enhancing the reactivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000776518000001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.7 Times cited 1 Open Access OpenAccess  
  Notes This work was supported by grant PID2019-111772RB-I00 funded by MCIN/AEI/10.13039/501100011033 and grant IT 1254-19 funded by Basque Government. The authors acknowledge the financial support of the European Commission (EUSMI, Grant 731019). S.B. is grateful to the European Research Council (ERC-CoG-2019 815128). The authors acknowledge the contributions by Dr. Adrian Pedrazo Tardajos related to sample support and electron microscopy experiments.; realnano;sygmaSB Approved Most recent IF: 5.7  
  Call Number UA @ admin @ c:irua:188008 Serial 7062  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; Amelinckx, S. openurl 
  Title Up close: Center for Electron Microscopy of Materials Science at the University of Antwerp Type A1 Journal article
  Year 1994 Publication MRS bulletin Abbreviated Journal Mrs Bull  
  Volume Issue Pages 57-59  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos A1994PH66300015 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor (down) 5.667 Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:9996 Serial 3821  
Permanent link to this record
 

 
Author Van Everbroeck, T.; Wu, J.; Arenas-Esteban, D.; Ciocarlan, R.-G.; Mertens, M.; Bals, S.; Dujardin, C.; Granger, P.; Seftel, E.M.; Cool, P. url  doi
openurl 
  Title ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts Type A1 Journal article
  Year 2022 Publication Applied clay science Abbreviated Journal Appl Clay Sci  
  Volume 217 Issue Pages 106390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000795870100004 Publication Date 2022-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.6 Times cited 6 Open Access OpenAccess  
  Notes The authors acknowledge financial support by theEuropean Union’s Horizon 2020 Project Partial-PGMs (H2020-NMP-686086). R-G C. and P.C. acknowledge the FWO-Flanders (project no. G038215N) for financial support. S⋅B and D.A.E thank the financial support of the European Research Council (ERC-CoG-2019 815128). The authors are grateful to Johnson Matthey, UK, for supplying the commercial benchmark catalysts; realnano; sygmaSB Approved Most recent IF: 5.6  
  Call Number EMAT @ emat @c:irua:186956 Serial 6955  
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 2 Pages 025012  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions with near opposite inter-layer twist angles. In a MoS<sub>2</sub>/WSe<sub>2</sub>bilayer, the regions with<inline-formula><tex-math><?CDATA $Rh^h$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>h</mi></msubsup></math><inline-graphic href=“tdmac529dieqn1.gif” type=“simple” /></inline-formula>and<inline-formula><tex-math><?CDATA $Rh^X$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>X</mi></msubsup></math><inline-graphic href=“tdmac529dieqn2.gif” type=“simple” /></inline-formula>stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-reflected across such a twist boundary. In that case, we demonstrate that topologically protected chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-directional excitons with opposite velocities for excitons composed by electronic states with opposite valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760518100001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Conselho Nacional de Desenvolvimento Científico e Tecnológico, PQ ; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187124 Serial 7046  
Permanent link to this record
 

 
Author Hofer, C.; Mustonen, K.; Skakalova, V.; Pennycook, T.J. url  doi
openurl 
  Title Picometer-precision few-tilt ptychotomography of 2D materials Type A1 Journal article
  Year 2023 Publication 2D materials Abbreviated Journal  
  Volume 10 Issue 3 Pages 035029-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract From ripples to defects, edges and grain boundaries, the 3D atomic structure of 2D materials is critical to their properties. However the damage inflicted by conventional 3D analysis precludes its use with fragile 2D materials, particularly for the analysis of local defects. Here we dramatically increase the potential for precise local 3D atomic structure analysis of 2D materials, with both greatly improved dose efficiency and sensitivity to light elements. We demonstrate light atoms can now be located in complex 2D materials with picometer precision at doses 30 times lower than previously possible. Moreover we demonstrate this using WS2, in which the light atoms are practically invisible to conventional methods at low doses. The key advance is combining the concept of few tilt tomography with highly dose efficient ptychography in scanning transmission electron microscopy. We further demonstrate the method experimentally with the even more challenging and newly discovered 2D CuI, leveraging a new extremely high temporal resolution camera.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001013151600001 Publication Date 2023-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.5; 2023 IF: 6.937  
  Call Number UA @ admin @ c:irua:197809 Serial 8915  
Permanent link to this record
 

 
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
  Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue Pages 223  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher SciPost Place of Publication Editor  
  Language English Wos 001116838500002 Publication Date 2023-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.5 Times cited 1 Open Access  
  Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:202037 Serial 8984  
Permanent link to this record
 

 
Author Marikutsa, A.; Krivetskiy, V.; Yashina, L.; Rumyantseva, M.; Konstantinova, E.; Ponzoni, A.; Comini, E.; Abakumov, A.; Gaskov, A. doi  openurl
  Title Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide Type A1 Journal article
  Year 2012 Publication Sensors and actuators : B : chemical T2 – 25th Eurosensors Conference, SEP 04-07, 2011, Athens, GREECE Abbreviated Journal Sensor Actuat B-Chem  
  Volume 175 Issue Pages 186-193  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A comparative study of NH3-sensing performance of blank and modified nanocrystal line SnO2 was performed. Tin dioxide modified by ruthenium displayed the highest ammonia sensitivity with a maximum signal at 200 degrees C. The modifier was shown by XPS and EPR to occur in a mixed valence state of oxidized ruthenium distributed between the surface and bulk of tin dioxide nanocrystals. RuOx clustering on SnO2 surface was detected by means of electron microscopy assisted EDX-mapping. The effect of RuOx on tin dioxide interaction with ammonia was studied by temperature-programmed NH3 desorption, simultaneous Kelvin probe and DC-resistance measurements, EPR spectroscopy and analyses of the gas-solid interaction products. The modifier was shown to promote the materials reactivity to NH3 due to the catalytic activity of RuOx. The interaction with ammonia resulted in dipoles formation on the oxide surface along with reducing the grains net surface charge, established from the electron affinity increase and resistance decrease during NH3 exposure. The RuOx-catalyzed gas-solid interaction was deduced to proceed deeper than in the case of non-modified SnO2 and to yield nitrogen oxides (e.g. NO2), as was suggested by the oxidative character of gaseous products of NH3 interaction with RuOx-modified tin dioxide at 200 degrees C. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000312358700033 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited 20 Open Access  
  Notes Approved Most recent IF: 5.401; 2012 IF: 3.535  
  Call Number UA @ lucian @ c:irua:105985 Serial 293  
Permanent link to this record
 

 
Author Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. pdf  doi
openurl 
  Title Nanocrystalline ZnO(Ga) : paramagnetic centers, surface acidity and gas sensor properties Type A1 Journal article
  Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 182 Issue Pages 555-564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO and ZnO(Ga) samples with different gallium content were prepared by wet-chemical method. Introduction of gallium leads to the increase of amount of weak acid sites such as surface hydroxyl groups. Gas sensing properties toward 0.22 ppm H2S and NO2 were studied at 100450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. Sensor signal toward H2S decreases with increase of Ga concentration. The dependence of ZnO(Ga) sensor signal to NO2 on the gallium content has non-monotonous character, which correlates with the change of conductivity of the samples in air and concentration of paramagnetic donor states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000319488800075 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited 42 Open Access  
  Notes Hercules; FWO Approved Most recent IF: 5.401; 2013 IF: 3.840  
  Call Number UA @ lucian @ c:irua:107346 Serial 2250  
Permanent link to this record
 

 
Author Ionescu, R.; Espinosa, E.H.; Leghrib, R.; Felten, A.; Pireaux, J.-J.; Erni, R.; Van Tendeloo, G.; Bittencourt, C.; Canellas, N.; Llobet, E. pdf  doi
openurl 
  Title Novel hybrid materials for gas sensing applications made of metal-decorated MWCNTs dispersed on nano-particle metal oxides Type A1 Journal article
  Year 2008 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 131 Issue 1 Pages 174-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000255426800026 Publication Date 2007-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited 47 Open Access  
  Notes Pai Approved Most recent IF: 5.401; 2008 IF: 3.122  
  Call Number UA @ lucian @ c:irua:68872 Serial 2377  
Permanent link to this record
 

 
Author Ferroni, M.; Carotta, M.C.; Guidi, V.; Martinelli, G.; Ronconi, F.; Richard, O.; van Dyck, D.; van Landuyt, J. doi  openurl
  Title Structural characterization of Nb-TiO2 nanosized thick-films for gas sensing application Type P1 Proceeding
  Year 2000 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 68 Issue 1-3 Pages 140-145  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Pure and Nb-doped TiO2 thick-films were prepared by screen-printing, starting from nanosized powders. Grain growth and crystalline phase modification occurred as consequence of firing at high temperature. It has been shown that niobium addition inhibits grain coarsening and hinders anatase-to-rutile phase transition. These semiconducting films exhibited n-type behavior, while Nb acted as donor-dopant. Gas measurements demonstrated that the films are suitable for CO or NO2 sensing. Microstructural characterization by electron microscopy and differential thermal analysis (DTA) highlights the dependence of gas-sensing behavior on film's properties. (C) 2000 Elsevier Science S.A. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000089218000022 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited 51 Open Access  
  Notes Approved Most recent IF: 5.401; 2000 IF: 1.470  
  Call Number UA @ lucian @ c:irua:95167 Serial 3223  
Permanent link to this record
 

 
Author Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Abakumov, A.M.; Gaskov, A.M. doi  openurl
  Title Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots Type A1 Journal article
  Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 205 Issue Pages 305-312  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work reports the study of photoconductivity and visible light activated room temperature gas sensors properties of nanocrystalline ZnO thick films sensitized with colloidal CdSe quantum dots (QDs). Nanocrystalline zinc oxide (ZnO) was synthesized by the precipitation method. Colloidal CdSe quantum dots were obtained by high temperature colloidal synthesis. Sensitization was effectuated by three different procedures including direct adsorption of CdSe QDs stabilized with oleic acid on ZnO surface, anchoring to the ZnO surface through a bifunctional molecule of mercaptopropionic acid (MPA), and coating of CdSe QDs with a monolayer of MPA with subsequent adsorption on ZnO surface. Sensor measurements demonstrated that obtained QD CdSe/ZnO nanocomposites can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000343117600041 Publication Date 2014-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited 36 Open Access  
  Notes Approved Most recent IF: 5.401; 2014 IF: 4.097  
  Call Number UA @ lucian @ c:irua:121107 Serial 3848  
Permanent link to this record
 

 
Author Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P. pdf  doi
openurl 
  Title UV effect on NO2 sensing properties of nanocrystalline In2O3 Type A1 Journal article
  Year 2016 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 231 Issue 231 Pages 491-496  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline indium oxide films with extremely small grains in range of 7-40 nm are prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature is investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In2O3 is illuminated while in the dark In2O3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In2O3 with different grain size sensitivity to NO2 under illumination and in the dark is proposed. We demonstrate that pulsed illumination may be used for NO2 detection at room temperature that significantly reduces the power consumption of sensor. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000374330900055 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited 27 Open Access  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ lucian @ c:irua:133630 Serial 4273  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M. pdf  url
doi  openurl
  Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
  Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414151800068 Publication Date 2017-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:145926 Serial 4710  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Platonov, V.B.; Chizhov, A.S.; Batuk, M.; Hadermann, J.; Khmelevsky, N.O.; Gaskov, A.M. pdf  url
doi  openurl
  Title Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers Type A1 Journal article
  Year 2020 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 307 Issue Pages 127624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508110400059 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited Open Access Not_Open_Access  
  Notes This work was supported by RFBR grants No. 18-03-00091 and No. 18-03-00580. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:166449 Serial 6343  
Permanent link to this record
 

 
Author Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am. pdf  url
doi  openurl
  Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 329 Issue Pages 129035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612060700009 Publication Date 2020-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.401 Times cited Open Access OpenAccess  
  Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:176123 Serial 6707  
Permanent link to this record
 

 
Author Lu, W.; Cui, W.; Zhao, W.; Lin, W.; Liu, C.; Van Tendeloo, G.; Sang, X.; Zhao, W.; Zhang, Q. pdf  doi
openurl 
  Title In situ atomistic insight into magnetic metal diffusion across Bi0.5Sb1.5Te3 quintuple layers Type A1 Journal article
  Year 2022 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue Pages 2102161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diffusion and occupancy of magnetic atoms in van der Waals (VDW) layered materials have significant impact on applications such as energy storage, thermoelectrics, catalysis, and topological phenomena. However, due to the weak VDW bonding, most research focus on in-plane diffusion within the VDW gap, while out-of-plane diffusion has rarely been reported. Here, to investigate out-of-plane diffusion in VDW-layered Bi2Te3-based alloys, a Ni/Bi0.5Sb1.5Te3 heterointerface is synthesized by depositing magnetic Ni metal on a mechanically exfoliated Bi0.5Sb1.5Te3 (0001) substrate. Diffusion of Ni atoms across the Bi0.5Sb1.5Te3 quintuple layers is directly observed at elevated temperatures using spherical-aberration-corrected scanning transmission electron microscopy (STEM). Density functional theory calculations demonstrate that the diffusion energy barrier of Ni atoms is only 0.31-0.45 eV when they diffuse through Te-3(Bi, Sb)(3) octahedron chains. Atomic-resolution in situ STEM reveals that the distortion of the Te-3(Bi, Sb)(3) octahedron, induced by the Ni occupancy, drives the formation of coherent NiM (M = Bi, Sb, Te) at the heterointerfaces. This work can lead to new strategies to design novel thermoelectric and topological materials by introducing magnetic dopants to VDW-layered materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000751742300001 Publication Date 2022-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.4  
  Call Number UA @ admin @ c:irua:186421 Serial 6960  
Permanent link to this record
 

 
Author Kirschhock, C.E.A.; Kremer, S.P.B.; Vermant, J.; Van Tendeloo, G.; Jacobs, P.A.; Martens, J.A. doi  openurl
  Title Design and synthesis of hierarchical materials from ordered zeolitic building units Type A1 Journal article
  Year 2005 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 11 Issue 15 Pages 4306-4313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000230761400001 Publication Date 2005-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 93 Open Access  
  Notes Approved Most recent IF: 5.317; 2005 IF: 4.907  
  Call Number UA @ lucian @ c:irua:60019 Serial 658  
Permanent link to this record
 

 
Author Hayasaka, K.; Liang, D.; Huybrechts, W.; De Waele, B.R.; Houthoofd, K.J.; Eloy, P.; Gaigneaux, E.M.; Van Tendeloo, G.; Thybaut, J.W.; Marin, G.B.; Denayer, J.F.M.; Baron, G.V.; Jacobs, P.A.; Kirschhock, C.E.A.; Martens, J.A.; doi  openurl
  Title Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods Type A1 Journal article
  Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 13 Issue 36 Pages 10070-10077  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000251855200006 Publication Date 2007-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 52 Open Access  
  Notes Approved Most recent IF: 5.317; 2007 IF: 5.330  
  Call Number UA @ lucian @ c:irua:67320 Serial 1268  
Permanent link to this record
 

 
Author Tsoufis, T.; Georgakilas, V.; Ke, X.; Van Tendeloo, G.; Rudolf, P.; Gournis, D. pdf  doi
openurl 
  Title Incorporation of pure fullerene into organoclays : towards C60-pillared clay structures Type A1 Journal article
  Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 19 Issue 24 Pages 7937-7943  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercalation from water solution. To overcome this bottleneck, we organically modified the clay with quaternary amines by using well-established reactions in clay science in order to expand the interlayer space and render the galleries organophilic. During the reaction with the fullerene solution, the organic solvent could enter into the clay galleries, thus transferring along the fullerene molecules. Furthermore, we demonstrate that the surfactant molecules, can be selectively removed by either simple ion-exchange reaction (e.g., interaction with Al(NO3)3 solution to replace the surfactant molecules with Al3+ ions) or thermal treatment (heating at 350 °C) to obtain novel fullerene-pillared clay structures exhibiting enhanced surface area. The synthesized hybrid materials were characterized in detail by a combination of experimental techniques including powder X-ray diffraction, transmission electron microscopy, X-ray photoemission, and UV/Vis spectroscopy as well as thermal analysis and nitrogen adsorptiondesorption measurements. The reported fullerene-pillared clay structures constitute a new hybrid system with very promising potential for the use in areas such as gas storage and/or gas separation due to their high surface area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000319825500035 Publication Date 2013-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 3 Open Access  
  Notes 262348 Esmi; 246791 Countatoms Approved Most recent IF: 5.317; 2013 IF: 5.696  
  Call Number UA @ lucian @ c:irua:107347 Serial 1599  
Permanent link to this record
 

 
Author Kalidindi, S.B.; Hyunchul, O.; Hirscher, M.; Esken, D.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Metal@COFs : covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material Type A1 Journal article
  Year 2012 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 18 Issue 35 Pages 10848-10856  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(eta 3-C3H5)(eta 5-C5H5)]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4 +/- 0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metalorganic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000307782800013 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 88 Open Access  
  Notes Fwo Approved Most recent IF: 5.317; 2012 IF: 5.831  
  Call Number UA @ lucian @ c:irua:100469 Serial 2007  
Permanent link to this record
 

 
Author Cabana, L.; Gonzalez-Campo, A.; Ke, X.; Van Tendeloo, G.; Nunez, R.; Tobias, G. pdf  url
doi  openurl
  Title Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 21 Issue 21 Pages 16792-16795  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to pi-pi interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.  
  Address Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de la UAB. 08193, Bellaterra (Spain). gerard.tobias@icmab.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366501600011 Publication Date 2015-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 5 Open Access  
  Notes The research leading to these results received financial support from MINECO (MAT2014-53500-R; CTQ2013-44670-R), Generalitat de Catalunya (2014/SGR/149), and from the European Commission under the FP7 ITN Marie-Curie Network programme RADDEL (grant agreement 290023), the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure (ESMI) and the European Research Council, ERC Grant No 246791-COUNTATOMS. A.G.C. thanks the CSIC for the JAE-DOC grant. Approved Most recent IF: 5.317; 2015 IF: 5.731  
  Call Number c:irua:129215 Serial 3964  
Permanent link to this record
 

 
Author Kirsanova, M.A.; Reshetova, L.N.; Olenev, A.V.; Abakumov, A.M.; Shevelkov, A.V. doi  openurl
  Title Semiclathrates of the GePTe system : synthesis and crystal structures Type A1 Journal article
  Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 17 Issue 20 Pages 5719-5726  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Novel compounds [Ge46−xPx]Tey (13.9≤x≤15.6, 5.92≤y≤7.75) with clathrate-like structures have been prepared and structurally characterized. They crystallize in the space group Fmequation image with the unit cell parameter changing from 20.544(2) to 20.698(2) Å (Z=8) on going from x=13.9 to x=15.6. Their crystal structure is composed of a covalently bonded Ge[BOND]P framework that hosts tellurium atoms in the guest positions and can be viewed as a peculiar variant of the type I clathrate superstructure. In contrast to the conventional type I clathrates, [Ge46−xPx]Tey contain tricoordinated (3b) atoms and no vacancies in the framework positions. As a consequence of the transformation of the framework, the majority of the guest tellurium atoms form a single covalent bond with the host framework and thus the title compounds are the first representative of semiclathrates with covalent bonding. A comparison is made with silicon clathrates and the evolution of the crystal structure upon changing the tellurium content is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000290216000028 Publication Date 2011-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 17 Open Access  
  Notes Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:89773 Serial 2981  
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leither-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y. pdf  doi
openurl 
  Title Spatial separation of covalent, ionic, and metallic interactions in Mg11Rh18B8 and Mg3Rh5B3 Type A1 Journal article
  Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 19 Issue 52 Pages 17860-17870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single-crystal X-ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1)angstrom; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2)angstrom; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron-localizability/electron-density approach reveals covalent BRh interactions in these arrangements and the formation of BRh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000328531000028 Publication Date 2013-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 5 Open Access  
  Notes Approved Most recent IF: 5.317; 2013 IF: 5.696  
  Call Number UA @ lucian @ c:irua:113697 Serial 3064  
Permanent link to this record
 

 
Author Zaikina, J.V.; Kovnir, K.A.; Sobolev, A.V.; Presniakov, I.A.; Prots, Y.; Baitinger, M.; Schnelle, W.; Olenev, A.V.; Lebedev, O.I.; Van Tendeloo, G.; Grin, Y.; Shevelkov, A.V. doi  openurl
  Title Sn20.5-3.5As22I8: a largely disordered cationic clathrate with a new type of superstructure and abnormally low thermal conductivity Type A1 Journal article
  Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 13 Issue 18 Pages 5090-5099  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000247708300005 Publication Date 2007-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 44 Open Access  
  Notes Approved Most recent IF: 5.317; 2007 IF: 5.330  
  Call Number UA @ lucian @ c:irua:65684 Serial 3556  
Permanent link to this record
 

 
Author Lin, K.; Lebedev, O.I.; Van Tendeloo, G.; Jacobs, P.A.; Pescarmona, P.P. pdf  doi
openurl 
  Title Titanosilicate beads with hierarchical porosity : synthesis and application as epoxidation catalysts Type A1 Journal article
  Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 16 Issue 45 Pages 13509-13518  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Porous titanosilicate beads with a diameter of 0.51.5 mm (TiSil-HPB-60) were synthesized from a preformed titanosilicate solution with a porous anion-exchange resin as template. The bead format of this material enables its straightforward separation from the reaction mixture in its application as a liquid-phase heterogeneous catalyst. The material displays hierarchical porosity (micro/mesopores) and incipient TS-1 structure building units. The titanium species are predominantly located in tetrahedral framework positions. TiSil-HPB-60 is a highly active catalyst for the epoxidation of cyclohexene with t-butyl hydroperoxide (TBHP) and aqueous H2O2. With both oxidants, TiSil-HPB-60 gave higher epoxide yields than Ti-MCM-41 and TS-1. The improved catalytic performance of TiSil-HPB-60 is mainly ascribed to the large mesopores favoring the diffusion of reagents and products to and from the titanium active sites. The epoxide yield and selectivity could be further improved by silylation of the titanosilicate beads. Importantly, TiSil-HPB-60 is a stable catalyst immune to titanium leaching, and can be easily recovered and reused in successive catalytic cycles without significant loss of activity. Moreover, TiSil-HPB-60 is active and selective in the epoxidation of a wide range of bulky alkenes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000285398400029 Publication Date 2010-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 38 Open Access  
  Notes Iap; Goa Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:88153 Serial 3668  
Permanent link to this record
 

 
Author Yang, X.-Y.; Tian, G.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Wei, Y.-X.; Liu, Z.-M.; Deng, Z.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance Type A1 Journal article
  Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 17 Issue 52 Pages 14987-14995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Preparation and characterization of well-organized zeolitic nanocrystal aggregates with an interconnected hierarchically micromesomacro porous system are described. Amorphous nanoparticles in bimodal aluminosilicates were directly transformed into highly crystalline nanosized zeolites, as well as acting as scaffold template. All pores on three length scales incorporated in one solid body are interconnected with each other. These zeolitic nanocrystal aggregates with hierarchically micromesomacroporous structure were thoroughly characterized. TEM images and 29Si NMR spectra showed that the amorphous phase of the initial material had been completely replaced by nanocrystals to give a micromesomacroporous crystalline zeolitic structure. Catalytic testing demonstrated their superiority due to the highly active sites and the presence of interconnected micromesomacroporosity in the cracking of bulky 1,3,5-triisopropylbenzene (TIPB) compared to traditional zeolite catalysts. This synthesis strategy was extended to prepare various zeolitic nanocrystal aggregates (ZSM-5, Beta, TS-1, etc.) with well-organized hierarchical micromesomacroporous structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000298547300035 Publication Date 2011-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 61 Open Access  
  Notes Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:96274 Serial 3913  
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
  Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 22 Issue 22 Pages 3304-3311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000371419200001 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 5.317 Times cited 43 Open Access  
  Notes Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:132347 Serial 4192  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: