toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Suffian, I.F.B.M.; Wang, J.T.-W.; Hodgins, N.O.; Klippstein, R.; Garcia-Maya, M.; Brown, P.; Nishimura, Y.; Heidari, H.; Bals, S.; Sosabowski, J.K.; Ogino, C.; Kondo, A.; Al-Jamal, K.T. url  doi
openurl 
  Title Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo Type A1 Journal article
  Year 2017 Publication Biomaterials Abbreviated Journal Biomaterials  
  Volume 120 Issue 120 Pages 126-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the ZHER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of ZHER2-AHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of ZHER2-ABBc particles in HER2-expressing tumours, compared to non-targeted AHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. (C) 2016 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Guildford Editor  
  Language Wos 000394398900012 Publication Date 2016-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.402 Times cited 20 Open Access OpenAccess  
  Notes ; The authors would like to thank Dr. Rafael T. M. de Rosales (King's College London) for useful discussion on the radiolabelling technique and Mr William Luckhurst (King's College London) on the technical help of AFM measurements. IFBMS would like to thank Public Service Department, Government of Malaysia for the Excellence Student Programme studentship. We acknowledge funding from Biotechnology and Biological Sciences Research Council (BBSRC; (BB/J008656/1)) and the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). NH is a recipient of Graduate School King's Health Partner's scholarship. RIC is a Marie Curie Fellow. S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI. The authors declare that they have no competing interests. ; ecas_Sara Approved Most recent IF: 8.402  
  Call Number UA @ lucian @ c:irua:141984UA @ admin @ c:irua:141984 Serial 4654  
Permanent link to this record
 

 
Author Vervloessem, E.; Aghaei, M.; Jardali, F.; Hafezkhiabani, N.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Based N2Fixation into NOx: Insights from Modeling toward Optimum Yields and Energy Costs in a Gliding Arc Plasmatron Type A1 Journal article
  Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 8 Issue 26 Pages 9711-9720  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology provides a sustainable, fossil-free method for N2 fixation, i.e., the conversion of inert atmospheric N2 into valuable substances, such as NOx or ammonia. In this work, we present a novel gliding arc plasmatron at atmospheric pressure for NOx production at different N2/O2 gas feed ratios, offering a promising NOx yield of 1.5% with an energy cost of 3.6 MJ/mol NOx produced. To explain the underlying mechanisms, we present a chemical kinetics model, validated by experiments, which provides insight into the NOx formation pathways and into the ambivalent role of the vibrational kinetics. This allows us to pinpoint the factors limiting the yield and energy cost, which can help to further improve the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000548456600013 Publication Date 2020-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.4 Times cited Open Access OpenAccess  
  Notes Herculesstichting; Universiteit Antwerpen; Vlaamse regering; H2020 European Research Council, 810182 ; N2 Applied; Excellence of Science FWO – FNRS project, 30505023 GoF9618n ; Approved Most recent IF: 8.4; 2020 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:170138 Serial 6392  
Permanent link to this record
 

 
Author Kovács, A.; Billen, P.; Cornet, I.; Wijnants, M.; Neyts, E.C. pdf  url
doi  openurl
  Title Modeling the physicochemical properties of natural deep eutectic solvents : a review Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 13 Issue 15 Pages 3789-3804  
  Keywords A1 Journal article; Engineering sciences. Technology; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Natural deep eutectic solvents (NADES) are mixtures of naturally derived compounds with a significantly decreased melting point due to the specific interactions among the constituents. NADES have benign properties (low volatility, flammability, toxicity, cost) and tailorable physicochemical properties (by altering the type and molar ratio of constituents), hence they are often considered as a green alternative to common organic solvents. Modeling the relation between their composition and properties is crucial though, both for understanding and predicting their behavior. Several efforts were done to this end, yet this review aims at structuring the present knowledge as an outline for future research. First, we reviewed the key properties of NADES and relate them to their structure based on the available experimental data. Second, we reviewed available modeling methods applicable to NADES. At the molecular level, density functional theory and molecular dynamics allow interpreting density differences and vibrational spectra, and computation of interaction energies. Additionally, properties at the level of the bulk media can be explained and predicted by semi-empirical methods based on ab initio methods (COSMO-RS) and equation of state models (PC-SAFT). Finally, methods based on large datasets are discussed; models based on group contribution methods and machine learning. A combination of bulk media and dataset modeling allows qualitative prediction and interpretation of phase equilibria properties on the one hand, and quantitative prediction of melting point, density, viscosity, surface tension and refractive indices on the other hand. In our view, multiscale modeling, combining the molecular and macroscale methods, will strongly enhance the predictability of NADES properties and their interaction with solutes, yielding truly tailorable solvents to accommodate (bio)chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541499100001 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.4 Times cited Open Access  
  Notes Approved Most recent IF: 8.4; 2020 IF: 7.226  
  Call Number UA @ admin @ c:irua:168851 Serial 6770  
Permanent link to this record
 

 
Author Eshtehardi, H.A.; van 't Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion processes. However, the underlying mechanisms of plasma catalysis are poorly understood. In this work, we present a 1D heterogeneous catalysis model with axial dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in the process stream in the axial direction), for plasma-catalytic NO production from N2/O2 mixtures. We investigate the concentration and reaction rates of each species formed as a function of time and position across the catalyst, in order to determine the underlying mechanisms. To obtain insights into how the performance of the process can be further improved, we also study how changes in the postplasma gas flow composition entering the catalyst bed and in the operation conditions of the catalytic stage affect the performance of NO production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 8.4 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7241  
Permanent link to this record
 

 
Author Vervloessem, E.; Gromov, M.; De Geyter, N.; Bogaerts, A.; Gorbanev, Y.; Nikiforov, A. pdf  url
doi  openurl
  Title NH3and HNOxFormation and Loss in Nitrogen Fixation from Air with Water Vapor by Nonequilibrium Plasma Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 10 Pages 4289-4298  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The current global energy crisis indicated that increasing our

insight into nonfossil fuel nitrogen fixation pathways for synthetic fertilizer

production is more crucial than ever. Nonequilibrium plasma is a good candidate

because it can use N2 or air as a N source and water directly as a H source, instead

of H2 or fossil fuel (CH4). In this work, we investigate NH3 gas phase formation

pathways from humid N2 and especially humid air up to 2.4 mol % H2O (100%

relative humidity at 20 °C) by optical emission spectroscopy and Fouriertransform

infrared spectroscopy. We demonstrate that the nitrogen fixation

capacity is increased when water vapor is added, as this enables HNO2 and NH3

production in both N2 and air. However, we identified a significant loss

mechanism for NH3 and HNO2 that occurs in systems where these species are

synthesized simultaneously; i.e., downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which rapidly decomposes

into N2 and H2O. We also discuss approaches to prevent this loss mechanism, as it reduces the effective nitrogen fixation when not

properly addressed and therefore should be considered in future works aimed at optimizing plasma-based N2 fixation. In-line removal

of HNO2 or direct solvation in liquid are two proposed strategies to suppress this loss mechanism. Indeed, using liquid H2O is

beneficial for accumulation of the N2 fixation products. Finally, in humid air, we also produce NH4NO3, from the reaction of HNO3

with NH3, which is of direct interest for fertilizer application.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953337700001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.4 Times cited Open Access OpenAccess  
  Notes This research is supported by the Excellence of Science FWOFNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant No. 810182 − SCOPE ERC Synergy project), and the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant No. G0G2322N), funded by the European Union-NextGenerationEU. Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195878 Serial 7254  
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 8.4 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182 − SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7257  
Permanent link to this record
 

 
Author Eshtehardi, H.A.; Van ‘t Veer, K.; Delplancke, M.-P.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Postplasma Catalytic Model for NO Production: Revealing the Underlying Mechanisms to Improve the Process Efficiency Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue 5 Pages 1720-1733  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is emerging for plasma-assisted gas conversion

processes. However, the underlying mechanisms of plasma catalysis are poorly

understood. In this work, we present a 1D heterogeneous catalysis model with axial

dispersion (i.e., accounting for back-mixing and molecular diffusion of fluid elements in

the process stream in the axial direction), for plasma-catalytic NO production from

N2/O2 mixtures. We investigate the concentration and reaction rates of each species

formed as a function of time and position across the catalyst, in order to determine the

underlying mechanisms. To obtain insights into how the performance of the process

can be further improved, we also study how changes in the postplasma gas flow

composition entering the catalyst bed and in the operation conditions of the catalytic

stage affect the performance of NO production.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926412800001 Publication Date 2023-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 8.4 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195377 Serial 7258  
Permanent link to this record
 

 
Author Sahun, M.; Privat-Maldonado, A.; Lin, A.; De Roeck, N.; Van de Heyden, L.; Hillen, M.; Michiels, J.; Steenackers, G.; Smits, E.; Ariën, K.K.; Jorens, P.G.; Delputte, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000964269500001 Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number UA @ admin @ c:irua:194897 Serial 7269  
Permanent link to this record
 

 
Author Bignoli, F.; Rashid, S.; Rossi, E.; Jaddi, S.; Djemia, P.; Terraneo, G.; Li Bassi, A.; Idrissi, H.; Pardoen, T.; Sebastiani, M.; Ghidelli, M. url  doi
openurl 
  Title Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition Type A1 Journal article
  Year 2022 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 221 Issue Pages 110972-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Binary ZrCu nanocomposite amorphous films are synthetized by pulsed laser deposition (PLD) under vac-uum (2 x 10-3 Pa) and 10 Pa He pressure, leading to fully amorphous compact and nanogranular mor-phologies, respectively. Then, post-thermal annealing treatments are carried out to explore thermal stability and crystallization phenomena together with the evolution of mechanical properties. Compact films exhibit larger thermal stability with partial crystallization phenomena starting at 420 degrees C, still to be completed at 550 degrees C, while nanogranular films exhibit early-stage crystallization at 300 degrees C and com-pleted at 485 degrees C. The microstructural differences are related to a distinct evolution of mechanical  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000886072100004 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4  
  Call Number UA @ admin @ c:irua:192194 Serial 7299  
Permanent link to this record
 

 
Author Kashiwar, A.; Arseenko, M.; Simar, A.; Idrissi, H. url  doi
openurl 
  Title On the role of microstructural defects on precipitation, damage, and healing behavior in a novel Al-0.5Mg2Si alloy Type A1 Journal article
  Year 2024 Publication Materials & design Abbreviated Journal  
  Volume 239 Issue Pages 112765-112769  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A recently developed healable Al-Mg2Si designed by the programmed damage and repair (PDR) strategy is studied considering the role microstructural defects play on precipitation, damage, and healing. The alloy incorporates sacrificial Mg2Si particles that precipitate after friction stir processing (FSP). They act as damage localization sites and are healable based on the solid-state diffusion of Al-matrix. A combination of different transmission electron microscopy (TEM) imaging techniques enabled the visualization and quantification of various crystallographic defects and the spatial distribution of Mg2Si precipitates. Intragrain nucleation is found to be the dominant mechanism for precipitation during FSP whereas grain boundaries and subgrain boundaries mainly lead to coarsening of the precipitates. The statistical and spatial analyses of the damaged particles have shown particle fracture as the dominant damage mechanism which is strongly dependent on the size and aspect ratio of the particles whereas the damage was not found to depend on the location of the precipitates within the matrix. The damaged particles are associated with dislocations accumulated around them. The interplay of these dislocations is directly visualized during healing based on in situ TEM heating which revealed recovery in the matrix as an operative mechanism during the diffusion healing of the PDR alloy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001194110200001 Publication Date 2024-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 8.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.4; 2024 IF: 4.364  
  Call Number UA @ admin @ c:irua:203298 Serial 9068  
Permanent link to this record
 

 
Author Manaigo, F.; Bahnamiri, O.S.; Chatterjee, A.; Panepinto, A.; Krumpmann, A.; Michiels, M.; Bogaerts, A.; Snyders, R. pdf  doi
openurl 
  Title Electrical stability and performance of a nitrogen-oxygen atmospheric pressure gliding arc plasma Type A1 Journal article
  Year 2024 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 12 Issue 13 Pages 5211-5219  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonthermal plasmas are currently being studied as a green alternative to the Haber-Bosch process, which is, today, the dominant industrial process allowing for the fixation of nitrogen and, as such, a fundamental component for the production of nitrogen-based industrial fertilizers. In this context, the gliding arc plasma (GAP) is considered a promising choice among nonthermal plasma options. However, its stability is still a key parameter to ensure industrial transfer of the technology. Nowadays, the conventional approach to stabilize this plasma process is to use external resistors. Although this indeed allows for an enhancement of the plasma stability, very little is reported about how it impacts the process efficiency, both in terms of NOx yield and energy cost. In this work, this question is specifically addressed by studying a DC-powered GAP utilized for nitrogen fixation into NOx at atmospheric pressure stabilized by variable external resistors. Both the performance and the stability of the plasma are reported as a function of the utilization of the resistors. The results confirm that while the use of a resistor indeed allows for a strong stabilization of the plasma without impacting the NOx yield, especially at high plasma current, it dramatically impacts the energy cost of the process, which increases from 2.82 to 7.9 MJ/mol. As an alternative approach, we demonstrate that the replacement of the resistor by an inductor is promising since it allows for decent stabilization of the plasma, while it does not affect either the energy cost of the process or the NOx yield.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001186347900001 Publication Date 2024-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (down) 8.4 Times cited Open Access  
  Notes Approved Most recent IF: 8.4; 2024 IF: 5.951  
  Call Number UA @ admin @ c:irua:204774 Serial 9146  
Permanent link to this record
 

 
Author Bervoets, A.R.J.; Behets, G.J.; Schryvers, D.; Roels, F.; Yang, Z.; Verberckmoes, S.C.; Damment, S.J.P.; Dauwe, S.; Mubiana, V.K.; Blust, R.; de Broe, M.E.; d' Haese, P.C. pdf  doi
openurl 
  Title Hepatocellular transport and gastrointestinal absorption of lanthanum in chronic renal failure Type A1 Journal article
  Year 2009 Publication Kidney international Abbreviated Journal Kidney Int  
  Volume 75 Issue Pages 389-398  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Pathophysiology  
  Abstract Lanthanum carbonate is a new phosphate binder that is poorly absorbed from the gastrointestinal tract and eliminated largely by the liver. After oral treatment, we and others had noticed 23 fold higher lanthanum levels in the livers of rats with chronic renal failure compared to rats with normal renal function. Here we studied the kinetics and tissue distribution, absorption, and subcellular localization of lanthanum in the liver using transmission electron microscopy, electron energy loss spectrometry, and X-ray fluoresence. We found that in the liver lanthanum was located in lysosomes and in the biliary canal but not in any other cellular organelles. This suggests that lanthanum is transported and eliminated by the liver via a transcellular, endosomal-lysosomal-biliary canicular transport route. Feeding rats with chronic renal failure orally with lanthanum resulted in a doubling of the liver levels compared to rats with normal renal function, but the serum levels were similar in both animal groups. These levels plateaued after 6 weeks at a concentration below 3 g/g in both groups. When lanthanum was administered intravenously, thereby bypassing the gastrointestinal tract-portal vein pathway, no difference in liver levels was found between rats with and without renal failure. This suggests that there is an increased gastrointestinal permeability or absorption of oral lanthanum in uremia. Lanthanum levels in the brain and heart fluctuated near its detection limit with long-term treatment (20 weeks) having no effect on organ weight, liver enzyme activities, or liver histology. We suggest that the kinetics of lanthanum in the liver are consistent with a transcellular transport pathway, with higher levels in the liver of uremic rats due to higher intestinal absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000263145800009 Publication Date 2008-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0085-2538;1523-1755; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.395 Times cited 29 Open Access  
  Notes Fwo; Iwt Approved Most recent IF: 8.395; 2009 IF: 6.193  
  Call Number UA @ lucian @ c:irua:72290 Serial 1417  
Permanent link to this record
 

 
Author Vervaet, B.A.; Nast, C.C.; Jayasumana, C.; Schreurs, G.; Roels, F.; Herath, C.; Kojc, N.; Samaee, V.; Rodrigo, S.; Gowrishankar, S.; Mousson, C.; Dassanayake, R.; Orantes, C.M.; Vuiblet, V.; Rigothier, C.; d' Haese, P.C.; de Broe, M.E. url  doi
openurl 
  Title Chronic interstitial nephritis in agricultural communities is a toxin induced proximal tubular nephropathy Type A1 Journal article
  Year 2019 Publication Kidney international Abbreviated Journal Kidney Int  
  Volume 97 Issue 97 Pages 350-369  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory Experimental Medicine and Pediatrics (LEMP); Pathophysiology  
  Abstract Almost 30 years after the detection of chronic interstitial nephritis in agricultural communities (CINAC) its etiology remains unknown. To help define this we examined 34 renal biopsies from Sri Lanka, El Salvador, India and France of patients with chronic kidney disease 2-3 and diagnosed with CINAC by light and electron microscopy. In addition to known histopathology, we identified a unique constellation of proximal tubular cell findings including large dysmorphic lysosomes with a light-medium electron-dense matrix containing dispersed dark electron-dense non-membrane bound “aggregates”. These aggregates associated with varying degrees of cellular/tubular atrophy, apparent cell fragment shedding and no-weak proximal tubular cell proliferative capacity. Identical lysosomal lesions, identifiable by electron microscopy, were observed in 9% of renal transplant implantation biopsies, but were more prevalent in six month (50%) and 12 month (67%) protocol biopsies and in indication biopsies (76%) of calcineurin inhibitor treated transplant patients. The phenotype was also found associated with nephrotoxic drugs (lomustine, clomiphene, lithium, cocaine) and in some patients with light chain tubulopathy, all conditions that can be directly or indirectly linked to calcineurin pathway inhibition or modulation. One hundred biopsies of normal kidneys, drug/toxin induced nephropathies, and overt proteinuric patients of different etiologies to some extent could demonstrate the light microscopic proximal tubular cell changes, but rarely the electron microscopic lysosomal features. Rats treated with the calcineurin inhibitor cyclosporine for four weeks developed similar proximal tubular cell lysosomal alterations, which were absent in a dehydration group. Overall, the finding of an identical proximal tubular cell (lysosomal) lesion in CINAC and calcineurin inhibitor nephrotoxicity in different geographic regions suggests a common paradigm where CINAC patients undergo a tubulotoxic mechanism similar to calcineurin inhibitor nephrotoxicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508449300020 Publication Date 2019-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0085-2538; 1523-1755 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.395 Times cited Open Access  
  Notes Approved Most recent IF: 8.395  
  Call Number UA @ admin @ c:irua:164305c:irua:166544 Serial 5384  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Callaert, C.; Hadermann, J.; Delville, R.; Caspi, E.'ad N.; Dahlqvist, M.; Rosen, J.; Marshal, A.; Pradeep, K.G.; Schneider, J.M.; Vleugels, J.; Lambrinou, K. pdf  doi
openurl 
  Title Compatibility of Zr₂AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic Type A1 Journal article
  Year 2020 Publication Corrosion Science Abbreviated Journal Corros Sci  
  Volume 171 Issue Pages 108704-108719  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work investigates the compatibility of Zr2AlC MAX phase-based ceramics with liquid LBE, and proposes a mechanism to explain the observed local Zr2AlC/LBE interaction. The ceramics were exposed to oxygen-poor (C-O <= 2.2 x 10(-10) mass%), static liquid LBE at 500 degrees C for 1000 h. A new Zr-2(Al,Bi,Pb)C MAX phase solid solution formed in-situ in the LBE-affected Zr2AlC grains. Out-of-plane ordering was favorable in the new solid solution, whereby A-layers with high and low-Bi/Pb contents alternated in the crystal structure, in agreement with first-principles calculations. Bulk Zr-2(Al,Bi,Pb)C was synthesized by reactive hot pressing to study the crystal structure of the solid solution by neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537624600005 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-938x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.3 Times cited 3 Open Access Not_Open_Access  
  Notes ; B.T. acknowledges the financial support of the SCK CEN Academy for Nuclear Science and Technology (Belgium). This research was partly funded by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/ 2007-2013 under Grant Agreement No. 604862 (FP7 MatISSE), the MYRRHA project (SCK CEN, Belgium), as well as by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). The performed research falls within the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials (JPNM). The authors gratefully acknowledge the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM)) and the Knut and Alice Wallenberg (KAW) foundation. The calculations were carried out using supercomputer resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) and the PDC Center for High Performance Computing. E.N.C. thanks Offir Ozeri for his help in NPD data acquiring. ; Approved Most recent IF: 8.3; 2020 IF: 5.245  
  Call Number UA @ admin @ c:irua:170157 Serial 6475  
Permanent link to this record
 

 
Author Attri, P.; Razzokov, J.; Yusupov, M.; Koga, K.; Shiratani, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 148 Issue Pages 657-665  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Understanding the folding and stability of membrane proteins is of great importance in protein science. Recently, osmolytes and ionic liquids (ILs) are increasingly being used as drug delivery systems in the biopharmaceutical industry. However, the stability of membrane proteins in the presence of osmolytes and ILs is not yet fully understood. Besides, the effect of oxidative stress on membrane proteins with osmolytes or ILs has not been investigated. Therefore, we studied the influence of osmolytes and ILs as co-solvents on the stability of a model membrane protein (i.e., Bacteriorhodopsin in purple membrane of Halobacterium salinarum), using UV–Vis spectroscopy and molecular dynamics (MD) simulations. The MD simulations allowed us to determine the flexibility and solvent accessible surface area (SASA) of Bacteriorhodopsin protein in the presence and/or absence of cosolvents, as well as to carry out principal component analysis (PCA) to identify the most important movements in this protein. In addition, by means of UV–Vis spectroscopy we studied the effect of oxidative stress generated by cold atmospheric plasma on the stability of Bacteriorhodopsin in the presence and/or absence of co-solvents. This study is important for a better understanding of the stability of proteins in the presence of oxidative stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000522094600066 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.2 Times cited Open Access  
  Notes Horizon2020, 743546 ; JSPS, 19H05462 16H03895 ; Nagoya University; We gratefully acknowledge the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI 19H05462 and 16H03895, the joint usage/research program of Center for Low-temperature Plasma Science, Nagoya University and also supported by JSPS and RCL under the Japan-Lithuania Research Cooperative Program. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:165585 Serial 5444  
Permanent link to this record
 

 
Author Attri, P.; Park, J.-H.; De Backer, J.; Kim, M.; Yun, J.-H.; Heo, Y.; Dewilde, S.; Shiratani, M.; Choi, E.H.; Lee, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 163 Issue Pages 2405-2414  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract NADPH oxidases 1 (NOX1) derived reactive oxygen species (ROS) play an important role in the progression of cancer through signaling pathways. Therefore, in this paper, we demonstrate the effect of cold atmospheric plasma (CAP) on the structural changes of Noxa1 SH3 protein, one of the regulatory subunits of NOX1. For this purpose, firstly we purified the Noxa1 SH3 protein and analyzed the structure using X-ray crystallography, and subsequently, we treated the protein with two types of CAP reactors such as pulsed dielectric barrier discharge (DBD) and Soft Jet for different time intervals. The structural deformation of Noxa1 SH3 protein was analyzed by various experimental methods (circular dichroism, fluorescence, and NMR spectroscopy) and by MD simulations. Additionally, we demonstrate the effect of CAP (DBD and Soft Jet) on the viability and expression of NOX1 in A375 cancer cells. Our results are useful to understand the structural modification/oxidation occur in protein due to reactive oxygen and nitrogen (RONS) species generated by CAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579839600233 Publication Date 2020-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.2 Times cited Open Access  
  Notes European Marie Skłodowska-Curie Individual Fellowship, 743546 ; JSPS, 20K14454 ; National Research Foundation of Korea, 2019M3A9F6021810 NRF-2017M3A9F6029753 NRF-2019M3E5D6063903 NRF-2016R1A6A3A04010213 ; Brain Korea 21; MSIT, NRF-2016K1A4A3914113 ; Hercules Foundation; Flemish Government; UA; We gratefully acknowledge the European Marie SkłodowskaCurie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. Additionally, work was supported by several grants (2019M3A9F6021810, NRF2017M3A9F6029753, NRF-2019M3E5D6063903 to W. Lee), Basic Science Research Program (NRF-2016R1A6A3A04010213 to J.H. Yun) through the National Research Foundation of Korea and in part by the Brain Korea 21 (BK21) PLUS program (J.H.P.). EHC is thankful to National Research Foundation (NRF) of Korea, funded by the Korea government (MSIT) under the grant number (NRF2016K1A4A3914113). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:172451 Serial 6419  
Permanent link to this record
 

 
Author Larraín, M.; Billen, P.; Van Passel, S. pdf  doi
openurl 
  Title The effect of plastic packaging recycling policy interventions as a complement to extended producer responsibility schemes : a partial equilibrium model Type A1 Journal article
  Year 2022 Publication Waste Management Abbreviated Journal Waste Manage  
  Volume 153 Issue Pages 355-366  
  Keywords A1 Journal article; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Extended producer responsibility (EPR) schemes have effectively increased the plastic waste that is separately collected. However, due to the structure of the recycling industry, EPR cannot increase recycling rates up to the target levels.Additional policy instruments to increase recycling rates such as recycled content targets, green dot fees bonus for recycled content, recycling targets and taxes on non-recycled plastic packaging have been discussed on a political level in the last years. However, very little research has quantitatively studied the effectiveness of these policy interventions.Using a partial equilibrium model, this paper examines the effectiveness of the implementation of the aforementioned policy instruments to increase recycling rates and the impact on different stakeholders of the value chain: plastic producers, consumers, producer responsibility organization and recyclers.Results show that direct interventions (recycled content standards and recycling targets) have the benefit of decoupling the recycling industry from external markets such as the oil market. They can be a good starting point to increase recycling, but in the long term they may be restricting by not presenting incentives to achieve recycling levels beyond the targeted amounts and by limiting technological innovation. On the contrary, eco-nomic interventions such as a green dot fee bonus or a packaging tax create economic incentives for recycling. However, these incentives are diminished by the lower perceived quality of packaging with higher recycled content levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000868915000004 Publication Date 2022-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:191367 Serial 7370  
Permanent link to this record
 

 
Author Moretti, M.; Njakou Djomo, S.; Azadi, H.; May, K.; De Vos, K.; Van Passel, S.; Witters, N. pdf  url
doi  openurl
  Title A systematic review of environmental and economic impacts of smart grids Type A1 Journal article
  Year 2017 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 68 Issue 2 Pages 888-898  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Smart grids (SGs) have a central role in the development of the global power sector. Cost-benefit analyses and environmental impact assessments are used to support policy on the deployment of SG systems and technologies. However, the conflicting and widely varying estimates of costs, benefits, greenhouse gas (GHG) emission reduction, and energy savings in literature leave policy makers struggling with how to advise regarding SG deployment. Identifying the causes for the wide variation of individual estimates in the literature is crucial if evaluations are to be used in decision-making. This paper (i) summarizes and compares the methodologies used for economic and environmental evaluation of SGs (ii) identifies the sources of variation in estimates across studies, and (iii) point to gap in research on economic and environmental analyses of SG systems. Seventeen studies (nine articles and eight reports published between 2000 and 2015) addressing the economic costs versus benefits, energy efficiency, and GHG emissions of SGs were systematically searched, located, selected, and reviewed. Their methods and data were subsequently extracted and analysed. The results show that no standardized method currently exists for assessing the economic and environmental impacts of SG systems. The costs varied between 0.03 and 1143 M/yr, while the benefits ranged from 0.04 to 804 M/yr, suggesting that SG systems do not result in cost savings The primary energy savings ranged from 0.03 to 0.95 MJ/kWh, whereas the GHG emission reduction ranged from 10 to 180 gCO2/kWh, depending on the country grid mix and the system boundary of the SG system considered. The findings demonstrate that although SG systems are energy efficient and reduce GHG emissions, investments in SG systems may not yield any benefits. Standardizing some methodologies and assumptions such as discount rates, time horizon and scrutinizing some key input data will result in more consistent estimates of costs and benefits, GHG emission reduction, and energy savings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391899400006 Publication Date 2016-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.05 Times cited 27 Open Access  
  Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. This research paper has been implemented within the GREAT (Growing Renewable Energy Applications and Technologies) project funded by the European INTERREG IVB North-Western Europe Programme. Nele Witters was financed by FWO (Research Foundation Flanders). ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:139036 Serial 6260  
Permanent link to this record
 

 
Author Rafiaani, P.; Kuppens, T.; Van Dael, M.; Azadi, H.; Lebailly, P.; Van Passel, S. pdf  url
doi  openurl
  Title Social sustainability assessments in the biobased economy : towards a systemic approach Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 82 Issue 2 Pages 1839-1853  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The majority of impact assessments for the biobased economy are primarily focused on the environmental and (techno-)economic aspects, while social aspects are rarely considered. This study proposes a modified systemic approach for a social sustainability impact assessment of the biobased economy, based on a review on the common methodologies for assessing social impacts. Accordingly, the proposed approach follows the four general iterative steps of social life cycle analysis (SLCA) as it considers all life cycle phases of the biobased economy. The systemic approach considers the potential social impacts on local communities, workers, and consumers as the main three groups of the stakeholders. The review showed that the most common social indicators for inventory analysis within the biobased economy include health and safety, food security, income, employment, land- and worker-related concerns, energy security, profitability, and gender issues. Multi-criteria decision analysis (MCDA) was also highlighted as the broadly utilized methodology for aggregating the results of impact assessments within the biobased economy. Taking a life cycle perspective, this study provides a holistic view of the full sustainability of research, design, and innovation in the biobased economy by suggesting the integration of the social aspects with techno-economic and an environmental life cycle assessment. Our proposed systemic approach makes possible to integrate the social impacts that are highly valued by the affected stakeholders into the existing sustainability models that focus only on environmental and techno-economic aspects. We discuss the steps of the proposed systemic approach in order to identify the challenges of applying them within the biobased economy. These challenges refer mainly to the definition of the functional unit and system boundaries, the selection and the analysis of social indicators (inventory analysis), the aggregation of the inventory to impact categories, and the uncertainties associated with the social sustainability evaluation. The result of this review and the proposed systemic approach serve as a foundation for industry and policy makers to gain a better insight into the importance of social sustainability impacts assessment within the biobased economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423371300014 Publication Date 2017-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.05 Times cited 28 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:149031 Serial 6250  
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Lemmens, B.; Van Passel, S. pdf  url
doi  openurl
  Title A review of the sustainability of algal-based biorefineries : towards an integrated assessment framework Type A1 Journal article
  Year 2017 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 68 Issue 2 Pages 876-887  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Algal-based bioenergy products have faced multiple economic and environmental problems. To counter these problems, algal-based biorefineries have been proposed as a promising solution. Multiple environmental and economic assessments have analyzed this concept. However, a wide variation in results was reported. This study performs a review to evaluate the methodological reasons behind this variation. Based on this review, four main challenges for a sustainability assessment were identified: 1) the use of a clear framework; 2) the adaptation of the methodology to all stages of technological maturity; 3) the use of harmonized assumptions; 4) the integration of the technological process. A generic methodology, based on the integration of a techno-economic assessment methodology and a streamlined life cycle assessment was proposed. This environmental techno-economic assessment can be performed following an iterative approach during each stage of technology development. In this way, crucial technological parameters can be directly identified and evaluated during the maturation of the technology. The use of this assessment methodology can therefore act as guidance to decrease the time-to-market for innovative and sustainable technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391899400005 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.05 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:139038 Serial 6245  
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Van Dael, M.; Van Passel, S.; Malina, R. pdf  doi
openurl 
  Title A review of sustainability indicators for biobased chemicals Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 94 Issue 94 Pages 115-126  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Companies dealing with chemical products have to cope with large amounts of waste and environmental risk due to the use and production of toxic substances. Against this background, increasing attention is being paid to green chemistry and the translation of this concept into biobased chemicals. Given the multitude of economic, environmental and societal impacts that the production and use of biobased chemicals have on sustainability, assessment approaches need to be developed that allow for measurement and comparison of these impacts. To evaluate sustainability in the context of policy and decision-making, indicators are generally accepted means. However, sustainability indicators currently predominantly exist for low-value applications in the bioeconomy, like bioenergy and biofuels. In this paper, a review of the state-of-the-art sustainability indicators for biobased chemicals is conducted and a gap analysis is performed to identify indicator development needs. Based on the analysis, a clear hierarchy within the concept of sustainability is found where the environmental aspect dominates over economic and social indicators. All one-dimensional indicator-sets account for environmental impacts (50%), whereas two-dimensional sets complement the environmental issues with economic indicators (34%). Moreover, even the sets encompassing all three sustainability dimensions (16%) do not account for the dynamics and interlinkages between the environment, economy and society. Using results from the literature review, an indicator list is presented that captures all indicators currently used within sustainability assessment of biobased chemicals. Finally, a framework is proposed for future indicator selection using a stakeholder survey to obtain a prioritized list of sustainability indicators for biobased chemicals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000446310000008 Publication Date 2018-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.05 Times cited 17 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:154140 Serial 6244  
Permanent link to this record
 

 
Author Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H. pdf  doi
openurl 
  Title Renewable energy development in rural areas of Iran Type A1 Journal article
  Year 2016 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 65 Issue Pages 743-755  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Iran's energy system is extremely dependent on fossil fuels which, in turn, have led to problems such as fossil fuels depletion, social, economic and environmental damage and territorial imbalance. The country should therefore design a sustainable energy system based on clean energy as well as renewable energy. Accordingly, and given that Iran's rural areas suffer from the unsustainable energy system, it is necessary to integrate renewable energy into comprehensive development programs in general, and into rural development programs, specifically. This review paper answers the following questions: Why is renewable energy important for Iran at national and rural levels? How is renewable energy related to sustainable rural development? and What are the challenges in the promotion of renewable energy technologies in Iran? The paper concludes that although renewable energy has potential for development in Iran's rural areas due to environmental, social and economic advantages, it could face some infrastructural, managerial, socio-cultural and economic challenges. Accordingly, aggressive and innovative policy making is required to meet these challenges. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383293800053 Publication Date 2016-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 8.05 Times cited 41 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:137105 Serial 6243  
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Van Loon, J.; Du Bois, E.; De Wael, K.; Moretto, L.M. pdf  doi
openurl 
  Title Disposable electrodes from waste materials and renewable sources for (bio) electroanalytical applications Type A1 Journal article
  Year 2019 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron  
  Volume 146 Issue 146 Pages 111758  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract The numerous advantages of disposable and screen-printed electrodes (SPEs) particularly in terms of portability, sensibility, sensitivity and low-cost led to the massive application of these electroanalytical devices. To limit the electronic waste and recover precious materials, new recycling processes were developed together with alternative SPEs fabrication procedures based on renewable, biocompatible sources or waste materials, such as paper, agricultural byproducts or spent batteries. The increased interest in the use of eco-friendly materials for electronics has given rise to a new generation of highly performing green modifiers. From paper based electrodes to disposable electrodes obtained from CD/DVD, in the last decades considerable efforts were devoted to reuse and recycle in the field of electrochemistry. Here an overview of recycled and recyclable disposable electrodes, sustainable electrode modifiers and alternative fabrication processes is proposed aiming to provide meaningful examples to redesign the world of disposable electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000497250600003 Publication Date 2019-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 7.78 Times cited 2 Open Access  
  Notes ; This research received funding from FWO and IOF (UAntwerpen). ; Approved Most recent IF: 7.78  
  Call Number UA @ admin @ c:irua:164563 Serial 5578  
Permanent link to this record
 

 
Author Amiri-Aref, M.; Raoof, J.B.; Kiekens, F.; De Wael, K. pdf  doi
openurl 
  Title Mixed hemi/ad-micelles coated magnetic nanoparticles for the entrapment of hemoglobin at the surface of a screen-printed carbon electrode and its direct electrochemistry and electrocatalysis Type A1 Journal article
  Year 2015 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron  
  Volume 74 Issue Pages 518-525  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract An efficient procedure for the physical entrapment of proteins within a biocompatible matrix and their immobilization on electrode surfaces is of utmost importance in the fabrication of biosensors. In this work, the magnetic entrapment of hemoglobin (Hb) at the surface of a screen-printed carbon electrode (SPCE), through mixed hemi/ad-micelles (MHAM) array of positively charged surfactant supported iron oxide magnetic nanoparticles (Mag-NPs), is reported. The Hb/MHAM@Mag-NPs biocomposite is captured at SPCE by a super magnet (Hb/MHAM@Mag-NPs/SPCE). To gain insight in the configuration of the mixed hemi/ad-micelles of CTAB at Mag-NPs, zeta-potential measurements were performed. The entrapment of Hb at MHAM@Mag-NPs was confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR). Direct electron transfer of the Hb intercalated into the composite film showed a pair of well-defined quasi-reversible redox peak at formal potential of −0.255 V vs. Ag/AgCl corresponding to heme Fe(III)/Fe(II) redox couple. It shows that the MHAM@Mag-NPs composite could increase the adsorption ability for Hb, thus provides a facile direct electron transfer between the Hb and the substrate. The proposed biosensor showed excellent electrocatalytic activity to the H2O2 reduction in the wide concentration range from 5.0 to 300.0 µM obtained by amperometric measurement. The MichaelisMenten constant (Km) value of Hb at the modified electrode is 55.4 µM, showing its high affinity. Magnetic entrapment offers a promising design for fast, convenient and effective immobilization of protein within a few minutes for determination of the target molecule in low sample volume at disposable cost-effective SPCE.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360772800071 Publication Date 2015-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 7.78 Times cited 14 Open Access  
  Notes ; We are thankful for the BOF financial support from the University of Antwerp and Hercules financial support (SEM). ; Approved Most recent IF: 7.78; 2015 IF: 6.409  
  Call Number UA @ admin @ c:irua:126535 Serial 5731  
Permanent link to this record
 

 
Author Ranjbar, S.; Shahmansouri, M.; Attri, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of plasma-induced oxidative stress on the glycolysis pathway of Escherichia coli Type A1 Journal article
  Year 2020 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 127 Issue Pages 104064  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Antibiotic resistance is one of the world’s most urgent public health problems. Due to its antibacterial properties, cold atmospheric plasma (CAP) may serve as an alternative method to antibiotics. It is claimed that oxidative stress caused by CAP is the main reason of bacteria inactivation. In this work, we computationally investigated the effect of plasma-induced oxidation on various glycolysis metabolites, by monitoring the production of the biomass. We observed that in addition to the significant reduction in biomass production, the rate of some re­actions has increased. These reactions produce anti-oxidant products, showing the bacterial defense mechanism to escape the oxidative damage. Nevertheless, the simulations show that the plasma-induced oxidation effect is much stronger than the defense mechanism, causing killing of the bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603362700001 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 7.7 Times cited Open Access  
  Notes Ministry of Science and Technology of Iran; Hercules Foundation; Flemish Government; EWI; S. R. acknowledges funding from the Ministry of Science and Tech­nology of Iran. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the universitteit Antwerpen. We also would like to thank Dr. Charlotta Bengtson for her suggestions in writing this paper. Approved Most recent IF: 7.7; 2020 IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:173860 Serial 6437  
Permanent link to this record
 

 
Author Hugé, J.; Rochette, Aj.; de Béthune, S.; Parra Paitan, Cc.; Vanderhaegen, K.; Vandervelden, T.; Van Passel, S.; Vanhove, Mp.m.; Verbist, B.; Verheyen, D.; Waas, T.; Janssens, I.; Janssens de Bisthoven, L. url  doi
openurl 
  Title Ecosystem services assessment tools for African Biosphere Reserves: A review and user-informed classification Type A1 Journal Article
  Year 2020 Publication Ecosystem Services Abbreviated Journal Ecosyst Serv  
  Volume 42 Issue Pages 101079  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract While the concept of ecosystem services which links biodiversity to human wellbeing, is by now well-known, its translation into actual management decisions is still uneven. African Biosphere Reserves, which are to be living labs for sustainable development, embody the idea of synergies between people and nature. Gaining knowledge about the provision, the use and the trends of ecosystem services in these reserves is essential to ensure their global change-proof management. The diversity of rapidly evolving ecosystem services assessment tools requires a systematic and informed selection, in order to ensure that prospective tool users select the most adequate tool, aligned to their needs and context. Based on a Delphi survey of future tool users, and on a review of ecosystem services assessment tools, we propose guidance to users to select the most suited tool based on the context of African Biosphere Reserves, and on tool requirements regarding data input, necessary skills, outputs and types of ecosystem services addressed. The use of the Delphi survey and the focus on African Biosphere Reserves are new elements that contribute to the theory and practice of ecosystem services assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000522223700008 Publication Date 2020-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 7.6 Times cited Open Access  
  Notes The authors wish to thank all Delphi participants. The authors ac- knowledge the financial support of the UNESCO MAB Programme and the Belgian Science Policy, within the frame of the EVAMAB project; the Belgian Development Cooperation for its support to CEBioS; the KLIMOS Acropolis Research Platform funded by the Flemish Inter- University Council – University Development Cooperation VLIR UOS; the Global Minds Post-Doctoral Fellowship Program of the Vrije Universiteit Brussel and VLIR UOS. This manuscript is one of the out- puts of Work Package 1 of the EVAMAB Project (Economic valuation of ecosystem services in Biosphere Reserves: testing effective rapid as- sessment methods in selected African Biosphere Reserves). Approved Most recent IF: 7.6; 2020 IF: 4.072  
  Call Number ENM @ enm @c:irua:167256 Serial 6349  
Permanent link to this record
 

 
Author Leadley, D.R.; Nicholas, R.J.; Singleton, J.; Xu, W.; Peeters, F.M.; Devreese, J.T.; Perenboom, J.A.A.J.; van Bockstal, L.; Herlach, F.; Harris, J.J.; Foxon, C.T. url  doi
openurl 
  Title Collapse of high field magnetophonon resonance in GaAs-GaAlAs heterojunctions Type A1 Journal article
  Year 1994 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 73 Issue Pages 589-592  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1994NZ23700021 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 7.512 Times cited 24 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:9278 Serial 383  
Permanent link to this record
 

 
Author Tso, H.C.; Vasilopoulos, P.; Peeters, F.M. url  openurl
  Title Coulomb coupling between spatially separated electron and hole layers: generalized random-phase approximation Type A1 Journal article
  Year 1993 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 70 Issue Pages 2146-2149  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract http://dx.doi.org/doi:10.1103/PhysRevLett.70.2146  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1993KV97400024 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 7.512 Times cited 58 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:5786 Serial 531  
Permanent link to this record
 

 
Author Tso, H.C.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Direct Coulomb and phonon-mediated coupling between spatially separated electron gases Type A1 Journal article
  Year 1992 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 68 Issue Pages 2516-2519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1992HP80100028 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 7.512 Times cited 106 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:3003 Serial 709  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Amelinckx, S.; Verheijen, M.A.; van Loosdrecht, P.H.M.; Meijer, G. url  openurl
  Title New orientationally ordered low-temperature superstructure in high-purity C60 Type A1 Journal article
  Year 1992 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 69 Issue 7 Pages 1065-1068  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract http://dx.doi.org/doi:10.1103/PhysRevLett.69.1065  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1992JJ33000018 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (down) 7.512 Times cited 69 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:4445 Serial 2329  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: