toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yang, M.; Orekhov, A.; Hu, Z.-Y.; Feng, M.; Jin, S.; Sha, G.; Li, K.; Samaee, V.; Song, M.; Du, Y.; Van Tendeloo, G.; Schryvers, D. pdf  url
doi  openurl
  Title Shearing and rotation of β'' and β' precipitates in an Al-Mg-Si alloy under tensile deformation : in-situ and ex-situ studies Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume 220 Issue Pages 117310  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interaction between dislocations and nano-precipitates during deformation directly influences hardening response of precipitation-strengthening metals such as Al-Mg-Si alloys. However, how coherent and semi-coherent nano-precipitates accommodate external deformation applied to an Al alloy remains to be elucidated. In-situ tensile experiments in a transmission electron microscope (TEM) were conducted to study the dynamic process of dislocations cutting through coherent needle-like beta '' precipitates with diameters of 3 similar to 8 nm. Comprehensive investigations using in-situ, ex-situ TEM and atom probe tomography uncovered that beta '' precipitates were firstly sheared into small fragments, and then the rotation of the fragments, via sliding along precipitate/matrix interfaces, destroyed their initially coherent interface with the Al matrix. In contrast, semi-coherent beta' precipitates with sizes similar to beta '' were more difficult to be fragmented and accumulation of dislocations at the interface increased interface misfit between beta' and the Al matrix. Consequently, beta' precipitates could basically maintain their needle-like shape after the tensile deformation. This research gains new insights into the interaction between nano-precipitates and dislocations. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000705535300005 Publication Date 2021-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.301 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:182528 Serial 6884  
Permanent link to this record
 

 
Author Hayasaka, K.; Liang, D.; Huybrechts, W.; De Waele, B.R.; Houthoofd, K.J.; Eloy, P.; Gaigneaux, E.M.; Van Tendeloo, G.; Thybaut, J.W.; Marin, G.B.; Denayer, J.F.M.; Baron, G.V.; Jacobs, P.A.; Kirschhock, C.E.A.; Martens, J.A.; doi  openurl
  Title Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods Type A1 Journal article
  Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 13 Issue 36 Pages 10070-10077  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000251855200006 Publication Date 2007-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 52 Open Access  
  Notes Approved Most recent IF: 5.317; 2007 IF: 5.330  
  Call Number UA @ lucian @ c:irua:67320 Serial 1268  
Permanent link to this record
 

 
Author Kalidindi, S.B.; Hyunchul, O.; Hirscher, M.; Esken, D.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Metal@COFs : covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material Type A1 Journal article
  Year 2012 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 18 Issue 35 Pages 10848-10856  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(eta 3-C3H5)(eta 5-C5H5)]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4 +/- 0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metalorganic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000307782800013 Publication Date 2012-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 88 Open Access  
  Notes Fwo Approved Most recent IF: 5.317; 2012 IF: 5.831  
  Call Number UA @ lucian @ c:irua:100469 Serial 2007  
Permanent link to this record
 

 
Author Kirsanova, M.A.; Reshetova, L.N.; Olenev, A.V.; Abakumov, A.M.; Shevelkov, A.V. doi  openurl
  Title Semiclathrates of the GePTe system : synthesis and crystal structures Type A1 Journal article
  Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 17 Issue 20 Pages 5719-5726  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Novel compounds [Ge46−xPx]Tey (13.9≤x≤15.6, 5.92≤y≤7.75) with clathrate-like structures have been prepared and structurally characterized. They crystallize in the space group Fmequation image with the unit cell parameter changing from 20.544(2) to 20.698(2) Å (Z=8) on going from x=13.9 to x=15.6. Their crystal structure is composed of a covalently bonded Ge[BOND]P framework that hosts tellurium atoms in the guest positions and can be viewed as a peculiar variant of the type I clathrate superstructure. In contrast to the conventional type I clathrates, [Ge46−xPx]Tey contain tricoordinated (3b) atoms and no vacancies in the framework positions. As a consequence of the transformation of the framework, the majority of the guest tellurium atoms form a single covalent bond with the host framework and thus the title compounds are the first representative of semiclathrates with covalent bonding. A comparison is made with silicon clathrates and the evolution of the crystal structure upon changing the tellurium content is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000290216000028 Publication Date 2011-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 17 Open Access  
  Notes Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:89773 Serial 2981  
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leither-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y. pdf  doi
openurl 
  Title Spatial separation of covalent, ionic, and metallic interactions in Mg11Rh18B8 and Mg3Rh5B3 Type A1 Journal article
  Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 19 Issue 52 Pages 17860-17870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single-crystal X-ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1)angstrom; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2)angstrom; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron-localizability/electron-density approach reveals covalent BRh interactions in these arrangements and the formation of BRh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000328531000028 Publication Date 2013-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 5 Open Access  
  Notes Approved Most recent IF: 5.317; 2013 IF: 5.696  
  Call Number UA @ lucian @ c:irua:113697 Serial 3064  
Permanent link to this record
 

 
Author Zaikina, J.V.; Kovnir, K.A.; Sobolev, A.V.; Presniakov, I.A.; Prots, Y.; Baitinger, M.; Schnelle, W.; Olenev, A.V.; Lebedev, O.I.; Van Tendeloo, G.; Grin, Y.; Shevelkov, A.V. doi  openurl
  Title Sn20.5-3.5As22I8: a largely disordered cationic clathrate with a new type of superstructure and abnormally low thermal conductivity Type A1 Journal article
  Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 13 Issue 18 Pages 5090-5099  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000247708300005 Publication Date 2007-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 44 Open Access  
  Notes Approved Most recent IF: 5.317; 2007 IF: 5.330  
  Call Number UA @ lucian @ c:irua:65684 Serial 3556  
Permanent link to this record
 

 
Author Yang, X.-Y.; Tian, G.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Wei, Y.-X.; Liu, Z.-M.; Deng, Z.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance Type A1 Journal article
  Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 17 Issue 52 Pages 14987-14995  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Preparation and characterization of well-organized zeolitic nanocrystal aggregates with an interconnected hierarchically micromesomacro porous system are described. Amorphous nanoparticles in bimodal aluminosilicates were directly transformed into highly crystalline nanosized zeolites, as well as acting as scaffold template. All pores on three length scales incorporated in one solid body are interconnected with each other. These zeolitic nanocrystal aggregates with hierarchically micromesomacroporous structure were thoroughly characterized. TEM images and 29Si NMR spectra showed that the amorphous phase of the initial material had been completely replaced by nanocrystals to give a micromesomacroporous crystalline zeolitic structure. Catalytic testing demonstrated their superiority due to the highly active sites and the presence of interconnected micromesomacroporosity in the cracking of bulky 1,3,5-triisopropylbenzene (TIPB) compared to traditional zeolite catalysts. This synthesis strategy was extended to prepare various zeolitic nanocrystal aggregates (ZSM-5, Beta, TS-1, etc.) with well-organized hierarchical micromesomacroporous structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000298547300035 Publication Date 2011-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 61 Open Access  
  Notes Approved Most recent IF: 5.317; 2011 IF: 5.925  
  Call Number UA @ lucian @ c:irua:96274 Serial 3913  
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
  Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 22 Issue 22 Pages 3304-3311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000371419200001 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 43 Open Access  
  Notes Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:132347 Serial 4192  
Permanent link to this record
 

 
Author Sun, Z.; Madej, E.; Wiktor; Sinev, I.; Fischer, R.A.; Van Tendeloo, G.; Muhler, M.; Schuhmann, W.; Ventosa, E. pdf  doi
openurl 
  Title One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 21 Issue 21 Pages 16154-16161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li-ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene through high-pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon-coated iron oxide, while the graphene acts as a high-surface-area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative-electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363890700036 Publication Date 2015-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 8 Open Access  
  Notes Approved Most recent IF: 5.317; 2015 IF: 5.731  
  Call Number UA @ lucian @ c:irua:129510 Serial 4218  
Permanent link to this record
 

 
Author Roesler, C.; Dissegna, S.; Rechac, V.L.; Kauer, M.; Guo, P.; Turner, S.; Ollegott, K.; Kobayashi, H.; Yamamoto, T.; Peeters, D.; Wang, Y.; Matsumura, S.; Van Tendeloo, G.; Kitagawa, H.; Muhler, M.; Llabres i Xamena, F.X.; Fischer, R.A. pdf  doi
openurl 
  Title Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal-organic frameworks : evaluation of the catalytic potential for size-selective hydrogenation Type A1 Journal article
  Year 2017 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 23 Issue 15 Pages 3583-3594  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000397502900010 Publication Date 2016-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 13 Open Access Not_Open_Access  
  Notes ; This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG). ; Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:142485 Serial 4653  
Permanent link to this record
 

 
Author Monico, L.; Chieli, A.; De Meyer, S.; Cotte, M.; de Nolf, W.; Falkenberg, G.; Janssens, K.; Romani, A.; Miliani, C. pdf  url
doi  openurl
  Title Role of the relative humidity and the Cd/Zn stoichiometry in the photooxidation process of cadmium yellows (CdS/Cd1-xZnxS) in oil paintings Type A1 Journal article
  Year 2018 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 24 Issue 45 Pages 11584-11593  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Cadmium yellows (CdYs) refer to a family of cadmium sulfide pigments, which have been widely used by artists since the late 19th century. Despite being considered stable, they are suffering from discoloration in iconic paintings, such as Joy of Life by Matisse, Flowers in a blue vase by Van Gogh, and The Scream by Munch, most likely due to the formation of CdSO4 center dot nH(2)O. The driving factors of the CdYs degradation and how these affect the overall process are still unknown. Here, we study a series of oil mock-up paints made of CdYs of different stoichiometry (CdS/Cd0.76Zn0.24S) and crystalline structure (hexagonal/ cubic) before and after aging at variable relative humidity under exposure to light and in darkness. Synchrotron radiation-based X-ray methods combined with UV-Vis and FTIR spectroscopy show that: 1) Cd0.76Zn0.24S is more susceptible to photooxidation than CdS; both compounds can act as photocatalysts for the oil oxidation. 2) The photooxidation of CdS/Cd0.76Zn0.24S to CdSO4 center dot nH(2)O is triggered by moisture. 3) The nature of alteration products depends on the aging conditions and the Cd/Zn stoichiometry. Based on our findings, we propose a scheme for the mechanism of the photocorrosion process and the photocatalytic activity of CdY pigments in the oil binder. Overall, our results form a reliable basis for understanding the degradation of CdS-based paints in artworks and contribute towards developing better ways of preserving them for future generations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441126900012 Publication Date 2018-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 5 Open Access  
  Notes ; The research was financially supported by the European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (Grant agreement n. 654028) and by the BOF-GOA Project SOLARPaint (University of Antwerp Research Council). For the beamtime grants received, we thank the ESRF (experiments n. HG64, HG95 and in-house beamtimes) and PETRA III-DESY (experiments: I-20130221 EC, I-20160126 EC). We are also grateful to Dr. Jan Garrevoet for his contribution to set up the P06-beamline at PETRA III-DESY. ; Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:153733 Serial 5821  
Permanent link to this record
 

 
Author Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K. pdf  doi
openurl 
  Title X-ray diffraction mapping for cultural heritage science : a review of experimental configurations and applications Type A1 Journal article
  Year 2019 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 26 Issue 26 Pages 1703-1719  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract X-ray diffraction (XRD) mapping consists in the acquisition of XRD patterns at each pixel (or voxel) of an area (or volume). The spatial resolution ranges from the micrometer (mu XRD) to the millimeter (MA-XRD) scale, making the technique relevant for tiny samples up to large objects. Although XRD is primarily used for the identification of different materials in (complex) mixtures, additional information regarding the crystallite size, their orientation, and their in-depth distribution can also be obtained. Through mapping, these different types of information can be located on the studied sample/object. Cultural heritage objects are usually highly heterogeneous, and contain both original and later (degradation, conservation) materials. Their structural characterization is required both to determine ancient manufacturing processes and to evaluate their conservation state. Together with other mapping techniques, XRD mapping is increasingly used for these purposes. Here, the authors review applications as well as the various configurations for XRD mapping (synchrotron/laboratory X-ray source, poly-/monochromatic beam, micro/macro beam, 2D/3D, transmission/reflection mode). On-going hardware and software developments will further establish the technique as a key tool in heritage science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000501927300001 Publication Date 2019-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited Open Access  
  Notes ; M.C. thanks the KNAW for supporting her stays in the Netherlands through the Descartes Huygens price. V.G. and M.C. thank the Center of Research and Restoration of French Museums (C2RMF), Paris and in particular Myriam Eveno, for the collaboration on Rembrandt's impastos (Figure 7). M.C. is indebted to the Afghan government, NRICPT and in particular, Yoko Taniguchi for providing samples shown in Figure 5. K.J. and F.V. acknowledge the University of Antwerp Research Council for financial support via GOA project SolarPaint as well as InterReg project Smart*Light. FWO projects G057419N and G056619N are also acknowledged. The authors also wish to acknowledge the Van Gogh and Kroller-Muller museums, the Rijksmuseum, the Royal Museum of Fine Arts Antwerp and the Louvre museum for the constructive and inspiring collaborations in the past decade. Various beam lines and the staff at ESRF and DESY are thanked for providing beam time and support during experiments. ; Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:165061 Serial 5911  
Permanent link to this record
 

 
Author Xiao, S.; Lu, Y.; Xiao, B.-Y.; Wu, L.; Song, J.-P.; Xiao, Y.-X.; Wu, S.-M.; Hu, J.; Wang, Y.; Chang, G.-G.; Tian, G.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchically dual-mesoporous TiO2 microspheres for enhanced photocatalytic properties and lithium storage Type A1 Journal article
  Year 2018 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 24 Issue 50 Pages 13246-13252  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchically dual‐mesoporous TiO2 microspheres have been synthesized via a solvothermal process in the presence of 1‐butyl‐3‐methylmidazolium tetrafluoroborate ([BMIm][BF4]) and diethylenetriamine (DETA) as co‐templates. Secondary mesostructured defects in the hierarchical TiO2 microspheres produce the oxygen vacancies, which not only significantly enhance the photocatalytic activity on degrading methyl blue (over 1.7 times to P25) and acetone (over 2.9 times of P25), but which also are beneficial for lithium storage. Moreover, we propose a mechanism to obtain a better understanding of the role of dual mesoporosity of TiO2 microspheres for enhancing the molecular diffusion, ion transportation and electron transformation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443804100025 Publication Date 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.317 Times cited 6 Open Access  
  Notes ; This work is supported by the National Key R&D Program of China (2017YFC1103800), the Program for Changjiang Scholars and Innovative Research Team in University (IRT 15R52), the National Natural Science Foundation of China (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), the International Science & Technology Cooperation Program of China (2015DFE52870), the Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), the Open Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007), and the CNPC Research Institute of Safety and Environmental Technology. ; Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:151812 Serial 5957  
Permanent link to this record
 

 
Author Abdulov, N.A.; Bacchetta, A.; Baranov, S.; Martinez, A.B.; Bertone, V.; Bissolotti, C.; Candelise, V.; Banos, L.I.E.; Bury, M.; Connor, P.L.S.; Favart, L.; Guzman, F.; Hautmann, F.; Hentschinski, M.; Jung, H.; Keersmaekers, L.; Kotikov, A.; Kusina, A.; Kutak, K.; Lelek, A.; Lidrych, J.; Lipatov, A.; Lykasov, G.; Malyshev, M.; Mendizabal, M.; Prestel, S.; Barzani, S.S.; Sapeta, S.; Schmitz, M.; Signori, A.; Sorrentino, G.; Monfared, S.T.; van Hameren, A.; van Kampen, A.M.; Vanden Bemden, M.; Vladimirov, A.; Wang, Q.; Yang, H. url  doi
openurl 
  Title TMDlib2 and TMDplotter : a platform for 3D hadron structure studies Type A1 Journal article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur Phys J C  
  Volume 81 Issue 8 Pages 752  
  Keywords A1 Journal article; Particle Physics Group; Condensed Matter Theory (CMT)  
  Abstract A common library, TMDlib2, for Transverse-Momentum-Dependent distributions (TMDs) and unintegrated parton distributions (uPDFs) is described, which allows for easy access of commonly used TMDs and uPDFs, providing a three-dimensional (3D) picture of the partonic structure of hadrons. The tool TMDplotter allows for web-based plotting of distributions implemented in TMDlib2, together with collinear pdfs as available in LHAPDF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687163700004 Publication Date 2021-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044; 1434-6052 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.331 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.331  
  Call Number UA @ admin @ c:irua:181762 Serial 7032  
Permanent link to this record
 

 
Author Marikutsa, A.; Krivetskiy, V.; Yashina, L.; Rumyantseva, M.; Konstantinova, E.; Ponzoni, A.; Comini, E.; Abakumov, A.; Gaskov, A. doi  openurl
  Title Catalytic impact of RuOx clusters to high ammonia sensitivity of tin dioxide Type A1 Journal article
  Year 2012 Publication Sensors and actuators : B : chemical T2 – 25th Eurosensors Conference, SEP 04-07, 2011, Athens, GREECE Abbreviated Journal Sensor Actuat B-Chem  
  Volume 175 Issue Pages 186-193  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A comparative study of NH3-sensing performance of blank and modified nanocrystal line SnO2 was performed. Tin dioxide modified by ruthenium displayed the highest ammonia sensitivity with a maximum signal at 200 degrees C. The modifier was shown by XPS and EPR to occur in a mixed valence state of oxidized ruthenium distributed between the surface and bulk of tin dioxide nanocrystals. RuOx clustering on SnO2 surface was detected by means of electron microscopy assisted EDX-mapping. The effect of RuOx on tin dioxide interaction with ammonia was studied by temperature-programmed NH3 desorption, simultaneous Kelvin probe and DC-resistance measurements, EPR spectroscopy and analyses of the gas-solid interaction products. The modifier was shown to promote the materials reactivity to NH3 due to the catalytic activity of RuOx. The interaction with ammonia resulted in dipoles formation on the oxide surface along with reducing the grains net surface charge, established from the electron affinity increase and resistance decrease during NH3 exposure. The RuOx-catalyzed gas-solid interaction was deduced to proceed deeper than in the case of non-modified SnO2 and to yield nitrogen oxides (e.g. NO2), as was suggested by the oxidative character of gaseous products of NH3 interaction with RuOx-modified tin dioxide at 200 degrees C. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000312358700033 Publication Date 2012-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited 20 Open Access  
  Notes Approved Most recent IF: 5.401; 2012 IF: 3.535  
  Call Number UA @ lucian @ c:irua:105985 Serial 293  
Permanent link to this record
 

 
Author Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. pdf  doi
openurl 
  Title Nanocrystalline ZnO(Ga) : paramagnetic centers, surface acidity and gas sensor properties Type A1 Journal article
  Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 182 Issue Pages 555-564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO and ZnO(Ga) samples with different gallium content were prepared by wet-chemical method. Introduction of gallium leads to the increase of amount of weak acid sites such as surface hydroxyl groups. Gas sensing properties toward 0.22 ppm H2S and NO2 were studied at 100450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. Sensor signal toward H2S decreases with increase of Ga concentration. The dependence of ZnO(Ga) sensor signal to NO2 on the gallium content has non-monotonous character, which correlates with the change of conductivity of the samples in air and concentration of paramagnetic donor states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000319488800075 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited 42 Open Access  
  Notes Hercules; FWO Approved Most recent IF: 5.401; 2013 IF: 3.840  
  Call Number UA @ lucian @ c:irua:107346 Serial 2250  
Permanent link to this record
 

 
Author Ferroni, M.; Carotta, M.C.; Guidi, V.; Martinelli, G.; Ronconi, F.; Richard, O.; van Dyck, D.; van Landuyt, J. doi  openurl
  Title Structural characterization of Nb-TiO2 nanosized thick-films for gas sensing application Type P1 Proceeding
  Year 2000 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 68 Issue 1-3 Pages 140-145  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Pure and Nb-doped TiO2 thick-films were prepared by screen-printing, starting from nanosized powders. Grain growth and crystalline phase modification occurred as consequence of firing at high temperature. It has been shown that niobium addition inhibits grain coarsening and hinders anatase-to-rutile phase transition. These semiconducting films exhibited n-type behavior, while Nb acted as donor-dopant. Gas measurements demonstrated that the films are suitable for CO or NO2 sensing. Microstructural characterization by electron microscopy and differential thermal analysis (DTA) highlights the dependence of gas-sensing behavior on film's properties. (C) 2000 Elsevier Science S.A. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000089218000022 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited 51 Open Access  
  Notes Approved Most recent IF: 5.401; 2000 IF: 1.470  
  Call Number UA @ lucian @ c:irua:95167 Serial 3223  
Permanent link to this record
 

 
Author Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Abakumov, A.M.; Gaskov, A.M. doi  openurl
  Title Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots Type A1 Journal article
  Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 205 Issue Pages 305-312  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work reports the study of photoconductivity and visible light activated room temperature gas sensors properties of nanocrystalline ZnO thick films sensitized with colloidal CdSe quantum dots (QDs). Nanocrystalline zinc oxide (ZnO) was synthesized by the precipitation method. Colloidal CdSe quantum dots were obtained by high temperature colloidal synthesis. Sensitization was effectuated by three different procedures including direct adsorption of CdSe QDs stabilized with oleic acid on ZnO surface, anchoring to the ZnO surface through a bifunctional molecule of mercaptopropionic acid (MPA), and coating of CdSe QDs with a monolayer of MPA with subsequent adsorption on ZnO surface. Sensor measurements demonstrated that obtained QD CdSe/ZnO nanocomposites can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000343117600041 Publication Date 2014-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited 36 Open Access  
  Notes Approved Most recent IF: 5.401; 2014 IF: 4.097  
  Call Number UA @ lucian @ c:irua:121107 Serial 3848  
Permanent link to this record
 

 
Author Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P. pdf  doi
openurl 
  Title UV effect on NO2 sensing properties of nanocrystalline In2O3 Type A1 Journal article
  Year 2016 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 231 Issue 231 Pages 491-496  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline indium oxide films with extremely small grains in range of 7-40 nm are prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature is investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In2O3 is illuminated while in the dark In2O3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In2O3 with different grain size sensitivity to NO2 under illumination and in the dark is proposed. We demonstrate that pulsed illumination may be used for NO2 detection at room temperature that significantly reduces the power consumption of sensor. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000374330900055 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited 27 Open Access  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ lucian @ c:irua:133630 Serial 4273  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M. pdf  url
doi  openurl
  Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
  Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414151800068 Publication Date 2017-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:145926 Serial 4710  
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Sleegers, N.; Florea, A.; Cowen, T.; Moretto, L.M.; Piletsky, S.; De Wael, K. pdf  doi
openurl 
  Title Conductive imprinted polymers for the direct electrochemical detection of beta-lactam antibiotics: The case of cefquinome Type A1 Journal article
  Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 297 Issue 297 Pages 126786  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A biomimetic sensor for cefquinome (CFQ) was designed at multi-walled carbon nanotubes modified graphite screen-printed electrodes (MWCNTs-G-SPEs) as a proof-of-concept for the creation of a sensors array for beta-lactam antibiotics detection in milk. The sensitive and selective detection of antibiotic residues in food and environment is a fundamental step in the elaboration of prevention strategies to fight the insurgence of antimicrobial resistance (AMR) as recommended by authorities around the world (EU, WHO, FDA). The detection strategy is based on the characteristic electrochemical fingerprint of the target antibiotic cefquinome. A conducive electropolymerized molecularly imprinted polymer (MIP) coupled with MWCNTs was found to be the optimal electrode modifier, able to provide an increased selectivity and sensitivity for CFQ detection. The design of CFQ-MIP was facilitated by the rational selection of the monomer, 4-aminobenzoic acid (4-ABA). The electropolymerization process of 4-ABA have not been fully elucidated yet; for this reason a thorough study and optimization of electropolymerization conditions was performed to obtain a conducive and stable poly(4-ABA) film. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). CFQ-MIP were synthesized at MWCNT-G-SPEs by electropolyrnerization in pH approximate to 1 (0.1 M sulphuric acid) with a monomer:template ratio of 5:1. Two different analytical protocols were tested (single and double step detection) to minimize unspecific adsorptions and improve the sensitivity. Under optimal conditions, the lowest CFQ concentration detectable by square wave voltammetry (SWV) at the modified sensor was 50 nM in 0.1 M phosphate buffer pH 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000478562700020 Publication Date 2019-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited 4 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223. This work was also supported by FWO. ; Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:161777 Serial 5549  
Permanent link to this record
 

 
Author Qurashi, A.; Rather, J.A.; Yamazaki, T.; Sohail, M.; De Wael, K.; Merzougui, B.; Hakeem, A.S. pdf  url
doi  openurl
  Title Swift electrochemical detection of paraben an endocrine disruptor by In2O3 nanobricks Type A1 Journal article
  Year 2015 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 221 Issue Pages 167-171  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Novel indium oxide (In2O3) nanobricks have been prepared by template-less and surfactant-free hydrothermal synthesis method and were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) spectroscopy and field emission scanning electronic microscopy (FESEM). The synthesized In2O3 nanobricks were successfully immobilized on the surface of glassy carbon electrode for the detection of Parabens (butylparaben). Owing to the unique structure and intriguing properties of these In2O3 nanobricks, the nanostructured thin-film electrode has shown an obvious electrocatalytic activity for the detection of butylparaben (BP). The detection limit (LOD) was estimated as 3 s/m and the sensitivity (LOQ) was calculated as 10 s/m and were found to be 0.08 μM and 0.26 μA μM−1 cm−2 respectively. This sensor showed high sensitivity compared with the reported electrochemical sensors for the detection of BP. The fabricated sensor was successfully applied for the detection of butyl paraben in real cosmetic samples with good recovery ranging from 96.0 to 100.3%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362918100021 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 5.401; 2015 IF: 4.097  
  Call Number UA @ admin @ c:irua:127463 Serial 5859  
Permanent link to this record
 

 
Author Delabie, L.; Honoré, M.; Lenaerts, S.; Huyberechts, G.; Roggen, J.; Maes, G. doi  openurl
  Title The effect of sintering and Pd-doping on the conversion of CO to CO2 on SnO2 gas sensor materials Type A1 Journal article
  Year 1997 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 44 Issue Pages 446-451  
  Keywords A1 Journal article  
  Abstract The principal aim of this work is to study the effect of the processes of sintering and Pd doping of SnO2 gas sensor materials on the conversion of CO to CO2. For this purpose, the gas phase above screen printed sensor material is investigated using FTIR spectroscopy, while surface area, porosity and particle size measurements are performed on the SnO2 powders. During sintering, larger agglomerates of primary particles are formed, which results in a larger conversion degree of CO. The effect of Pd doping of the tin dioxide film on the CO conversion is more pronounced. The transformation of CO starts at a lower temperature and the conversion degree increases remarkably.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000071717900035 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited Open Access  
  Notes Approved Most recent IF: 5.401; 1997 IF: 0.858  
  Call Number UA @ admin @ c:irua:82017 Serial 5947  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Platonov, V.B.; Chizhov, A.S.; Batuk, M.; Hadermann, J.; Khmelevsky, N.O.; Gaskov, A.M. pdf  url
doi  openurl
  Title Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers Type A1 Journal article
  Year 2020 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 307 Issue Pages 127624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508110400059 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited Open Access Not_Open_Access  
  Notes This work was supported by RFBR grants No. 18-03-00091 and No. 18-03-00580. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:166449 Serial 6343  
Permanent link to this record
 

 
Author Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am. pdf  url
doi  openurl
  Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 329 Issue Pages 129035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612060700009 Publication Date 2020-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited Open Access OpenAccess  
  Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:176123 Serial 6707  
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 337 Issue Pages 129819  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386500001 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:176353 Serial 7762  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Bacaksiz, C.; Yagmurcukardes, M.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Hematite at its thinnest limit Type A1 Journal article
  Year 2020 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 7 Issue 2 Pages 025029  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional alpha-Fe2O3 (Balan et al 2018 Nat. Nanotechnol. 13 602), we analyze the structural, vibrational, electronic and magnetic properties of single- and few-layer alpha-Fe2O3 compared to bulk, by ab initio and Monte-Carlo simulations. We reveal how monolayer alpha-Fe2O3 (hematene) can be distinguished from the few-layer structures, and how they all differ from bulk through observable Raman spectra. The optical spectra exhibit gradual shift of the prominent peak to higher energy, as well as additional features at lower energy when alpha-Fe2O3 is thinned down to a monolayer. Both optical and electronic properties have strong spin asymmetry, meaning that lower-energy optical and electronic activities are allowed for the single-spin state. Finally, our considerations of magnetic properties reveal that 2D hematite has anti-ferromagnetic ground state for all thicknesses, but the critical temperature for Morin transition increases with decreasing sample thickness. On all accounts, the link to available experimental data is made, and further measurements are prompted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537341000002 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.5 Times cited 12 Open Access  
  Notes ; This work was supported by Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by Flemish Supercomputer Center(VSC), and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). Part of this work was also supported by FLAG-ERA project TRANS-2D-TMD and TOPBOF-UAntwerp. MY was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 5.5; 2020 IF: 6.937  
  Call Number UA @ admin @ c:irua:170301 Serial 6533  
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V. pdf  doi
openurl 
  Title Pivotal role of magnetic ordering and strain in lattice thermal conductivity of chromium-trihalide monolayers Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 1 Pages 015034  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Understanding the coupling between spin and phonons is critical for controlling the lattice thermal conductivity (kappa ( l )) in magnetic materials, as we demonstrate here for CrX3 (X = Br and I) monolayers. We show that these compounds exhibit large spin-phonon coupling (SPC), dominated by out-of-plane vibrations of Cr atoms, resulting in significantly different phonon dispersions in ferromagnetic (FM) and paramagnetic (PM) phases. Lattice thermal conductivity calculations provide additional evidence for strong SPC, where particularly large kappa ( l ) is found for the FM phase. Most strikingly, PM and FM phases exhibit radically different behavior with tensile strain, where kappa ( l ) increases with strain for the PM phase, and strongly decreases for the FM phase-as we explain through analysis of phonon lifetimes and scattering rates. Taken all together, we uncover the high significance of SPC on the phonon transport in CrX3 monolayers, a result extendable to other 2D magnetic materials, that will be useful in further design of thermal spin devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000735170300001 Publication Date 2021-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.5 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.5  
  Call Number UA @ admin @ c:irua:184642 Serial 7010  
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 2 Pages 025012  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions with near opposite inter-layer twist angles. In a MoS<sub>2</sub>/WSe<sub>2</sub>bilayer, the regions with<inline-formula><tex-math><?CDATA $Rh^h$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>h</mi></msubsup></math><inline-graphic href=“tdmac529dieqn1.gif” type=“simple” /></inline-formula>and<inline-formula><tex-math><?CDATA $Rh^X$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>X</mi></msubsup></math><inline-graphic href=“tdmac529dieqn2.gif” type=“simple” /></inline-formula>stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-reflected across such a twist boundary. In that case, we demonstrate that topologically protected chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-directional excitons with opposite velocities for excitons composed by electronic states with opposite valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760518100001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 5.5 Times cited 3 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Conselho Nacional de Desenvolvimento Científico e Tecnológico, PQ ; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187124 Serial 7046  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: