|   | 
Details
   web
Records
Author Pankratov, D.; Hidalgo Martinez, S.; Karman, C.; Gerzhik, A.; Gomila, G.; Trashin, S.; Boschker, H.T.S.; Geelhoed, J.S.; Mayer, D.; De Wael, K.; Meysman, F.J.R.
Title The organo-metal-like nature of long-range conduction in cable bacteria Type A1 Journal article
Year 2024 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 157 Issue Pages 108675-10
Keywords A1 Journal article
Abstract Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm−1; range: 2 to 564 S cm−1), does not show any redox signature, has a low thermal activation energy (Ea = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record
Impact Factor (up) 5 Times cited Open Access
Notes Approved Most recent IF: 5; 2024 IF: 3.346
Call Number UA @ admin @ c:irua:205117 Serial 9215
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Campos, R.; Trashin, S.; Daems, E.; Carneiro, D.; Fraga, A.; Ribeiro, R.; De Wael, K.
Title Singlet oxygen-based photoelectrochemical detection of miRNAs in prostate cancer patients’ plasma : a novel diagnostic tool for liquid biopsy Type A1 Journal article
Year 2024 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 158 Issue Pages 108698-108699
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Dysregulation of miRNA expression occurs in many cancers, making miRNAs useful in cancer diagnosis and therapeutic guidance. In a clinical context using methods such as polymerase chain reaction (PCR), the limited amount of miRNAs in circulation often limits their quantification. Here, we present a PCR-free and sensitive singlet oxygen (1O2)-based strategy for the detection and quantification of miRNAs in untreated human plasma from patients diagnosed with prostate cancer. A target miRNA is specifically captured by functionalised magnetic beads and a detection oligonucleotide probe in a sandwich-like format. The formed complex is concentrated at the sensor surface via magnetic beads, providing an interface for the photoinduced redox signal amplification. The detection oligonucleotide probe bears a molecular photosensitiser, which produces 1O2 upon illumination, oxidising a redox reporter and creating a redox cycling loop, allowing quantification of pM level miRNA in diluted human plasma within minutes after hybridisation and without target amplification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record
Impact Factor (up) 5 Times cited Open Access
Notes Approved Most recent IF: 5; 2024 IF: 3.346
Call Number UA @ admin @ c:irua:205281 Serial 9229
Permanent link to this record
 

 
Author Drăgan, A.-M.; Feier, B.G.; Tertis, M.; Bodoki, E.; Truta, F.; Stefan, M.-G.; Kiss, B.; Van Durme, F.; De Wael, K.; Oprean, R.; Cristea, C.
Title Forensic analysis of synthetic cathinones on nanomaterials-based platforms : chemometric-assisted voltametric and UPLC-MS/MS investigation Type A1 Journal article
Year 2023 Publication Nanomaterials Abbreviated Journal
Volume 13 Issue 17 Pages 2393-19
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Synthetic cathinones (SCs) are a group of new psychoactive substances often referred to as “legal highs” or “bath salts”, being characterized by a dynamic change, new compounds continuously emerging on the market. This creates a lack of fast screening tests, making SCs a constant concern for law enforcement agencies. Herein, we present a fast and simple method for the detection of four SCs (alpha-pyrrolidinovalerophenone, N-ethylhexedrone, 4-chloroethcathinone, and 3-chloromethcathinone) based on their electrochemical profiles in a decentralized manner. In this regard, the voltametric characterization of the SCs was performed by cyclic and square wave voltammetry. The elucidation of the SCs redox pathways was successfully achieved using liquid chromatography coupled to (tandem) mass spectrometry. For the rational identification of the ideal experimental conditions, chemometric data processing was employed, considering two critical qualitative and quantitative variables: the type of the electrochemical platform and the pH of the electrolyte. The analytical figures of merit were determined on standard working solutions using the optimized method, which exhibited wide linear ranges and LODs suitable for confiscated sample screening. Finally, the performance of the method was evaluated on real confiscated samples, the resulting validation parameters being similar to those obtained with another portable device (i.e., Raman spectrometer).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061205100001 Publication Date 2023-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) 5.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.3; 2023 IF: 3.553
Call Number UA @ admin @ c:irua:199221 Serial 8869
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S.
Title Selectivity in ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications Type A1 Journal article
Year 2021 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J
Volume Issue Pages chem.202100029-15
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Functionalization of photocatalytic metal oxide nanoparticles of TiO 2 , ZnO, WO 3 and CuO with amine‐terminated (oleylamine) and thiol‐terminated (1‐dodecanethiol) alkyl chained ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO 2 and WO 3 , while 1‐dodecanethiol binds stably only to ZnO and CuO. Similarly, polar to non‐polar solvent phase transfer of TiO 2 and WO 3 nanoparticles could be achieved by using oleylamine, but not by 1‐dodecanethiol, while the contrary holds for ZnO and CuO. The surface chemistry of ligand functionalized nanoparticles was probed by ATR‐FTIR spectroscopy, that enabled to elucidate the occupation of the ligands at the active sites. The photo‐stability of the ligands on the nanoparticle surface was determined by the photocatalytic self‐cleaning properties of the material. While TiO 2 and WO 3 degrade the ligands within 24 hours under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, since the ligand functionalized nanoparticles are hydrophobic in nature, they can thus be self‐assembled at the air‐water interface, for obtaining nanoparticle films with demonstrated photocatalytic as well as anti‐fogging properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000652651400001 Publication Date 2021-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.317 Times cited 15 Open Access OpenAccess
Notes R.B. and S.W.V. acknowledge financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Program by means of the grant agreement no. 731019 EUSMI and the ERC Consolidator grant no. 815128 REALNANO.; sygmaSB Approved Most recent IF: 5.317
Call Number UA @ admin @ c:irua:177495 Serial 6787
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K.
Title Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
Year 2020 Publication Electrochemistry Communications Abbreviated Journal Electrochem Commun
Volume 117 Issue Pages 106767-5
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000552618700004 Publication Date 2020-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.4 Times cited 1 Open Access
Notes ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved Most recent IF: 5.4; 2020 IF: 4.396
Call Number UA @ admin @ c:irua:169924 Serial 6547
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Sleegers, N.; Florea, A.; Cowen, T.; Moretto, L.M.; Piletsky, S.; De Wael, K.
Title Conductive imprinted polymers for the direct electrochemical detection of beta-lactam antibiotics: The case of cefquinome Type A1 Journal article
Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 297 Issue 297 Pages 126786
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A biomimetic sensor for cefquinome (CFQ) was designed at multi-walled carbon nanotubes modified graphite screen-printed electrodes (MWCNTs-G-SPEs) as a proof-of-concept for the creation of a sensors array for beta-lactam antibiotics detection in milk. The sensitive and selective detection of antibiotic residues in food and environment is a fundamental step in the elaboration of prevention strategies to fight the insurgence of antimicrobial resistance (AMR) as recommended by authorities around the world (EU, WHO, FDA). The detection strategy is based on the characteristic electrochemical fingerprint of the target antibiotic cefquinome. A conducive electropolymerized molecularly imprinted polymer (MIP) coupled with MWCNTs was found to be the optimal electrode modifier, able to provide an increased selectivity and sensitivity for CFQ detection. The design of CFQ-MIP was facilitated by the rational selection of the monomer, 4-aminobenzoic acid (4-ABA). The electropolymerization process of 4-ABA have not been fully elucidated yet; for this reason a thorough study and optimization of electropolymerization conditions was performed to obtain a conducive and stable poly(4-ABA) film. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). CFQ-MIP were synthesized at MWCNT-G-SPEs by electropolyrnerization in pH approximate to 1 (0.1 M sulphuric acid) with a monomer:template ratio of 5:1. Two different analytical protocols were tested (single and double step detection) to minimize unspecific adsorptions and improve the sensitivity. Under optimal conditions, the lowest CFQ concentration detectable by square wave voltammetry (SWV) at the modified sensor was 50 nM in 0.1 M phosphate buffer pH 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478562700020 Publication Date 2019-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited 4 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223. This work was also supported by FWO. ; Approved Most recent IF: 5.401
Call Number UA @ admin @ c:irua:161777 Serial 5549
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Meynen, V.; Van Doorslaer, S.; De Wael, K.
Title Enzymatic sensor for phenols based on titanium dioxide generating surface confined ROS after treatment with H2O2 Type A1 Journal article
Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 283 Issue 283 Pages 343-348
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Titanium dioxide (TiO2) is a popular material as host matrix for enzymes. We now evidence that TiO2 can accumulate and retain reactive oxygen species after treatment by hydrogen peroxide (H2O2) and support redox cycling of a phenolic analyte between horseradish peroxidase (HRP) and an electrode. The proposed detection scheme is identical to that of second generation biosensors, but the measuring solution requires no dissolved H2O2. This significantly simplifies the analysis and overcomes issues related to H2O2 being present (or generated) in the solution. The modified electrodes showed rapid stabilization of the baseline, a low noise level, fast realization of a steady-state current response, and, in addition, improved sensitivity and limit of detection compared to the conventional approach, i.e. in the presence of H2O2 in the measuring solution. Hydroquinone, 4-aminophenol, and other phenolic compounds were successfully detected at sub-μM concentrations. Particularly, a linear response in the concentration range between 0.025 and 2 μM and LOD of 24 nM was demonstrated for 4-aminophenol. The proposed sensor design goes beyond the traditional concept with three sensors generations offering a new possibility for the development of enzymatic sensors based on peroxidases and the formation of ROS on titania after treatment with H2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455854000043 Publication Date 2018-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited 1 Open Access
Notes ; The authors thank the University of Antwerp for GOA funding and the Scientific Research-Flanders (FWO) (grant 12T4219N). V. Rahemi is financially supported through a postdoctoral fellowship of the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 5.401
Call Number UA @ admin @ c:irua:155665 Serial 5605
Permanent link to this record
 

 
Author Rather, J.A.; De Wael, K.
Title Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology Type A1 Journal article
Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 176 Issue Pages 110-117
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Endocrine disruptors (EDCs) are environmental pollutants that, once incorporated into an organism, affect the hormonal balance of humans and various species. Its presence in environment is of great importance in water quality related questions. The proposed method describes the development of an accurate, sensitive and selective sensor for the detection of bisphenol-A (BPA) and its treatment by green technology. A fullerene (C60) fabricated electrochemical sensor was developed for the ultrasensitive detection of BPA. The homemade sensor was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and chronocoulometry. The influence of measuring parameters such as pH and C60 loading on the analytical performance of the sensor was evaluated. Various kinetic parameters such as electron transfer number (n); charge transfer coefficient (α); electrode surface area (A) and diffusion coefficient (D) were also calculated. Under the optimal conditions, the oxidation peak current was linear over the concentration range of 74 nM to 0.23 μM with the detection limit (LOD) of 3.7 nM. The fabricated sensor was successfully applied to the determination of BPA in wastewater samples and it has promising analytical applications for the direct determination of BPA at trace level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319867500017 Publication Date 2012-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited 79 Open Access
Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. ; Approved Most recent IF: 5.401; 2013 IF: 3.840
Call Number UA @ admin @ c:irua:101055 Serial 5630
Permanent link to this record
 

 
Author Rather, J.A.; Pilehvar, S.; De Wael, K.
Title A graphene oxide amplification platform tagged with tyrosinase-zinc oxide quantum dot hybrids for the electrochemical sensing of hydroxylated polychlorobiphenyls Type A1 Journal article
Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 190 Issue Pages 612-620
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Graphene oxide can act as an amplification platform for the immobilization of a hybrid structure composed of tyrosinase (Tyr) and zinc oxide quantum dots (ZnO QDs). This article describes how this platform increases the sensitivity for the detection of hydroxylated polychlorobiphenyls (OH-PCBs). The adsorption of Tyr (with low isoelectric point) on the positively charged surface of ZnO QDs is based on electrostatic interactions. The scanning electron microscopic images and UVvis spectroscopic analysis demonstrated the adsorption of Tyr on ZnO QDs. The stepwise assembly process of the fabricated biosensor was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The synthesized ZnO QDs and graphene oxide were characterized by Raman spectroscopy, infrared spectroscopy, X-ray diffraction and scanning electron microscopic techniques. The determination of OH-PCBs was carried out by using square wave voltammetry over the concentration range of 2.827.65 μM with a detection limit of 0.15 μM with good reproducibility, selectivity and acceptable stability. The high value of surface coverage of ZnO QDs and small value of MichaelisMenten constant (View the MathML source) confirmed an excellent loading of the Tyr and a high affinity of the biosensor toward the detection of OH-PCBs. This biosensor and the described sensing platform offer a great potential for rapid, cost-effective and on-field analysis of OH-PCBs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326687700082 Publication Date 2013-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited 26 Open Access
Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the author (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. Sanaz Pilehvar is funded by BOF-DOCPRO UA. We are also thankful to the EMAT (Electron Microscopy for Materials Science) group and Laboratory of adsorption and catalysis group of the University of Antwerp for the XRD, Raman and FTIR characterization of samples (GO and ZnO QDs). ; Approved Most recent IF: 5.401; 2014 IF: 4.097
Call Number UA @ admin @ c:irua:110566 Serial 5636
Permanent link to this record
 

 
Author Pilehvar, S.; Reinemann, C.; Bottari, F.; Vanderleyden, E.; Van Vlierberghe, S.; Blust, R.; Strehlitz, B.; De Wael, K.
Title A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin Type A1 Journal article
Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 240 Issue Pages 1024-1035
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A joint action of ssDNA aptamers and electrochemistry is a key element in developing successful biosensing platforms, since aptamers are capable of binding various targets with high specificity, and electrochemistry is one of the most sensitive techniques for on-site detections. A continuous search for improved immobilization and sensing strategies of aptamers on transducer surfaces resulted in the strategy presented in this article. The strategy is based on the covalent attachment of gold nanoparticles on the surface of glassy carbon electrodes through sulfhydryl-terminated monolayer, acting as a glue to connect AuNPs on the electrode. The covalently attached gold nanoparticles modified glassy carbon electrodes have been applied for the efficient immobilization of thiolated ssDNA probes, with a surface coverage of about 8.54 × 1013 molecules cm−2 which was 7-fold higher than that on the electrochemically deposited gold nanoparticles. Consequently, improved sensitivity, good reproducibility and stability are achieved for electrochemical aptasensor. Combined with the high affinity and specificity of an aptamer, a simple, novel, rapid, sensitive and label-free electrochemical aptasensor was successfully fabricated for ofloxacin (OFL) detection. The linear dynamic range of the sensor varies between 5 × 10−8 to 2 × 10−5 M OFL with a detection limit of 1 × 10−9 M OFL. A potential application in environmental monitoring was demonstrated by using this sensing strategy for the determination of OFL in (experimentally spiked) real samples such as tap water and effluent of sewage treatment plant. The proposed nanoaptasensor combines the advantages of the covalent attachment of neatly arranged AuNPs (enlarged active surface area and strengthened electrochemical signal) and the elimination of labels for the amplified detection of OFL, with the covalent attachment of highly specific aptamers to the surface of the modified electrode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000390622300123 Publication Date 2016-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited 21 Open Access
Notes ; This work was financially supported by the University of Antwerp (BOF), The Research Foundation – Flanders (FWO) and The Hercules Foundation. S. P. is thankful to UA for DOCPRO financial support. C.R. and B.S. acknowledge funding by the Federal Ministry of Education and Research (BMBF) under contract no. 03X0094B. ; Approved Most recent IF: 5.401
Call Number UA @ admin @ c:irua:135410 Serial 5682
Permanent link to this record
 

 
Author Qurashi, A.; Rather, J.A.; Yamazaki, T.; Sohail, M.; De Wael, K.; Merzougui, B.; Hakeem, A.S.
Title Swift electrochemical detection of paraben an endocrine disruptor by In2O3 nanobricks Type A1 Journal article
Year 2015 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 221 Issue Pages 167-171
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Novel indium oxide (In2O3) nanobricks have been prepared by template-less and surfactant-free hydrothermal synthesis method and were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) spectroscopy and field emission scanning electronic microscopy (FESEM). The synthesized In2O3 nanobricks were successfully immobilized on the surface of glassy carbon electrode for the detection of Parabens (butylparaben). Owing to the unique structure and intriguing properties of these In2O3 nanobricks, the nanostructured thin-film electrode has shown an obvious electrocatalytic activity for the detection of butylparaben (BP). The detection limit (LOD) was estimated as 3 s/m and the sensitivity (LOQ) was calculated as 10 s/m and were found to be 0.08 μM and 0.26 μA μM−1 cm−2 respectively. This sensor showed high sensitivity compared with the reported electrochemical sensors for the detection of BP. The fabricated sensor was successfully applied for the detection of butyl paraben in real cosmetic samples with good recovery ranging from 96.0 to 100.3%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362918100021 Publication Date 2015-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited 11 Open Access
Notes ; ; Approved Most recent IF: 5.401; 2015 IF: 4.097
Call Number UA @ admin @ c:irua:127463 Serial 5859
Permanent link to this record
 

 
Author Rather, J.A.; De Wael, K.
Title C60-functionalized MWCNT based sensor for sensitive detection of endocrine disruptor vinclozolin in solubilized system and wastewater Type A1 Journal article
Year 2012 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 171/172 Issue Pages 907-915
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A novel fullerene (C60) functionalized multi-walled carbon nanotubes (MWCNTs) fabricated electrochemical sensor was developed for the sensitive determination of the endocrine disruptor vinclozolin in a solubilized system of cetyltrimethyl ammonium bromide (CTAB). The home-made sensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. It was found that the nanocomposite film of C60MWCNTs on GCE exhibits electrocatalytic activity towards vinclozolin reduction and also lowers the reduction overpotential. The influence of the optimization parameters such as pH, effect of CTAB concentration and effect of loading of composite mixture of C60 and MWCNTs on the analytical performance of the sensor was evaluated. Various kinetic parameters such as electron transfer number (n), proton transfer number (m), charge transfer coefficient (α) and diffusion coefficient (D) were also calculated. Under optimized conditions, the squarewave reduction peak current was linear over the concentration range of 2.548.75 μM with the detection and quantification limit of 0.091 μM and 0.3 μM respectively. The fabricated sensor was successfully applied to the detection of vinclozolin in wastewater with good recovery ranging from 97.6 to 103.6%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308572700120 Publication Date 2012-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited 26 Open Access
Notes ; The authors are highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) for one of the authors (Jahangir Ahmad Rather) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. ; Approved Most recent IF: 5.401; 2012 IF: 3.535
Call Number UA @ admin @ c:irua:100576 Serial 5870
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K.
Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 337 Issue Pages 129819
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000640386500001 Publication Date 2021-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.401
Call Number UA @ admin @ c:irua:176353 Serial 7762
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K.
Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 348 Issue Pages 130659
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000701915600005 Publication Date 2021-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.401 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.401
Call Number UA @ admin @ c:irua:181307 Serial 7912
Permanent link to this record
 

 
Author Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; De Wael, K.; Cristea, C.
Title Tackling the problem of sensing commonly abused drugs through nanomaterials and (bio)recognition approaches Type A1 Journal article
Year 2020 Publication Frontiers In Chemistry Abbreviated Journal Front Chem
Volume 8 Issue Pages 561638
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We summarize herein the literature in the last decade, involving the use of nanomaterials and various (bio)recognition elements, such as antibodies, aptamers and molecularly imprinted polymers, for the development of sensitive and selective (bio)sensors for illicit drugs with a focus on electrochemical transduction systems. The use and abuse of illicit drugs remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of “emerging pollutants,” as their consumption has increased tremendously in recent years. Nanomaterials, antibodies, aptamers and molecularly imprinted polymers have gained much attention over the last decade in the development of (bio)sensors for a myriad of applications. The applicability of these (nano)materials, functionalized or not, has significantly increased, and are therefore highly suitable for use in the detection of drugs. Lately, such functionalized nanoscale materials have assisted in the detection of illicit drugs fingerprints, providing large surface area, functional groups and unique properties that facilitate sensitive and selective sensing. The review discusses the types of commonly abused drugs and their toxicological implications, classification of functionalized nanomaterials (graphene, carbon nanotubes), their fabrication, and their application on real samples in different fields of forensic science. Biosensors for drugs of abuse from the last decade's literature are then exemplified. It also offers insights into the prospects and challenges of bringing the functionalized nanobased technology to the end user in the laboratories or in-field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000589960100001 Publication Date 2020-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.5 Times cited Open Access
Notes Approved Most recent IF: 5.5; 2020 IF: 3.994
Call Number UA @ admin @ c:irua:174278 Serial 8639
Permanent link to this record
 

 
Author Lybaert, J.; Trashin, S.; Maes, B.U.W.; De Wael, K.; Abbaspour Tehrani, K.
Title Cooperative electrocatalytic and chemoselective alcohol oxidation by Shvo's catalyst Type A1 Journal article
Year 2017 Publication Advanced synthesis and catalysis Abbreviated Journal Adv Synth Catal
Volume 359 Issue 6 Pages 919-925
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)
Abstract A new electrocatalytic conversion of alcohols to ketones and aldehydes was developed based on an electrochemical study of Shvos complex. The oxidation of secondary alcohols was efficiently performed under mild conditions using a catalytic amount of Shvos catalyst, in combination with a sub-stoichiometric amount of 2,6-dimethoxy-1,4- benzoquinone in N,N-dimethylformamide at 80 8C. The hydroquinone thus formed is continuously reoxidized with the aid of an electrochemical device. Excellent yields for different ketones, aromatic as well as aliphatic and a,b-unsaturated ketones, are obtained. In addition, chemoselectivity towards oxidation of the secondary alcohol is achieved when converting vicinal diols such as 1,2-octanediol and 1,2-decanediol.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397584000003 Publication Date 2017-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1615-4150; 1615-4169 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 5.646 Times cited 4 Open Access
Notes ; This work was financially supported by the University of Antwerp (BOF), the Research Foundation – Flanders (FWO) and the Hercules Foundation. ; Approved Most recent IF: 5.646
Call Number UA @ admin @ c:irua:139795 Serial 5559
Permanent link to this record
 

 
Author Patiño, Y.; Pilehvar, S.; Díaz, E.; Ordóñez, S.; De Wael, K.
Title Electrochemical reduction of nalidixic acid at glassy carbon electrodemodified with multi-walled carbon nanotubes Type A1 Journal article
Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 323 Issue B Pages 621-631
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT −MWCNT-COOH and MWCNT-NH2was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT > MWCNT-NH2 > MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH = 5.0, deposition time = 20 s and volume of MWCNT = 10 μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A = 8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LCMS).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000390513700004 Publication Date 2016-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.065 Times cited 4 Open Access
Notes ; This work was supported by the Spanish Government (contract CTQ2011-29272-C04-02) and by the Government of the Principality of Asturias (contract FC-15-GRUPIN14-078). Y. Patifio thanks the Government of the Principality of Asturias for a Ph.D. fellowship (Severo Ochoa Program). S.P. and K.D.W. are thankful to UA for DOCPRO financial support. ; Approved Most recent IF: 6.065
Call Number UA @ admin @ c:irua:136108 Serial 5594
Permanent link to this record
 

 
Author Pilehvar, S.; Gielkens, K.; Trashin, S.A.; Dardenne, F.; Blust, R.; De Wael, K.
Title (Electro)sensing of phenicol antibiotics : a review Type A1 Journal article
Year 2016 Publication Critical reviews in food science and nutrition Abbreviated Journal Crit Rev Food Sci
Volume 56 Issue 14 Pages 2416-2429
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The presence of residues from frequent antibiotic use in animal feed can cause serious health risks by contaminating products for human consumption such as meat and milk. The present article gives an overview of the electrochemical methods developed for the detection of phenicol antibiotic residues (chloramphenicol, thiamphenicol, and florfenicol) in different kinds of foodstuffs. Electrochemical sensors based on different biomolecules and nanomaterials are described. The detection limit of various developed methods with their advantages and disadvantage will be highlighted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382757200015 Publication Date 2015-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-8398 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.077 Times cited 13 Open Access
Notes ; The authors are highly thankful for the University of Antwerp Grants (DOCPRO/ IWS). ; Approved Most recent IF: 6.077
Call Number UA @ admin @ c:irua:125663 Serial 5585
Permanent link to this record
 

 
Author Eliaerts, J.; Meert, N.; Dardenne, P.; Van Durme, F.; Baeten, V.; Samyn, N.; De Wael, K.
Title Evaluation of a calibration transfer between a bench top and portable Mid-InfraRed spectrometer for cocaine classification and quantification Type A1 Journal article
Year 2020 Publication Talanta Abbreviated Journal Talanta
Volume 209 Issue Pages 120481
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A portable Fourier Transform Mid-InfraRed (FT-MIR) spectrometer using Attenuated Total Reflectance (ATR) sampling is used for daily routine screening of seized powders. Earlier, ATR-FT-MIR combined with Support Vector Machines (SVM) algorithms resulted in a significant improvement of the screening method to a reliable and straightforward classification and quantification tool for both cocaine and levamisole. However, can this tool be transferred to new (hand-held) devices, without loss of the extensive data set? The objective of this study was to perform a calibration transfer between a newly purchased bench top (BT) spectrometer and a portable (P) spectrometer with existing calibration models. Both instruments are from the same brand and have identical characteristics and acquisition parameters (FT instrument, resolution of 4 cm(-1) and wavenumber range 4000 to 500 cm(-1)). The original SVM classification model (n = 515) and SVM quantification model (n = 378) were considered for the transfer trial. Three calibration transfer strategies were assessed: 1) adjustment of slope and bias; 2) correction of spectra from the new instrument BT to P using Piecewise Direct Standardization (PDS) and 3) building a new mixed instrument model with spectra of both instruments. For each approach, additional cocaine powders were measured (n = 682) and the results were compared with GC-MS and GC-FID. The development of a mixed instrument model was the most successful in terms of performance. The future strategy of a mixed model allows applying the models, developed in the laboratory, to portable instruments that are used on-site, and vice versa. The approach offers opportunities to exchange data within a network of forensic laboratories using other FT-MIR spectrometers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000509632900016 Publication Date 2019-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.1 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 6.1; 2020 IF: 4.162
Call Number UA @ admin @ c:irua:166475 Serial 6511
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.; Oprean, R.; Cristea, C.; De Wael, K.
Title Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis Type A1 Journal article
Year 2023 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume 255 Issue Pages 124208-124211
Keywords A1 Journal article; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 mu M and 2.5 mM MA, a LOD of 16.7 mu M, a LOQ of 50.0 mu M and a sensitivity of 5.3 mu A mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography – mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000925076200001 Publication Date 2023-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.1; 2023 IF: 4.162
Call Number UA @ admin @ c:irua:194314 Serial 8890
Permanent link to this record
 

 
Author Detamornrat, U.; Parrilla, M.; Domínguez-Robles, J.; Anjani, Q.K.; Larrañeta, E.; De Wael, K.; Donnelly, R.F.
Title Transdermal on-demand drug delivery based on an iontophoretic hollow microneedle array system Type A1 Journal article
Year 2023 Publication Lab on a chip Abbreviated Journal
Volume 23 Issue 9 Pages 2304-2315
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Transdermal drug delivery has emerged as an alternative administration route for therapeutic drugs, overcoming current issues in oral and parenteral administration. However, this technology is hindered by the low permeability of the stratum corneum of the skin. In this work, we develop a synergic combination of two enhancing technologies to contribute to an improved and on-demand drug delivery through an iontophoretic system coupled with hollow microneedles (HMNs). For the first time, a polymeric HMN array coupled with integrated iontophoresis for the delivery of charged molecules and macromolecules (e.g. proteins) is devised. To prove the concept, methylene blue, fluorescein sodium, lidocaine hydrochloride, and bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) were first tested in an in vitro setup using 1.5% agarose gel model. Subsequently, the ex vivo drug permeation study using a Franz diffusion cell was conducted, exhibiting a 61-fold, 43-fold, 54-fold, and 17-fold increment of the permeation of methylene blue, fluorescein sodium, lidocaine hydrochloride, and BSA-FITC, respectively, during the application of 1 mA cm(-2) current for 6 h. Moreover, the total amount of drug delivered (i.e. in the skin and receptor compartment) was analysed to untangle the different delivery profiles according to the types of molecule. Finally, the integration of the anode and cathode into an iontophoretic hollow microneedle array system (IHMAS) offers the full miniaturisation of the concept. Overall, the IHMAS device provides a versatile wearable technology for transdermal on-demand drug delivery that can improve the administration of personalised doses, and potentially enhance precision medicine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000971513000001 Publication Date 2023-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1473-0197 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.1; 2023 IF: 6.045
Call Number UA @ admin @ c:irua:195781 Serial 8946
Permanent link to this record
 

 
Author Horemans, B.; Van Holsbeke, C.; Vos, W.; Darchuk, L.; Novakovic, V.; Fontan, A.C.; de Backer, J.; van Grieken, R.; de Backer, W.; De Wael, K.
Title Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol Type A1 Journal article
Year 2012 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 46 Issue 21 Pages 12162-12169
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract Urban atmospheres in modern cities carry characteristic mixtures of particulate pollution which are potentially aggravating for chronic respiratory patients (CRP). Although air quality surveys can be detailed, the obtained information is not always useful to evaluate human health effects. This paper presents a novel approach to estimate particle deposition rates in airways of CRP, based on real air pollution data. By combining computational fluid dynamics with physical-chemical characteristics of particulate pollution, deposition rates are estimated for particles of different toxicological relevance, that is, minerals, iron oxides, sea salts, ammonium salts, and carbonaceous particles. Also, it enables some qualitative evaluation of the spatial, temporal, and patient specific effects on the particle dose upon exposure to the urban atmosphere. Results show how heavy traffic conditions increases the deposition of anthropogenic particles in the trachea and lungs of respiratory patients (here, +0.28 and +1.5 μg·h1, respectively). In addition, local and synoptic meteorological conditions were found to have a strong effect on the overall dose. However, the pathology and age of the patient was found to be more crucial, with highest deposition rates for toxic particles in adults with a mild anomaly, followed by mild asthmatic children and adults with severe respiratory dysfunctions (7, 5, and 3 μg·h1, respectively).
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000310665000082 Publication Date 2012-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.198 Times cited 5 Open Access
Notes ; We are grateful for the financial support of n.v. Vooruitzicht. Furthermore, co-workers at the environmental analysis research group are acknowledged for their help in the fieldwork. ; Approved Most recent IF: 6.198; 2012 IF: 5.257
Call Number UA @ lucian @ c:irua:101411 Serial 2557
Permanent link to this record
 

 
Author Pauwels, D.; Hereijgers, J.; Verhulst, K.; De Wael, K.; Breugelmans, T.
Title Investigation of the electrosynthetic pathway of the aldol condensation of acetone Type A1 Journal article
Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 289 Issue Pages 554-561
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The potential-controlled electrochemical aldol condensation of acetone to diacetone alcohol in a standard batch electrolysis set-up was studied in this work. It is confirmed that the reaction proceeds at the cathode and that, contrary to what is mentioned in earlier literature, water in the electrolyte has a disadvantageous effect on the reaction. Similar to the chemical reaction, the electrochemical reaction reaches a maximum yield when the equilibrium is reached. Separating the anode and cathode prevents cross-over and degradation of products, leading to a higher yield. Starting with pure acetone and support electrolyte, it was possible to obtain a diacetone alcohol concentration of 15 m% after two hours electrolysis in a divided set-up with a platinum electrode at -2.5 V. The concentration gradient throughout the electrolysis follows an exponential curve up to its equilibrium concentration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371559900061 Publication Date 2016-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:130396 Serial 5675
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P.
Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 410 Issue Pages 128234
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623394200004 Publication Date 2021-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.216 Times cited 15 Open Access OpenAccess
Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216
Call Number EMAT @ emat @c:irua:174591 Serial 6662
Permanent link to this record
 

 
Author Rahemi, V.; Sarmadian, N.; Anaf, W.; Janssens, K.; Lamoen, D.; Partoens, B.; De Wael, K.
Title Unique opto-electronic structure and photo reduction properties of sulfur doped lead chromates explaining their instability in paintings Type A1 Journal article
Year 2017 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 89 Issue 89 Pages 3326-3334
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Chrome yellow refers to a group of synthetic inorganic pigments that became popular as an artists material from the second quarter of the 19th century. The color of the pigment, in which the chromate ion acts as a chromophore, is related to its chemical composition (PbCr1-xSxO4, with 0≤x≤0.8) and crystalline structure (monoclinic/orthorhombic). Their shades range from the yellow-orange to the paler yellow tones with increasing sulfate amount. These pigments show remarkable signs of degradation after limited time periods. Pure PbCrO4 (crocoite in its natural form) has a deep yellow color and is relatively stable, while the co-precipitate with lead sulfate (PbCr1-xSxO4) has a paler shade and seems to degrade faster. This degradation is assumed to be related to the reduction of Cr(VI) to Cr(III). We show that on increasing the sulfur(S)-content in chrome yellow, the band gap increases. Typically, when increasing the band gap, one might assume that a decrease in photo activity is the result. However, the photo activity relative to the Cr content, and thus Cr reduction, of sulfur-rich PbCr1-xSxO4 is found to be much higher compared to the sulfur-poor or non-doped lead chromates. This discrepancy can be explained by the evolution of the crystal and electronic structure as function of the sulfur content: first-principles density functional theory calculations show that both the absorption coefficient and reflection coefficients of the lead chromates change as a result of the sulfate doping in such a way that the generation of electron-hole pairs under illumination relative to the total Cr content increases. These changes in the material properties explain why paler shade yellow colors of this pigment are more prone to discoloration. The electronic structure calculations also demonstrate that lead chromate and its co-precipitates are p-type semiconductors, which explains the observed reduction reaction. As understanding this phenomenon is valuable in the field of cultural heritage, this study is the first joint action of photo-electrochemical measurements and first-principles calculations to approve the higher tendency of sulfur-rich lead chromates to darken.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000397478300015 Publication Date 2017-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.32 Times cited 7 Open Access OpenAccess
Notes ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government, department EWI. The BOF-GOA action SOLARPAINT of the University of Antwerp Research Council is acknowledged for financial support. W.A. acknowledges support from BELSPO project S2-ART. Dr. L. Monico and Dr. C. Miliani (ISTM, Perugia) are gratefully acknowledged for helpful discussions and for providing some of the initial batches of the materials studied. ; Approved Most recent IF: 6.32
Call Number UA @ lucian @ c:irua:140886 Serial 4451
Permanent link to this record
 

 
Author Pilehvar, S.; Mehta, J.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K.
Title Aptasensing of chloramphenicol in the presence of its analogues : reaching the maximum residue limit Type A1 Journal article
Year 2012 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 84 Issue 15 Pages 6753-6758
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A novel label-free folding induced aptamer-based electrochemical biosensor for the detection of chloramphenicol (CAP) in the presence of its analogues has been developed. CAP is a broad-spectrum antibiotic which has lost its favor due to its serious adverse toxic effects on human health. Aptamers are artificial nucleic acid ligands (ssDNA or RNA) able to specifically recognize a target such as CAP. In this article, the aptamers are fixed onto a gold electrode surface by a self-assembly approach. In the presence of CAP, the unfolded ssDNA on the electrode surface changes to a hairpin structure bringing the target molecules close to the surface and trigger electron transfer. Detection limits were determined to be 1.6×10-9 mol L-1. In addition, thiamphenicol (TAP) and florfenicol (FF), antibiotics with a similar structure to CAP, did not influence the performance of the aptasensor, suggesting a good selectivity of the CAP-aptasensor. Simplicity and lower detection limit (because of the home-selected aptamers) make that the electrochemical aptasensor is suitable for practical use in the detection of CAP in milk samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000307159200069 Publication Date 2012-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.32 Times cited 68 Open Access
Notes ; ; Approved Most recent IF: 6.32; 2012 IF: 5.695
Call Number UA @ admin @ c:irua:98816 Serial 5477
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K.
Title Cephalosporin antibiotics : electrochemical fingerprints and core structure reactions investigated by LC-MSMS Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 3 Pages 2035-2041
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract Electrochemistry and exploiting electrochemical fingerprints is a potent approach to address newly emerging surveillance needs, for instance for antibiotics. However, a comprehensive insight in the electrochemical oxidation behaviour and mechanism is re-quired for this sensing strategy. To address the lack in knowledge of the voltammetric behaviour of the cephalosporins antibiotics, a selection of cephalosporin antibiotics and two main intermediates were subjected to an electrochemical study of their redox behaviour by means of pulsed voltammetric techniques and small-scale electrolysis combined with HPLC-MS/MS analyses. Sur-prisingly, the detected oxidation products did not fit the earlier suggested oxidation of the sulfur group to the corresponding sul-foxide. The influence of different side chains, both at the three and the seven position of the β-lactam core structure on the elec-trochemical fingerprint were investigated. Additional oxidation signals at lower potentials were elucidated and linked to different side chains. These signals were further exploited to allow simultaneous detection of different cephalosporins in one voltammetric sweep. These fundamental insights can become the building blocks for an new on-site screening method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458220300055 Publication Date 2019-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.32 Times cited 6 Open Access
Notes ; The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:156046 Serial 5497
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Daems, D.; De Wael, K.; Van Camp, G.; Nagels, L.J.
Title Concentration related response potentiometric titrations to study the interaction of small molecules with large biomolecules Type A1 Journal article
Year 2014 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 86 Issue 24 Pages 12243-12249
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In the present article, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small molecule interactions is reported. This approach is fast, sensitive, reproducible and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed to a concentration related signal over the entire concentration interval, also at low concentrations, where the mV (y-axis) versus logcanalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, the Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anti-cocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis (4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using SPR. The potentiometric titration approach called Concentration related Response Potentiometry, is used to study molecular interaction for 7 macromolecular target molecules and 4 small molecule ligands.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346683900048 Publication Date 2014-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.32 Times cited 10 Open Access
Notes ; Financial support for this work was provided by the University of Antwerp by granting L.J.N., K.D.W, G.V.C., and Ronny Blust a POC interdisciplinary research project. ; Approved Most recent IF: 6.32; 2014 IF: 5.636
Call Number UA @ admin @ c:irua:120164 Serial 5548
Permanent link to this record
 

 
Author Anaf, W.; Trashin, S.; Schalm, O.; van Dorp, D.; Janssens, K.; De Wael, K.
Title Electrochemical photodegradation study of semiconductor pigments : influence of environmental parameters Type A1 Journal article
Year 2014 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 86 Issue 19 Pages 9742-9748
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Chemical transformations in paintings often induce discolorations, disturbing the appearance of the image. For an appropriate conservation of such valuable and irreplaceable heritage objects, it is important to have a good know-how on the degradation processes of the (historical) materials: which pigments have been discolored, what are the responsible processes, and which (environmental) conditions have the highest impact on the pigment degradation and should be mitigated. Pigment degradation is already widely studied, either by analyzing historical samples or by accelerated weathering experiments on dummies. However, in historic samples several processes may have taken place, increasing the complexity of the current state, while aging experiments are time-consuming due to the often extended aging period. An alternative method is proposed for a fast monitoring of degradation processes of semiconductor pigments, using an electrochemical setup mimicking the real environment and allowing the identification of harmful environmental parameters for each pigment. Examples are given for the pigments cadmium yellow (CdS) and vermilion (α-HgS).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343017100058 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.32 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 6.32; 2014 IF: 5.636
Call Number UA @ admin @ c:irua:118834 Serial 5593
Permanent link to this record
 

 
Author Florea, A.; Schram, J.; De Jong, M.; Eliaerts, J.; Van Durme, F.; Kaur, B.; Samyn, N.; De Wael, K.
Title Electrochemical strategies for adulterated heroin samples Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 12 Pages 7920-7928
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Electrochemical strategies to selectively detect heroin in street samples without the use of complicated electrode modifications were developed for the first time. For this purpose, heroin, mixing agents (adulterants, cutting agent, and impurities), and their binary mixtures were subjected to square wave voltammetry measurements at bare graphite electrodes at pH 7.0 and pH 12.0, in order to elucidate the unique electrochemical fingerprint of heroin and mixing agents as well as possible interferences or reciprocal influences. Adjusting the pH from pH 7.0 to pH 12.0 allowed a more accurate detection of heroin in the presence of most common mixing agents. Furthermore, the benefit of introducing a preconditioning step prior to running square wave voltammetry on the electrochemical fingerprint enrichment was explored. Mixtures of heroin with other drugs (cocaine, 3,4-methylenedioxymethamphetamine, and morphine) were also tested to explore the possibility of their discrimination and simultaneous detection. The feasibility of the proposed electrochemical strategies was tested on realistic heroin street samples from forensic cases, showing promising results for fast, on-site detection tools of drugs of abuse.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472682000056 Publication Date 2019-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 6.32 Times cited 2 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. The authors also acknowledge IOF (UAntwerp) and Belspo for financial support. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:160061 Serial 5596
Permanent link to this record