|   | 
Details
   web
Records
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D.
Title Advanced electron microscopy for advanced materials Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue 42 Pages 5655-5675
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000310602200001 Publication Date 2012-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 19.791 Times cited 107 Open Access
Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70
Permanent link to this record
 

 
Author Zhang, X.B.; Van Tendeloo, G.; van Landuyt, J.; van Dyck, D.; Briers, J.; Bao, Y.; Geise, H.J.
Title An electron microscopic study of highly oriented undoped and FeCl3-doped poly (p-phenylenevinylene) Type A1 Journal article
Year 1996 Publication Macromolecules Abbreviated Journal Macromolecules
Volume 29 Issue 5 Pages 1554-1561
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1996TY13900024 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-9297;1520-5835; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.8 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15452 Serial 939
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Martinez, G.T.; den Dekker, A.J.; Van Dyck, D.; Bals, S.; Van Tendeloo, G.
Title Advanced electron crystallography through model-based imaging Type A1 Journal article
Year 2016 Publication IUCrJ Abbreviated Journal Iucrj
Volume 3 Issue 3 Pages 71-83
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Engineering Management (ENM)
Abstract The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368590900010 Publication Date 2015-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-2525; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.793 Times cited 30 Open Access OpenAccess
Notes The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a PhD grant to ADB. The research leading to these results has received funding from the European Union 7th Framework Program (FP7/20072013) under grant agreement No. 312483 (ESTEEM2). SB and GVT acknowledge the European Research Council under the 7th Framework Program (FP7), ERC grant No. 335078 – COLOURATOMS and ERC grant No. 246791 – COUNTATOMS.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 5.793
Call Number c:irua:129589 c:irua:129589 Serial 3965
Permanent link to this record
 

 
Author Lobato Hoyos, I.P.; van Dyck, D.
Title An accurate parameterization for scattering factors, electron densities and electrostatic potentials for neutral atoms that obey all physical constraints Type A1 Journal article
Year 2014 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
Volume 70 Issue 6 Pages 636-649
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract An efficient procedure and computer program are outlined for fitting numerical X-ray and electron scattering factors with the correct inclusion of all physical constraints. The numerical electron scattering factors have been parameterized using five analytic non-relativistic hydrogen electron scattering factors as basis functions for 103 neutral atoms of the periodic table. The inclusion of the correct physical constraints in the electron scattering factor and its derived quantities allows the use of the new parameterization in different fields. In terms of quality of the fit, the proposed parameterization of the electron scattering factor is one order of magnitude better than the previous analytic fittings.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000344599300012 Publication Date 2014-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-2733; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.725 Times cited 19 Open Access
Notes Approved Most recent IF: 5.725; 2014 IF: NA
Call Number UA @ lucian @ c:irua:122103 Serial 93
Permanent link to this record
 

 
Author Van Tendeloo, G.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; Amelinckx, S.
Title Up close: Center for Electron Microscopy of Materials Science at the University of Antwerp Type A1 Journal article
Year 1994 Publication MRS bulletin Abbreviated Journal Mrs Bull
Volume Issue Pages 57-59
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Pittsburgh, Pa Editor
Language Wos A1994PH66300015 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record;
Impact Factor (down) 5.667 Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9996 Serial 3821
Permanent link to this record
 

 
Author Ferroni, M.; Carotta, M.C.; Guidi, V.; Martinelli, G.; Ronconi, F.; Richard, O.; van Dyck, D.; van Landuyt, J.
Title Structural characterization of Nb-TiO2 nanosized thick-films for gas sensing application Type P1 Proceeding
Year 2000 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 68 Issue 1-3 Pages 140-145
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab
Abstract Pure and Nb-doped TiO2 thick-films were prepared by screen-printing, starting from nanosized powders. Grain growth and crystalline phase modification occurred as consequence of firing at high temperature. It has been shown that niobium addition inhibits grain coarsening and hinders anatase-to-rutile phase transition. These semiconducting films exhibited n-type behavior, while Nb acted as donor-dopant. Gas measurements demonstrated that the films are suitable for CO or NO2 sensing. Microstructural characterization by electron microscopy and differential thermal analysis (DTA) highlights the dependence of gas-sensing behavior on film's properties. (C) 2000 Elsevier Science S.A. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000089218000022 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.401 Times cited 51 Open Access
Notes Approved Most recent IF: 5.401; 2000 IF: 1.470
Call Number UA @ lucian @ c:irua:95167 Serial 3223
Permanent link to this record
 

 
Author Tsai, C.-Y.; Chang, Y.-C.; Lobato, I.; Van Dyck, D.; Chen, F.-R.
Title Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 27701
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 A resolution but using a strongly reduced number of images.
Address Department of Engineering and System Science, Tsing-Hua University, HsinChu 300, Taiwan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000377670500001 Publication Date 2016-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 4.259 Times cited Open Access
Notes D. Van Dyck acknowledges the financial support from the Fund for Scientific Research – Flanders (FWO) under Project nos. VF04812N and G.0188.08. F. R. Chen would like to thank the support from NSC 101-2221-E-007- 063-MY3 and MOST 104-2321-B-007-004. We are grateful for the use of the Tecnai F20 in the Cryo-EM Core Facility, Department of Academic Affairs and Instrument Service at Academia Sinica. Approved Most recent IF: 4.259
Call Number c:irua:134038 Serial 4087
Permanent link to this record
 

 
Author Cloetens, P.; Ludwig, W.; Baruchel, J.; van Dyck, D.; van Landuyt, J.; Guigay, J.P.; Schlenker, M.
Title Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays Type A1 Journal article
Year 1999 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 75 Issue 19 Pages 2912-2914
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000083483900014 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.411 Times cited 481 Open Access
Notes Approved Most recent IF: 3.411; 1999 IF: 4.184
Call Number UA @ lucian @ c:irua:29643 Serial 1484
Permanent link to this record
 

 
Author van Dyck, D.; Croitoru, M.D.
Title Statistical method for thickness measurement of amorphous objects Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue 24 Pages 241911-241913
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract The authors propose a nondestructive method for the determination of the thickness of an amorphous sample. This method is based on the statistics of the phase of the electron exit wave function, which depend on the number of atoms traversed by the incident electron which itself is a function of the thickness of the object. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential. (c) 2007 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247305400033 Publication Date 2007-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.411 Times cited 4 Open Access
Notes Fwo Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:102671 Serial 3158
Permanent link to this record
 

 
Author Van Aert, S.; van Dyck, D.; den Dekker, A.J.
Title Resolution of coherent and incoherent imaging systems reconsidered: classical criteria and a statistical alternative Type A1 Journal article
Year 2006 Publication Optics express Abbreviated Journal Opt Express
Volume 14 Issue 9 Pages 3830-3839
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000237296200013 Publication Date 2006-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.307 Times cited 45 Open Access
Notes Fwo Approved Most recent IF: 3.307; 2006 IF: 4.009
Call Number UA @ lucian @ c:irua:58262 Serial 2883
Permanent link to this record
 

 
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M.
Title Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 64 Issue 8 Pages 812-820
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab
Abstract Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000269995300018 Publication Date 2009-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.241 Times cited 28 Open Access
Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719
Call Number UA @ lucian @ c:irua:79647 Serial 1035
Permanent link to this record
 

 
Author Verbeeck, J.; van Dyck, D.; Van Tendeloo, G.
Title Energy-filtered transmission electron microscopy: an overview Type A1 Journal article
Year 2004 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 59 Issue 10/11 Pages 1529-1534
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract This paper aims to give an overview of the technique of energy-filtered transmission electron microscopy (EFTEM). It explains the basic principles of the technique and points to the relevant literature for more detailed issues. Experimental examples are given to show the power of EFTEM to study the chemical composition of nanoscale samples in materials science. Advanced EFTEM applications like imaging spectroscopy and EFTEM tomography are briefly discussed. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000224848000006 Publication Date 2004-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.241 Times cited 37 Open Access
Notes Approved Most recent IF: 3.241; 2004 IF: 3.086
Call Number UA @ lucian @ c:irua:54869UA @ admin @ c:irua:54869 Serial 1038
Permanent link to this record
 

 
Author Wang, A.; Turner, S.; Van Aert, S.; van Dyck, D.
Title An alternative approach to determine attainable resolution directly from HREM images Type A1 Journal article
Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 133 Issue Pages 50-61
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The concept of resolution in high-resolution electron microscopy (HREM) is the power to resolve neighboring atoms. Since the resolution is related to the width of the point spread function of the microscope, it could in principle be determined from the image of a point object. However, in electron microscopy there are no ideal point objects. The smallest object is an individual atom. If the width of an atom is much smaller than the resolution of the microscope, this atom can still be considered as a point object. As the resolution of the microscope enters the sub-Å regime, information about the microscope is strongly entangled with the information about the atoms in HREM images. Therefore, we need to find an alternative method to determine the resolution in an object-independent way. In this work we propose to use the image wave of a crystalline object in zone axis orientation. Under this condition, the atoms of a column act as small lenses so that the electron beam channels through the atom column periodically. Because of this focusing, the image wave of the column can be much more peaked than the constituting atoms and can thus be a much more sensitive probe to measure the resolution. Our approach is to use the peakiness of the image wave of the atom column to determine the resolution. We will show that the resolution can be directly linked to the total curvature of the atom column wave. Moreover, we can then directly obtain the resolution of the microscope given that the contribution from the object is known, which is related to the bounding energy of the atom. The method is applied on an experimental CaTiO3 image wave.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000324471800007 Publication Date 2013-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 2.843 Times cited Open Access
Notes FWO; Hercules; Esteem2; esteem2_jra2 Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:109919 Serial 90
Permanent link to this record
 

 
Author Xu, Q.; Zandbergen, H.W.; van Dyck, D.
Title Applying an information transmission approach to extract valence electron information from reconstructed exit waves Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 7 Pages 912-919
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The knowledge of the valence electron distribution is essential for understanding the properties of materials. However this information is difficult to obtain from HREM images because it is easily obscured by the large scattering contribution of core electrons and by the strong dynamical scattering process. In order to develop a sensitive method to extract the information of valence electrons, we have used an information transmission approach to describe the electron interaction with the object. The scattered electron wave is decomposed in a set of basic functions, which are the eigen functions of the Hamiltonian of the projected electrostatic object potential. Each basic function behaves as a communication channel that transfers the information of the object with its own transmission characteristic. By properly combining the components of the different channels, it is possible to design a scheme to extract the information of valence electron distribution from a series of exit waves. The method is described theoretically and demonstrated by means of computer simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461000024 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 1 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:93623 Serial 146
Permanent link to this record
 

 
Author Chen, J.H.; van Dyck, D.; op de Beeck, M.; van Landuyt, J.
Title Computational comparisons between the conventional multislice method and the third-order multislice method for calculating high-energy electron diffraction and imaging Type A1 Journal article
Year 1997 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 69 Issue Pages 219-240
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1997YG59500001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 11 Open Access
Notes Approved Most recent IF: 2.843; 1997 IF: 1.600
Call Number UA @ lucian @ c:irua:21416 Serial 455
Permanent link to this record
 

 
Author van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D.
Title Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue Pages 8-12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700002 Publication Date 2012-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 67 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96558 Serial 518
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D.
Title Direct structure inversion from exit waves: part 1: theory and simulations Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 5 Pages 527-534
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In order to interpret the amplitude and phase of the exit wave in terms of mass and position of the atoms, one has to invert the dynamic scattering of the electrons in the object so as to obtain a starting structure which can then be used as a seed for further quantitative structure refinement. This is especially challenging in case of a zone axis condition when the interaction of the electrons with the atom column is very strong. Based on the channelling theory we will show that the channelling map not only yields a circle on the Argand plot but also a circular defocus curve for every column. The former gives the number of atoms in each column, while the latter provides the defocus value for each column, which reveals the surface roughness at the exit plane with single atom sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000279065700019 Publication Date 2009-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 25 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83691 Serial 723
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D.
Title Direct structure inversion from exit waves : part 2 : a practical example Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue Pages 77-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract This paper is the second part of a two-part paper on direct structure inversion from exit waves. In the first part, a method has been proposed to quantitatively determine structure parameters with atomic resolution such as atom column positions, surface profile and the number of atoms in the atom columns. In this part, the theory will be demonstrated by means of a Au[110] exit wave reconstructed from a set of focal-series images. The procedures to analyze the experimentally reconstructed exit wave in terms of quantitative structure information are described in detail.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700011 Publication Date 2012-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96660 Serial 724
Permanent link to this record
 

 
Author den Dekker, A.J.; Van Aert, S.; van Dyck, D.; van den Bos, A.; Geuens, P.
Title Does a monochromator improve the precision in quantitative HRTEM? Type A1 Journal article
Year 2001 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 89 Issue Pages 275-290
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000172667000004 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 22 Open Access
Notes Approved Most recent IF: 2.843; 2001 IF: 1.890
Call Number UA @ lucian @ c:irua:47518 Serial 746
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Van Aert, S.; Bals, S.; Verbeeck, J.
Title An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 10 Pages 933-940
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract We propose an improved image simulation procedure for atomic-resolution annular dark-field scanning transmission electron microscopy (STEM) based on the multislice formulation, which takes thermal diffuse scattering fully into account. The improvement with regard to the classical frozen phonon approach is realized by separating the lattice configuration statistics from the dynamical scattering so as to avoid repetitive calculations. As an example, the influence of phonon scattering on the image contrast is calculated and investigated. STEM image simulation of crystals can be applied with reasonable computing times to problems involving a large number of atoms and thick or large supercells.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000240397200006 Publication Date 2006-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 18 Open Access
Notes Fwo; Fwo-V Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:87604UA @ admin @ c:irua:87604 Serial 876
Permanent link to this record
 

 
Author Van Aert, S.; Geuens, P.; van Dyck, D.; Kisielowski, C.; Jinschek, J.R.
Title Electron channelling based crystallography Type A1 Journal article
Year 2007 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 107 Issue 6/7 Pages 551-558
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000245341300015 Publication Date 2006-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 32 Open Access
Notes Approved Most recent IF: 2.843; 2007 IF: 1.996
Call Number UA @ lucian @ c:irua:64286 Serial 913
Permanent link to this record
 

 
Author Potapov, P.; Lichte, H.; Verbeeck, J.; van Dyck, D.
Title Experiments on inelastic electron holography Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 11-12 Pages 1012-1018
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Using the combination of an electron biprism and an energy filter, the coherence distribution in an inelastically scattered wave-field is measured. It is found that the degree of coherence decreases rapidly with increasing distance between two superimposed points in the object, and with increasing energy-loss. In a Si sample, coherence of plasmon scattering increases in vacuum with the distance from the edge of the sample. (c) 2006 Published by Elsevier B.V.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241592900009 Publication Date 2006-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 28 Open Access
Notes Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:61380UA @ admin @ c:irua:61380 Serial 1147
Permanent link to this record
 

 
Author de Backer, A.; Van Aert, S.; van Dyck, D.
Title High precision measurements of atom column positions using model-based exit wave reconstruction Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 9/10 Pages 1475-1482
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this paper, it has been investigated how to measure atom column positions as accurately and precisely as possible using a focal series of images. In theory, it is expected that the precision would considerably improve using a maximum likelihood estimator based on the full series of focal images. As such, the theoretical lower bound on the variances of the unknown atom column positions can be attained. However, this approach is numerically demanding. Therefore, maximum likelihood estimation has been compared with the results obtained by fitting a model to a reconstructed exit wave rather than to the full series of focal images. Hence, a real space model-based exit wave reconstruction technique based on the channelling theory is introduced. Simulations show that the reconstructed complex exit wave contains the same amount of information concerning the atom column positions as the full series of focal images. Only for thin samples, which act as weak phase objects, this information can be retrieved from the phase of the reconstructed complex exit wave.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461200004 Publication Date 2011-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:91879 Serial 1438
Permanent link to this record
 

 
Author Lobato, I.; van Dyck, D.
Title Improved multislice calculations for including higher-order Laue zones effects Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 119 Issue Pages 63-71
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A new method for including higher-order Laue zones (HOLZs) effects in an efficient way in electron scattering simulations has been developed and tested by detail calculations. The calculated results by the conventional multislice (CMS) method and the improved conventional multislice (ICMS) method using a large dynamical aperture to avoid numerical errors are compared with accurate results. We have found that the zero-order Laue zones (ZOLZs) reflection cannot be properly described only using the projected potential in the whole unit cell; in general, we need to subslice the electrostatic potential inside the unit cell. It is shown that the ICMS method has higher accuracy than the CMS method for the calculation of the ZOLZ, HOLZ and Pseudo-HOLZ reflections. Hence, ICMS method allows to use a larger slice thickness than the CMS method and reduces the calculation time. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308079200011 Publication Date 2012-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 6 Open Access
Notes Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:101902 Serial 1567
Permanent link to this record
 

 
Author Potapov, P.L.; Verbeeck, J.; Schattschneider, P.; Lichte, H.; van Dyck, D.
Title Inelastic electron holography as a variant of the Feynman thought experiment Type A1 Journal article
Year 2007 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 107 Issue 8 Pages 559-567
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Using a combination of electron holography and energy filtering, interference fringes produced after inelastic interaction of electrons with hydrogen molecules are examined. Surprisingly, the coherence of inelastic scattering increases when moving from the surface of a hydrogen-containing bubble to the vacuum. This phenomenon can be understood in terms of the Feynman two-slit thought experiment with a variable ambiguity of the which-way registration. (C) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000246937000001 Publication Date 2006-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 13 Open Access
Notes Fwo G.0147.06 Approved Most recent IF: 2.843; 2007 IF: 1.996
Call Number UA @ lucian @ c:irua:103588UA @ admin @ c:irua:103588 Serial 1605
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; den Dekker, A.J.; van den Bos, A.
Title Is atomic resolution transmission electron microscopy able to resolve and refine amorphous structures? Type A1 Journal article
Year 2003 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 98 Issue Pages 27-42
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000186831500003 Publication Date 2003-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 26 Open Access
Notes Approved Most recent IF: 2.843; 2003 IF: 1.665
Call Number UA @ lucian @ c:irua:47516 Serial 1749
Permanent link to this record
 

 
Author Van Aert, S.; Chen, J.H.; van Dyck, D.
Title Linear versus non-linear structural information limit in high-resolution transmission electron microscopy Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 11 Pages 1404-1410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has different effects on the transfer of the linear and non-linear terms, such that the non-linear imaging contributions are damped less than the linear imaging contributions at high spatial frequencies. This will be important when coherent aberrations such as spherical aberration and defocus are reduced.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000282562100008 Publication Date 2010-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 6 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83689 Serial 1821
Permanent link to this record
 

 
Author den Dekker, A.J.; Van Aert, S.; van den Bos, A.; van Dyck, D.
Title Maximum likelihood estimation of structure parameters from high resolution electron microscopy images: part 1: a theoretical framework Type A1 Journal article
Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 104 Issue 2 Pages 83-106
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230526400001 Publication Date 2005-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 70 Open Access
Notes Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57229 Serial 1959
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; van Dyck, D.; Chen, J.H.
Title Maximum likelihood estimation of structure parameters from high resolution electron microscopy images : part 2 : a practical example Type A1 Journal article
Year 2005 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 104 Issue 2 Pages 107-125
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230526400002 Publication Date 2005-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 37 Open Access
Notes Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57131 Serial 1960
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Liu, Y.Z.; Zhang, Z.
Title Measurement of specimen thickness by phase change determination in TEM Type A1 Journal article
Year 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 108 Issue 12 Pages 1616-1622
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract A non-destructive method for measuring the thickness of thin amorphous films composed of light elements has been developed. The method employs the statistics of the phase of the electron exit wave function. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000260808300016 Publication Date 2008-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.843 Times cited 2 Open Access
Notes Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:75643 Serial 1961
Permanent link to this record