|   | 
Details
   web
Records
Author Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Hayashi, N.; Terashima, T.; Takano, M.
Title Structure and microstructure of epitaxial SrnFenO3n-1 films Type A1 Journal article
Year 2004 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 84 Issue 36 Pages (down) 3825-3841
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thin films of SrFeO3-x (0 less than or equal to x less than or equal to 0.5) (SFO) grown on a (LaAlO3)(0.3) (SrAl0.5Ta0.5O3)(0.7) (LSAT) substrate by Pulsed laser deposition have been structurally investigated by electron diffraction and high resolution transmission electron microscopy for different post-deposition oxygen treatments. During the deposition and post-growth oxidation, the oxygen-reduced SFO films accept extra oxygen along the tetrahedral layers to minimize the elastic strain energy. The oxidation process stops at a concentration SFO2.875 and/or SFO2.75 because a zero misfit with the LSAT substrate is reached. A possible growth mechanism and phase transition mechanism are suggested. The non-oxidized films exhibit twin boundaries having a local perovskite-type structure with a nominal composition close to SFO3.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000225854700001 Publication Date 2005-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 4 Open Access
Notes reprint Approved Most recent IF: 1.505; 2004 IF: 1.167
Call Number UA @ lucian @ c:irua:54755 Serial 3287
Permanent link to this record
 

 
Author Yan, Y.; Wang, L.-X.; Ke, X.; Van Tendeloo, G.; Wu, X.-S.; Yu, D.-P.; Liao, Z.-M.
Title High-mobility Bi2Se3 nanoplates manifesting quantum oscillations of surface states in the sidewalls Type A1 Journal article
Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 4 Issue Pages (down) 3817-7
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Magnetotransport measurements of topological insulators are very important to reveal the exotic topological surface states for spintronic applications. However, the novel properties related to the surface Dirac fermions are usually accompanied by a large linear magnetoresistance under perpendicular magnetic field, which makes the identification of the surface states obscure. Here, we report prominent Shubnikov-de Haas (SdH) oscillations under an in-plane magnetic field, which are identified to originate from the surface states in the sidewalls of topological insulator Bi2Se3 nanoplates. Importantly, the SdH oscillations appear with a dramatically weakened magnetoresistance background, offering an easy path to probe the surface states directly when the coexistence of surface states and bulk conduction is inevitable. Moreover, under a perpendicular magnetic field, the oscillations in Hall conductivity have peak-to-valley amplitudes of 2 e(2)/h, giving confidence to achieve a quantum Hall effect in this system. A cross-section view of the nanoplate shows that the sidewall is (015) facet dominant and therefore forms a 586 angle with regard to the top/ bottom surface instead of being perpendicular; this gives credit to the surface states' behavior as two-dimensional transport.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000330044700008 Publication Date 2014-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 31 Open Access
Notes ERC grant Nu246791 – COUNTATOMS Approved Most recent IF: 4.259; 2014 IF: 5.578
Call Number UA @ lucian @ c:irua:114815 Serial 1436
Permanent link to this record
 

 
Author Schouteden, K.; Zeng, Y.-J.; Lauwaet, K.; Romero, C.P.; Goris, B.; Bals, S.; Van Tendeloo, G.; Lievens, P.; Van Haesendonck, C.
Title Band structure quantization in nanometer sized ZnO clusters Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 9 Pages (down) 3757-3763
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanometer sized ZnO clusters are produced in the gas phase and subsequently deposited on clean Au(111) surfaces under ultra-high vacuum conditions. The zinc blende atomic structure of the approximately spherical ZnO clusters is resolved by high resolution scanning transmission electron microscopy. The large band gap and weak n-type conductivity of individual clusters are determined by scanning tunnelling microscopy and spectroscopy at cryogenic temperatures. The conduction band is found to exhibit clear quantization into discrete energy levels, which can be related to finite-size effects reflecting the zero-dimensional confinement. Our findings illustrate that gas phase cluster production may provide unique possibilities for the controlled fabrication of high purity quantum dots and heterostructures that can be size selected prior to deposition on the desired substrate under controlled ultra-high vacuum conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000317859400026 Publication Date 2013-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 13 Open Access
Notes FWO; Hercules; COUNTATOMS Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number UA @ lucian @ c:irua:108518 Serial 219
Permanent link to this record
 

 
Author Colomer, J.-F.; Piedigrosso, P.; Willems, I.; Journet, C.; Bernier, P.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.
Title Purification of catalytically produced multi-wall nanotubes Type A1 Journal article
Year 1998 Publication Journal of the Chemical Society : Faraday transactions: physical chemistry and chemical physics Abbreviated Journal J Chem Soc Faraday T
Volume 94 Issue Pages (down) 3753-3758
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000077634100034 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5000;1364-5455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 92 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:25685 Serial 2740
Permanent link to this record
 

 
Author Li, M.R.; Adem, U.; McMitchell, S.R.C.; Xu, Z.; Thomas, C.I.; Warren, J.E.; Giap, D.V.; Niu, H.; Wan, X.; Palgrave, R.G.; Schiffmann, F.; Cora, F.; Slater, B.; Burnett, T.L.; Cain, M.G.; Abakumov, A.M.; Van Tendeloo, G.; Thomas, M.F.; Rosseinsky, M.J.; Claridge, J.B.;
Title A polar corundum oxide displaying weak ferromagnetism at room temperature Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 8 Pages (down) 3737-3747
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Combining long-range magnetic order with polarity in the same structure is a prerequisite for the design of (magnetoelectric) multiferroic materials. There are now several demonstrated strategies to achieve this goal, but retaining magnetic order above room temperature remains a difficult target. Iron oxides in the +3 oxidation state have high magnetic ordering temperatures due to the size of the coupled moments. Here we prepare and characterize ScFeO3 (SFO), which under pressure and in strain-stabilized thin films adopts a polar variant of the corundum structure, one of the archetypal binary oxide structures. Polar corundum ScFeO3 has a weak ferromagnetic ground state below 356 K-this is in contrast to the purely antiferromagnetic ground state adopted by the well-studied ferroelectric BiFeO3.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301161600027 Publication Date 2012-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 48 Open Access
Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:97200 Serial 2658
Permanent link to this record
 

 
Author Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
Title Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions Type A1 Journal article
Year 2010 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume 2010 Issue 24 Pages (down) 3701-3714
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metalorganic frameworks (MOFs) as well as porous coordination polymers (PCPs) are porous, organicinorganic hybrid solids with zeolite-like structures and properties. Due to their extraordinarily high surface area and well defined pore structure MOFs can be used for the stabilization of metal nanoparticles with adjustable size. The embedded metal nanoparticles are still accessible for other reagents due to the high porosity of the MOF systems. This fact makes metal@MOF systems especially interesting for heterogeneous catalysis, gas storage and chemical sensing. This review compiles the cases of metal nanoparticles supported by or embedded into MOFs reported so far and the main aspects and problems associated with these novel nanocomposite systems. The determination of the dispersion and the location of the particles at the MOF support, the control of the loading degree and its effect on the catalytic activity of the system are discussed as well as the partial degradation of the MOF structure upon particle formation. Examples of the introduction of stabilizing groups into the MOF network that direct the loading and can influence the size and shape of the embedded particles are still rare and point into the possible direction of future investigations. Finally, the formation of bimetallic nanoparticles, which are stabilized and supported by a MOF network, will also be reviewed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000281684300001 Publication Date 2010-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 366 Open Access
Notes Esteem 026019 Approved Most recent IF: 2.444; 2010 IF: 2.910
Call Number UA @ lucian @ c:irua:85495 Serial 2014
Permanent link to this record
 

 
Author Shen, Y.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Song, X.; Yu, X.; Wang, Q.; Chen, H.; Dayeh, S.A.; Wu, T.
Title Size-Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 21 Pages (down) 3687-3695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Exploring self-assembled nanostructures with controllable architectures has been a central theme in nanoscience and nanotechnology because of the tantalizing perspective of directly integrating such bottom-up nanostructures into functional devices. Here, the growth of kinked single-crystal In2O3 nanostructures consisting of a nanocone base and a nanowire tip with an epitaxial and defect-free transition is demonstrated for the first time. By tailoring the growth conditions, a reliable switching of the growth direction from [111] to [110] or [112] is observed when the Au catalyst nanoparticles at the apexes of the nanocones shrink below approximate to 100 nm. The natural formation of kinked nanoarchitectures at constant growth pressures is related to the size-dependent free energy that changes for different orientations of the nanowires. The results suggest that the mechanism of forming such kinked nanocone-nanowire nanostructures in well-controlled growth environment may be universal for a wide range of functional materials.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000377597400014 Publication Date 2016-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 2 Open Access
Notes Approved Most recent IF: 12.124
Call Number UA @ lucian @ c:irua:144705 Serial 4687
Permanent link to this record
 

 
Author Javon, E.; Gaceur, M.; Dachraoui, W.; Margeat, O.; Ackermann, J.; Ilenia Saba, M.; Delugas, P.; Mattoni, A.; Bals, S.; Van Tendeloo, G.
Title Competing forces in the self-assembly of coupled ZnO nanopyramids Type A1 Journal article
Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
Volume 9 Issue 9 Pages (down) 3685-3694
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Self-assembly (SA) of nanostructures has recently gained increasing interest. A clear understanding of the process is not straightforward since SA of nanoparticles is a complex multiscale phenomenon including different driving forces. Here, we study the SA between aluminum doped ZnO nanopyramids into couples by combining inorganic chemistry and advanced electron microscopy techniques with atomistic simulations. Our results show that the SA of the coupled nanopyramids is controlled first by morphology, as coupling only occurs in the case of pyramids with well-developed facets of the basal planes. The combination of electron microscopy and atomistic modeling reveals that the coupling is further driven by strong ligandligand interaction between the bases of the pyramids as dominant force, while screening effects due to Al doping or solvent as well as corecore interaction are only minor contributions. Our combined approach provides a deeper understanding of the complex interplay between the interactions at work in the coupled SA of ZnO nanopyramids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353867000030 Publication Date 2015-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 21 Open Access OpenAccess
Notes Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
Call Number c:irua:125978 Serial 434
Permanent link to this record
 

 
Author Bals, S.; Batenburg, J.; Verbeeck, J.; Sijbers, J.; Van Tendeloo, G.
Title Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes Type A1 Journal article
Year 2007 Publication Nano letters Abbreviated Journal Nano Lett
Volume 7 Issue 12 Pages (down) 3669-3674
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The three-dimensional (3D) structure and chemical composition of bamboo-like carbon nanotubes including the catalyst particles that are. used during their growth are studied by discrete electron tomography in combination with energy-filtered transmission electron microscopy. It is found that cavities are present in the catalyst particles. Furthermore, only a small percentage of the catalyst particles consist of pure Cu, since a large volume fraction of the particles is oxidized to CU(2)0. These volume fractions are determined quantitatively from 3D reconstructions obtained by discrete tomography.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000251581600022 Publication Date 2007-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 78 Open Access
Notes Fwo; Esteem Approved Most recent IF: 12.712; 2007 IF: 9.627
Call Number UA @ lucian @ c:irua:66762UA @ admin @ c:irua:66762 Serial 2768
Permanent link to this record
 

 
Author Yalcin, A.O.; Fan, Z.; Goris, B.; Li, W.F.; Koster, R.S.; Fang, C.M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F.D.; Bals, S.; Van Tendeloo, G.; Vlugt, T.J.H.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.;
Title Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth Type A1 Journal article
Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
Volume 14 Issue 6 Pages (down) 3661-3667
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Here, we show a novel solidsolidvapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000337337100106 Publication Date 2014-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 42 Open Access OpenAccess
Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592
Call Number UA @ lucian @ c:irua:117027 Serial 179
Permanent link to this record
 

 
Author Bals, S.; Van Tendeloo, G.; Salluzzo, M.; Maggio-Aprile, I.
Title Why are sputter deposited Nd1+xBa2-xCu3O7-\delta thin films flatter than NdBa2Cu3O7-\delta films? Type A1 Journal article
Year 2001 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 79 Issue 22 Pages (down) 3660-3662
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution electron microscopy and scanning tunneling microscopy have been used to compare the microstructure of NdBa2Cu3O7-delta and Nd1+xBa2-xCu3O7-delta thin films. Both films contain comparable amounts of Nd2CuO4 inclusions. Antiphase boundaries are induced by unit cell high steps at the substrate or by a different interface stacking. In Nd1+xBa2-xCu3O7-delta the antiphase boundaries tend to annihilate by the insertion of extra Nd layers. Stacking faults, which can be characterized as local Nd2Ba2Cu4O9 inclusions, also absorb the excess Nd. A correlation is made between the excess Nd and the absence of growth spirals at the surface of the Nd-rich films. (C) 2001 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000172204400034 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 13 Open Access
Notes Approved Most recent IF: 3.411; 2001 IF: 3.849
Call Number UA @ lucian @ c:irua:54801 Serial 3916
Permanent link to this record
 

 
Author Subban, C.V.; Ati, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Janot, R.; Tarascon, J.-M.
Title Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates : LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-Ion batteries Type A1 Journal article
Year 2013 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 135 Issue 9 Pages (down) 3653-3661
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Li-ion rechargeable battery, due to its high energy density, has driven remarkable advances in portable electronics. Moving toward more sustainable electrodes could make this technology even more attractive to large-volume applications. We present here a new family of 3d-metal hydroxysulfates of general formula LiMSO4OH (M = Fe, Co, and Mn) among which (i) LiFeSO4OH reversibly releases 0.7 Li+ at an average potential of 3.6 V vs Li+/Li-0, slightly higher than the potential of currently lauded LiFePO4 (3.45 V) electrode material, and (ii) LiCoSO4OH shows a redox activity at 4.7 V vs Li+/Li-0. Besides, these compounds can be easily made at temperatures near 200 degrees C via a synthesis process that enlists a new intermediate phase of composition M-3(SO4)(2)(OH)(2) (M = Fe, Co, Mn, and Ni), related to the mineral caminite. Structurally, we found that LiFeSO4OH is a layered phase unlike the previously reported 3.2 V tavorite LiFeSO4OH. This work should provide an impetus to experimentalists for designing better electrolytes to fully tap the capacity of high-voltage Co-based hydroxysulfates, and to theorists for providing a means to predict the electrochemical redox activity of two polymorphs.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000315936700056 Publication Date 2013-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 53 Open Access
Notes Approved Most recent IF: 13.858; 2013 IF: 11.444
Call Number UA @ lucian @ c:irua:108283 Serial 2708
Permanent link to this record
 

 
Author Vernimmen, J.; Guidotti, M.; Silvestre-Albero, J.; Jardim, E.O.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Psaro, R.; Rodríguez-Reinoso, F.; Meynen, V.; Cool, P.
Title Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene Type A1 Journal article
Year 2011 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
Volume 27 Issue 7 Pages (down) 3618-3625
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288970900054 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.833 Times cited 19 Open Access
Notes Approved Most recent IF: 3.833; 2011 IF: 4.186
Call Number UA @ lucian @ c:irua:88366 Serial 1557
Permanent link to this record
 

 
Author Berdonosov, P.S.; Akselrud, L.; Prots, Y.; Abakumov, A.M.; Smet, P.F.; Poelman, D.; Van Tendeloo, G.; Dolgikh, V.A.
Title Cs7Nd11(SeO3)12Cl16 : first noncentrosymmetric structure among alkaline-metal lanthanide selenite halides Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue 7 Pages (down) 3611-3619
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Cs7Nd11(SeO3)(12)Cl-16, the complex selenite chloride of cesium and neodymium, was synthesized in the NdOCl-SeO2-CsCl system. The compound has been characterized using single-crystal X-ray diffraction, electron diffraction, transmission electron microscopy, luminescence spectroscopy, and second-harmonic-generation techniques. Cs7Nd11(SeO3)(12)Cl-16 crystallizes in an orthorhombic unit cell with a = 15.911(1) angstrom, b = 15.951(1) angstrom, and c = 25.860(1) angstrom and a noncentrosymmetric space group Pna2(1) (No. 33). The crystal structure of Cs7Nd11(SeO3)(12)Cl-16 can be represented as a stacking of Cs7Nd11(SeO3)(12) lamellas and CsCl-like layers. Because of the layered nature of the Cs7Nd11(SeO3)(12)Cl-16 structure, it features numerous planar defects originating from occasionally missing the CsCl-like layer and violating the perfect stacking of the Cs7Nd11(SeO3)(12)Cl-16 lamellas. Cs7Nd11(SeO3)(12)Cl-16 represents the first example of a noncentrosymmetric structure among alkaline-metal lanthanide selenite halides. Cs7Nd11(SeO3)(12)Cl-16 demonstrates luminescence emission in the near-IR region with reduced efficiency due to a high concentration of Nd3+ ions causing nonradiative cross-relaxation.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000317094300022 Publication Date 2013-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 10 Open Access
Notes Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:108482 Serial 3524
Permanent link to this record
 

 
Author Roesler, C.; Dissegna, S.; Rechac, V.L.; Kauer, M.; Guo, P.; Turner, S.; Ollegott, K.; Kobayashi, H.; Yamamoto, T.; Peeters, D.; Wang, Y.; Matsumura, S.; Van Tendeloo, G.; Kitagawa, H.; Muhler, M.; Llabres i Xamena, F.X.; Fischer, R.A.
Title Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal-organic frameworks : evaluation of the catalytic potential for size-selective hydrogenation Type A1 Journal article
Year 2017 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 23 Issue 15 Pages (down) 3583-3594
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000397502900010 Publication Date 2016-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 13 Open Access Not_Open_Access
Notes ; This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG). ; Approved Most recent IF: 5.317
Call Number UA @ lucian @ c:irua:142485 Serial 4653
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Turner, S.; Hafideddine, Z.; Khasanova, N.R.; Antipov, E.V.; Van Tendeloo, G.
Title Solving the structure of Li ion battery materials with precession electron diffraction : application to Li2CoPo4F Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 15 Pages (down) 3540-3545
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000293357100019 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes Fwo; Bof Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:90357 Serial 3053
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Zanaga, D.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P.
Title Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue 138 Pages (down) 3493-3500
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The concept of template-confined chemical reactions allows the synthesis of complex molecules that would hardly be producible through conventional method. This idea was developed to produce high quality nanocrystals more than 20 years ago. However, template-mediated assembly of colloidal nanocrystals is still at an elementary level, not only because of the limited templates suitable for colloidal assemblies, but also because of the poor control over the assembly of nanocrystals within a confined space. Here, we report the design of a new system called “supracrystalline colloidal eggs” formed by controlled assembly of nanocrystals into complex colloidal supracrystals through superlattice-matched epitaxial overgrowth along the existing colloidosomes. Then, with this concept, we extend the supracrystalline growth to lattice-mismatched binary nanocrystal superlattices, in order to reach anisotropic superlattice growths, yielding freestanding binary nanocrystal supracrystals that could not be produced previously.
Address CEA/IRAMIS , CEA Saclay F-91191 Gif-sur-Yvette, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000372477700034 Publication Date 2016-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 57 Open Access OpenAccess
Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The authors thank Dr. P. A. Albouy for the SAXS measurement.; esteem2_ta Approved Most recent IF: 13.858
Call Number c:irua:131923 c:irua:131923 Serial 4018
Permanent link to this record
 

 
Author Vast, L.; Carpentier, L.; Lallemand, F.; Colomer, J.-F.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.; Mekhalif, Z.; Delhalle, J.
Title Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard®184 silicone and Youngs modulus Type A1 Journal article
Year 2009 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 44 Issue 13 Pages (down) 3476-3482
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sylgard®184/multiwalled carbon nanotube (MWNT) composites have been prepared by in situ polymerization using purified and functionalized multiwalled carbon nanotubes (f-MWNTs) as fillers. Surface modification of the MWNTs has been carried out by silanization with 7-octenyltrichlorosilane (7OTCS) and n-octyltrichlorosilane (nOTCS). The modification and dispersion of the carbon nanotubes in composites were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM), and high-resolution transmission electron spectroscopy (HRTEM). Youngs modulus results were derived from indentation testing. It is shown that the terminal-vinyl group of 7OTCS molecules plays an essential role for both the dispersion of the f-MWNTs in the composite and its mechanical properties. At loading as low as 0.2 wt%, the Youngs modulus is shown to increase up to 50%. This is interpreted as resulting from a combination of the good compatibility in the forming silicone matrix of the MWNTs coated with a siloxane network, on the one hand, and the covalent links created between the terminal-vinyl groups and the host matrix in formation, on the other hand.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000267153200022 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 16 Open Access
Notes Iuap Approved Most recent IF: 2.599; 2009 IF: 1.471
Call Number UA @ lucian @ c:irua:77844 Serial 2245
Permanent link to this record
 

 
Author Whaley, L.W.; Lobanov, M.V.; Sheptyakov, D.; Croft, M.; Ramanujachary, K.V.; Lofland, S.; Stephens, P.W.; Her, J.H.; Van Tendeloo, G.; Rossell, M.; Greenblatt, M.;
Title Sr3Fe5/4Mo3/4O6.9, an n = 2 Ruddlesden-Popper phase: synthesis and properties Type A1 Journal article
Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 18 Issue 15 Pages (down) 3448-3457
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000239085900010 Publication Date 2006-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 15 Open Access
Notes Approved Most recent IF: 9.466; 2006 IF: 5.104
Call Number UA @ lucian @ c:irua:60579 Serial 3560
Permanent link to this record
 

 
Author Pietra, F.; van Dijk-Moes, R.J.A.; Ke, X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C.; Vanmaekelbergh, D.
Title Synthesis of highly luminescent silica-coated CdSe/CdS nanorods Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 17 Pages (down) 3427-3434
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract CdSe(core)/CdS(shell) nanorods (NRs) have been extensively investigated for their unique optical properties, such as high photoluminescence (PL) quantum efficiency (QE) and polarized light emission. The incorporation of these NRs in silica (SiO2) is of high interest, since this renders them processable in polar solvents while increasing their photochemical stability, which would be beneficial for their application in LEDs and as biolabels. We report the synthesis of highly luminescent silica-coated CdSe/CdS NRs, by using the reverse micelle method. The mechanism for the encapsulation of the NRs in silica is unravelled and shown to be strongly influenced by the NR shape and its asymmetry. This is attributed to both the different morphology and the different crystallographic nature of the facets terminating the opposite tips of the NRs. These results lead to the formation of a novel class of NR architectures, whose symmetry can be controlled by tuning the degree of coverage of the silica shell. Interestingly, the encapsulation of the NRs in silica leads to a remarkable increase in their photostability, while preserving their optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000330097900004 Publication Date 2013-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes 262348 ESMI; 246791 COUNTATOMS; Hercules Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number UA @ lucian @ c:irua:110037 Serial 3456
Permanent link to this record
 

 
Author Bals, S.; Casavola, M.; van Huis, M.A.; Van Aert, S.; Batenburg, K.J.; Van Tendeloo, G.; Vanmaekelbergh, D.
Title Three-dimensional atomic imaging of colloidal core-shell nanocrystals Type A1 Journal article
Year 2011 Publication Nano letters Abbreviated Journal Nano Lett
Volume 11 Issue 8 Pages (down) 3420-3424
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Colloidal coreshell semiconductor nanocrystals form an important class of optoelectronic materials, in which the exciton wave functions can be tailored by the atomic configuration of the core, the interfacial layers, and the shell. Here, we provide a trustful 3D characterization at the atomic scale of a free-standing PbSe(core)CdSe(shell) nanocrystal by combining electron microscopy and discrete tomography. Our results yield unique insights for understanding the process of cation exchange, which is widely employed in the synthesis of coreshell nanocrystals. The study that we present is generally applicable to the broad range of colloidal heteronanocrystals that currently emerge as a new class of materials with technological importance.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000293665600062 Publication Date 2011-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 121 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 12.712; 2011 IF: 13.198
Call Number UA @ lucian @ c:irua:91263 Serial 3643
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.; Van Rompaey, S.; Perkisas, T.; Filinchuk, Y.; Van Tendeloo, G.
Title Crystal structure of a lightweight borohydride from submicrometer crystallites by precession electron diffraction Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 17 Pages (down) 3401-3405
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that precession electron diffraction at low-dose conditions can be successfully applied for structure analysis of extremely electron-beam-sensitive materials. Using LiBH4 as a test material, complete structural information, including the location of the H atoms, was obtained from submicrometer-sized crystallites. This demonstrates for the first time that, where conventional transmission electron microscopy techniques fail, quantitative precession electron diffraction can provide structural information from submicrometer particles of such extremely electron-beam-sensitive materials as complex lightweight hydrides. We expect the precession electron diffraction technique to be a useful tool for nanoscale investigations of thermally unstable lightweight hydrogen-storage materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000308833400012 Publication Date 2012-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:101845 Serial 567
Permanent link to this record
 

 
Author Turner, S.; Lazar, S.; Freitag, B.; Egoavil, R.; Verbeeck, J.; Put, S.; Strauven, Y.; Van Tendeloo, G.
Title High resolution mapping of surface reduction in ceria nanoparticles Type A1 Journal article
Year 2011 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 3 Issue 8 Pages (down) 3385-3390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface reduction of ceria nano octahedra with predominant {111} and {100} type surfaces is studied using a combination of aberration-corrected Transmission Electron Microscopy (TEM) and spatially resolved electron energy-loss spectroscopy (EELS) at high energy resolution and atomic spatial resolution. The valency of cerium ions at the surface of the nanoparticles is mapped using the fine structure of the Ce M4,5 edge as a fingerprint. The valency of the surface cerium ions is found to change from 4+ to 3+ owing to oxygen deficiency (vacancies) close to the surface. The thickness of this Ce3+ shell is measured using atomic-resolution Scanning Transmission Electron Microscopy (STEM)-EELS mapping over a {111} surface (the predominant facet for this ceria morphology), {111} type surface island steps and {100} terminating planes. For the {111} facets and for {111} surface islands, the reduction shell is found to extend over a single fully reduced surface plane and 12 underlying mixed valency planes. For the {100} facets the reduction shell extends over a larger area of 56 oxygen vacancy-rich planes. This finding provides a plausible explanation for the higher catalytic activity of the {100} surface facets in ceria.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000293521700057 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 127 Open Access
Notes Fwo Approved Most recent IF: 7.367; 2011 IF: 5.914
Call Number UA @ lucian @ c:irua:90361UA @ admin @ c:irua:90361 Serial 1458
Permanent link to this record
 

 
Author Yalcin, A.O.; Goris, B.; van Dijk-Moes, R.J.A.; Fan, Z.; Erdamar, A.K.; Tichelaar, F.D.; Vlugt, T.J.H.; Van Tendeloo, G.; Bals, S.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.;
Title Heat-induced transformation of CdSe-CdS-ZnS coremultishell quantum dots by Zn diffusion into inner layers Type A1 Journal article
Year 2015 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 51 Issue 51 Pages (down) 3320-3323
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work, we investigate the thermal evolution of CdSeCdSZnS coremultishell quantum dots (QDs) in situ using transmission electron microscopy (TEM). Starting at a temperature of approximately 250 °C, Zn diffusion into inner layers takes place together with simultaneous evaporation of particularly Cd and S. As a result of this transformation, CdxZn1−xSeCdyZn1−yS coreshell QDs are obtained.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000349325000004 Publication Date 2014-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 21 Open Access OpenAccess
Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319; 2015 IF: 6.834
Call Number c:irua:132582 Serial 1412
Permanent link to this record
 

 
Author Bernaerts, D.; Van Tendeloo, G.; Amelinckx, S.; Hevesi, K.; Gensterblum, G.; Yu, L.M.; Pireaux, J.J.; Grey, F.; Bohr, J.
Title Structural defects and epitaxial rotation of C60 and C70 (111) films on GeS(001) Type A1 Journal article
Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 80 Issue 6 Pages (down) 3310-3318
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A transmission electron microscopy study of epitaxial C-60 and C-70 films grown on a GeS (001) surface is presented. The relationship between the orientation of the substrate and the films and structural defects in the films, such as grain boundaries, unknown in bulk C-60 and C-70 crystals, are studied. Small misalignments of the overlayers with respect to the orientation of the substrate, so-called epitaxial rotations, exist mainly in C-70 films, but also sporadically in the C-60 overlayers. A simple symmetry model, previously used to predict the rotation of hexagonal overlayers on hexagonal substrates, is numerically tested and applied to the present situation. Some qualitative conclusions concerning the substrate-film interaction are deduced. (C) 1996 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996VG68100027 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 6 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:95233 Serial 3229
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A.
Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 10 Pages (down) 3306-3315
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336637000036 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 35 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:117766 Serial 2232
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 22 Issue 22 Pages (down) 3304-3311
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000371419200001 Publication Date 2016-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 43 Open Access
Notes Approved Most recent IF: 5.317
Call Number UA @ lucian @ c:irua:132347 Serial 4192
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M.
Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 10 Pages (down) 3285-3293
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000433403800014 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:152048 Serial 4996
Permanent link to this record
 

 
Author Li, Y.; Yang, X.-Y.; Tian, G.; Vantomme, A.; Yu, J.; Van Tendeloo, G.; Su, B.-L.
Title Chemistry of trimethyl aluminum: a spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes Type A1 Journal article
Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 22 Issue 10 Pages (down) 3251-3258
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A simple and spontaneous one-pot self-formation procedure that is easy to scale up has been developed based on the chemistry of trimethylaluminum (TMA), leading to thermally stable macroporous crystalline alumina with a very unique and unprecedented three-dimensional (3D) hierarchical pore structure consisting of well-defined wormlike mesopores. TMA is the precursor of both product and porogene (viz, two working functions within the same molecule (2 in 1)). The materials obtained have been intensively characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), N2 adsorption−desorption, and mercury porosimetry. The open cagelike macrocavities are self-constructed by mesoporous nanorods (diameter of ca. 40−70 nm), which are themselves formed by a random assembly of fibrous nanoparticles 5−6 nm in size. Optical microscopy (OM) has been used in situ to follow the synthesis procedure, which led to the proposal of the formation mechanism. Methane molecules as porogens, which were instantaneously released because of the fast hydrolysis of the chemical precursor, were the key factor in producing these 3D structures with uniform co-continuous macropores that interconnected directly with the wormlike mesopores. The important characteristic of this procedure is the concurrent formation of a multiscaled porous network. The material exhibits great thermal stability. The hierarchically mesoporous−macroporous Al2O3 obtained is quite attractive for a myriad of applications, from catalysis to biomedicine. The present work illustrates that the one-pot self-formation concept, based on the chemistry of alkyl metals, is a versatile method to design industrially valuable hierarchically porous materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000277635000030 Publication Date 2010-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 38 Open Access
Notes Approved Most recent IF: 9.466; 2010 IF: 6.400
Call Number UA @ lucian @ c:irua:82760 Serial 356
Permanent link to this record
 

 
Author Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Maccato, C.; Tondello, E.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Štangar, U.L.
Title Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach Type A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 18 Pages (down) 3249-3259
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present work is devoted to the preparation of Ag/TiO2 nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the systems chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 °C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000273410600015 Publication Date 2009-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 56 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:80561 Serial 2811
Permanent link to this record