toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Subban, C.V.; Ati, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Janot, R.; Tarascon, J.-M. doi  openurl
  Title Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates : LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-Ion batteries Type A1 Journal article
  Year (down) 2013 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 135 Issue 9 Pages 3653-3661  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Li-ion rechargeable battery, due to its high energy density, has driven remarkable advances in portable electronics. Moving toward more sustainable electrodes could make this technology even more attractive to large-volume applications. We present here a new family of 3d-metal hydroxysulfates of general formula LiMSO4OH (M = Fe, Co, and Mn) among which (i) LiFeSO4OH reversibly releases 0.7 Li+ at an average potential of 3.6 V vs Li+/Li-0, slightly higher than the potential of currently lauded LiFePO4 (3.45 V) electrode material, and (ii) LiCoSO4OH shows a redox activity at 4.7 V vs Li+/Li-0. Besides, these compounds can be easily made at temperatures near 200 degrees C via a synthesis process that enlists a new intermediate phase of composition M-3(SO4)(2)(OH)(2) (M = Fe, Co, Mn, and Ni), related to the mineral caminite. Structurally, we found that LiFeSO4OH is a layered phase unlike the previously reported 3.2 V tavorite LiFeSO4OH. This work should provide an impetus to experimentalists for designing better electrolytes to fully tap the capacity of high-voltage Co-based hydroxysulfates, and to theorists for providing a means to predict the electrochemical redox activity of two polymorphs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000315936700056 Publication Date 2013-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 53 Open Access  
  Notes Approved Most recent IF: 13.858; 2013 IF: 11.444  
  Call Number UA @ lucian @ c:irua:108283 Serial 2708  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: