|   | 
Details
   web
Records
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Sheptyakov, D.V.; Frontzek, M.; Hadermann, J.; Abakumov, A.M.
Title Layered oxychlorides [PbBiO2]An+1BnO3n-1Cl2(A = Pb/Bi, B = Fe/Ti) : intergrowth of the hematophanite and sillen phases Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages (up) 2946-2956
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New layered structures corresponding to the general formula [PbBiO2]A(n+1)B(n)O(3n-1)Cl(2) Were prepared. Pb5BiFe3O10Cl2 (n = 3) and Pb5Bi2Fe4O13Cl2 (n = 4) are built as a stacking of truncated A(n+1)B(n)O(3n-1) perovskite blocks and alpha-PbO-type [A(2)O(2)](2+) (A = Pb, Bi) blocks combined with chlorine sheets. The alternation of these structural blocks can be represented as an intergrowth between the hematophanite and Sullen-type structural blocks. The crystal and-Magnetic structures of Pb5BiFe3O10Cl2 and Pb5Bi2Fe4O13Cl2 were investigated in the temperature range of 1.5-700 K using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy. Both compounds crystallize in the I4/mmm space group with the unit cell parameters a approximate to a(p) approximate to 3.92 angstrom (a unit-cell parameter of the perovskite-structure), c approximate to 43.0 angstrom for the n = 3 member and c approximate to 53.5 angstrom for the n = 4 member. Despite the large separation between the slabs containing the Fe3+ ions (nearly 14 angstrom), long-range antiferromagnetic order sets in below similar to 600 K with the G-type arrangement of the Fe magnetic moments aligned along the c-axis. The possibility of mixing d(0) and d(n) cations at the B sublattice of these structures was also demonstrated by preparing the Ti-substituted n = 4 member Pb6BiFe3TiO13Cl2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353865800028 Publication Date 2015-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:126060 Serial 1807
Permanent link to this record
 

 
Author Batuk, D.; de Dobbelaere, C.; Tsirlin, A.A.; Abakumov, A.M.; Hardy, A.; van Bael, M.K.; Greenblatt, M.; Hadermann, J.
Title Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6 Type A1 Journal article
Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 48 Issue 9 Pages (up) 2993-2997
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the Cr3+ for Mn3+ substitution in the BiMnFe2O6 structure. The BiCrxMn1-xFe2O6 solid solution is obtained by the solution-gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe2O6 structure (for x = 0.3, a = 5.02010(6)angstrom, b = 7.06594(7)angstrom, c = 12.6174(1)angstrom, S.G. Pbcm, R-1 = 0.036, R-p = 0.011) with only a slight decrease in the cell parameters associated with the Cr3+ for Mn3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCrxMn1-xFe2O6 (x = 0.2; 0.3) and parent BiMnFe2O6. Only T-N slightly decreases upon Cr doping that indicates a very subtle influence of Cr3+ cations on the magnetic properties at the available substitution rates. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322354000002 Publication Date 2013-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 3 Open Access
Notes Fwo Approved Most recent IF: 2.446; 2013 IF: 1.968
Call Number UA @ lucian @ c:irua:109755 Serial 561
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Kalyuzhnaya, A.S.; Rozova, M.G.; Mikheev, M.G.; Van Tendeloo, G.; Antipov, E.V.
Title Ca6.3Mn3Ga4.4Al1.3O18: a novel complex oxide with 3D tetrahedral framework Type A1 Journal article
Year 2005 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 178 Issue 10 Pages (up) 3137-3144
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000232418200022 Publication Date 2005-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 5 Open Access
Notes Iap V-1; Rfbr; Intas – Ysf Approved Most recent IF: 2.299; 2005 IF: 1.725
Call Number UA @ lucian @ c:irua:55030 Serial 3520
Permanent link to this record
 

 
Author Korneychik, O.E.; Batuk, M.; Abakumov, A.M.; Hadermann, J.; Rozova, M.G.; Sheptyakov, D.V.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.
Title Pb2.85Ba2.15Fe4SnO13 : a new member of the AnBnO3n-2 anion-deficient perovskite-based homologous series Type A1 Journal article
Year 2011 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 184 Issue 12 Pages (up) 3150-3157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pb2.85Ba2.15Fe4SnO13, a new n=5 member of the anion-deficient perovskite based AnBnO3n−2 (A=Pb, Ba, B=Fe, Sn) homologous series, was synthesized by the solid state method. The crystal structure of Pb2.85Ba2.15Fe4SnO13 was investigated using a combination of neutron powder diffraction, electron diffraction, high angle annular dark field scanning transmission electron microscopy and Mössbauer spectroscopy. It crystallizes in the Ammm space group with unit cell parameters a=5.7990(1) Å, b=4.04293(7) Å and c=26.9561(5) Å. The Pb2.85Ba2.15Fe4SnO13 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110](1̄01)p crystallographic shear (CS) planes. The corner-sharing FeO6 octahedra at the CS planes are transformed into edge-sharing FeO5 distorted tetragonal pyramids. The octahedral positions in the perovskite blocks between the CS planes are jointly taken up by Fe and Sn, with a preference of Sn towards the position at the center of the perovskite block. The chains of FeO5 pyramids and (Fe,Sn)O6 octahedra of the perovskite blocks delimit six-sided tunnels at the CS planes occupied by double chains of Pb atoms. The compound is antiferromagnetically ordered below TN=368±15 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000297662500003 Publication Date 2011-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 7 Open Access
Notes Approved Most recent IF: 2.299; 2011 IF: 2.159
Call Number UA @ lucian @ c:irua:94013 Serial 3550
Permanent link to this record
 

 
Author Tarakina, N.V.; Nikulina, E.A.; Hadermann, J.; Kellerman, D.G.; Tyutunnik, A.P.; Berger, I.F.; Zubkov, V.G.; Van Tendeloo, G.
Title Crystal structure and magnetic properties of complex oxides Mg4-xNixO9, 0\leq x\leq4 Type A1 Journal article
Year 2007 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 180 Issue 11 Pages (up) 3180-3187
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the Mg4−xNixNb2O9 (0x4) system two ranges of solid solution have been found. One of the solid solutions has a corundum-related structure type (space group ); the second one adopts the II-Ni4Nb2O9 structure type (space group Pbcn). The unit cell constants and atomic positions have been determined and refined using neutron powder diffraction data. Electron diffraction and high-resolution transmission electron microscopy (HRTEM) from MgNi3Nb2O9 crystals identify the presence of planar defects and the intergrowth of several (structurally related) phases. The magnetic susceptibility of Mg3NiNb2O9, measured in the temperature range T=2300 K, shows no indications of magnetic ordering at low temperatures, while for MgNi3Nb2O9 there is a magnetic ordering at temperatures below 45.5 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000260636200025 Publication Date 2007-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 3 Open Access
Notes Belgium Science Policy Approved Most recent IF: 2.299; 2007 IF: 2.149
Call Number UA @ lucian @ c:irua:72944 Serial 559
Permanent link to this record
 

 
Author Morozov, V.A.; Lazoryak, B.I.; Shmurak, S.Z.; Kiselev, A.P.; Lebedev, O.I.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Van Tendeloo, G.
Title Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 10 Pages (up) 3238-3248
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336637000028 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 53 Open Access
Notes Fwo G039211n; Fwo G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:117765UA @ admin @ c:irua:117765 Serial 1652
Permanent link to this record
 

 
Author Novitskaya, M.; Makhnach, L.; Ivashkevich, L.; Pankov, V.; Klein, H.; Regeau, A.; David, J.; Gemmi, M.; Hadermann, J.; Strobel, P.
Title Synthesis, crystal structure and physico-chemical properties of the new quaternary oxide Sr5BiNi2O9.6 Type A1 Journal article
Year 2011 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 184 Issue 12 Pages (up) 3262-3268
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new black quaternary oxide Sr5BiNi2O9.6 was synthesized by solid state reaction at 1200 °C. Its structure was solved by electron crystallography and X-ray powder refinement, yielding a tetragonal structure with space group I4/mmm, a=5.3637 (2) Å, c=17.5541(5) Å, Z=4. The structure can be described as a stacking of (Bi,Sr)O rocksalt slabs and SrNiO3−δ perovskite slabs. The initial nickel valence is close to +3.1. Thermogravimetry and high-temperature oxygen coulometry showed that this compound has variable oxygen content as a function of temperature and oxygen pressure, and ultimately decomposes when heated in low oxygen pressure above 800 °C. It is a metallic conductor with n-type conduction. Its thermoelectric power was determined and found to be −20 and −38 μV/K at 300 and 650 °C, respectively. Magnetic measurements confirm the nickel valence close to +3 and show evidence of magnetic ordering at 20 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000297662500021 Publication Date 2011-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 4 Open Access
Notes Approved Most recent IF: 2.299; 2011 IF: 2.159
Call Number UA @ lucian @ c:irua:94016 Serial 3451
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M.
Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 10 Pages (up) 3285-3293
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000433403800014 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:152048 Serial 4996
Permanent link to this record
 

 
Author Gillie, L.J.; Hadermann, J.; Pérez, O.; Martin, C.; Hervieu, M.; Suard, E.
Title SrMn3O6: an incommensurate modulated tunnel structure Type A1 Journal article
Year 2004 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 177 Issue Pages (up) 3383-3391
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000224465500020 Publication Date 2004-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 19 Open Access
Notes Scootmo: Hrpn-Ct-2002-00293; Super-Gmr: Hprn-Ct-2002-0021 Approved Most recent IF: 2.299; 2004 IF: 1.815
Call Number UA @ lucian @ c:irua:49463 Serial 3562
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.; Van Rompaey, S.; Perkisas, T.; Filinchuk, Y.; Van Tendeloo, G.
Title Crystal structure of a lightweight borohydride from submicrometer crystallites by precession electron diffraction Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 17 Pages (up) 3401-3405
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that precession electron diffraction at low-dose conditions can be successfully applied for structure analysis of extremely electron-beam-sensitive materials. Using LiBH4 as a test material, complete structural information, including the location of the H atoms, was obtained from submicrometer-sized crystallites. This demonstrates for the first time that, where conventional transmission electron microscopy techniques fail, quantitative precession electron diffraction can provide structural information from submicrometer particles of such extremely electron-beam-sensitive materials as complex lightweight hydrides. We expect the precession electron diffraction technique to be a useful tool for nanoscale investigations of thermally unstable lightweight hydrogen-storage materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000308833400012 Publication Date 2012-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:101845 Serial 567
Permanent link to this record
 

 
Author Batuk, M.; Tyablikov, O.A.; Tsirlin, A.A.; Kazakov, S.M.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.; Abakumov, A.M.; Hadermann, J.
Title Structure and magnetic properties of a new anion-deficient perovskite Pb2Ba2BiFe4ScO13 with crystallographic shear structure Type A1 Journal article
Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 48 Issue 9 Pages (up) 3459-3465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pb2Ba2BiFe4ScO13, a new n = 5 member of the oxygen-deficient perovskite-based A(n)B(n)O(3n-2) homologous series, was synthesized using a solid-state method. The crystal structure of Pb2Ba2BiFe4ScO13 was investigated by a combination of synchrotron X-ray powder diffraction, electron diffraction, high-angle annular dark-field scanning transmission electron microscopy and Mossbauer spectroscopy. At 900 K, it crystallizes in the Ammm space group with the unit cell parameters a = 5.8459(1) angstrom, b = 4.0426(1) angstrom, and c=27.3435(1) angstrom. In the Pb2Ba2BiFe4ScO13 structure, quasi-two-dimensional perovskite blocks are periodically interleaved with 1/2[1 1 0] ((1) over bar 0 1)(p) crystallographic shear (CS) planes. At the CS planes, the corner-sharing FeO6 octahedra are transformed into chains of edge-sharing FeO5 distorted tetragonal pyramids. B-positions of the perovskite blocks between the CS planes are jointly occupied by Fe3+ and Sc3+. The chains of the FeO5 pyramids and (Fe,Sc)O-6 octahedra delimit six-sided tunnels that are occupied by double columns of cations with a lone electron pair (Pb2+). The remaining A-cations (Bi3+, Ba2+) occupy positions in the perovskite block. According to the magnetic susceptibility measurements, Pb2Ba2BiFe4ScO13 is antiferromagnetically ordered below T-N approximate to 350 K. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322354000076 Publication Date 2013-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 2 Open Access
Notes Approved Most recent IF: 2.446; 2013 IF: 1.968
Call Number UA @ lucian @ c:irua:109756 Serial 3282
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Karakulina, O.M.; Batuk, M.; Cabioc’h, T.; Hadermann, J.; Delville, R.; Lambrinou, K.; Vleugels, J.
Title Synthesis of MAX Phases in the Zr-Ti-Al-C System Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue 56 Pages (up) 3489-3498
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350–1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard’s law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard’s law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397171100045 Publication Date 2017-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 26 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0431.10N.F ; Agentschap voor Innovatie door Wetenschap en Technologie, 131081 ; European Atomic Energy Community, 604862 ; SCK-CEN Academy for Nuclear Science and Technology; Hercules Foundation, Project/Award no: AKUL/1319 Project/Award no: ZW09-09 ; Approved Most recent IF: 4.857
Call Number EMAT @ emat @ c:irua:141794 Serial 4491
Permanent link to this record
 

 
Author Kopnin, E.M.; Belik, A.A.; Shpanchenko, R.V.; Antipov, E.V.; Izumi, F.; Takayama-Muromachi, E.; Hadermann, J.
Title Synthesis, crystal structure, and magnetic properties of new layered hexagonal perovskite Ba8Ta4Ru8/3Co2/3O24 Type A1 Journal article
Year 2004 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 177 Issue Pages (up) 3499-3504
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000224465500035 Publication Date 2004-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 1 Open Access
Notes reprint; IUAP V-1 Approved Most recent IF: 2.299; 2004 IF: 1.815
Call Number UA @ lucian @ c:irua:49462 Serial 3448
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Turner, S.; Hafideddine, Z.; Khasanova, N.R.; Antipov, E.V.; Van Tendeloo, G.
Title Solving the structure of Li ion battery materials with precession electron diffraction : application to Li2CoPo4F Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 15 Pages (up) 3540-3545
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000293357100019 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes Fwo; Bof Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:90357 Serial 3053
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Panin, R.V.; Hadermann, J.; Bougerol, C.; Takayama-Muromachi, E.; Antipov, E.V.
Title Synthesis and structure investigation of the Pb3V(PO4)3 eulytite Type A1 Journal article
Year 2005 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 178 Issue 12 Pages (up) 3715-3721
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000234442100016 Publication Date 2005-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 17 Open Access
Notes Rfbr; Icdd; Iap V-1 Approved Most recent IF: 2.299; 2005 IF: 1.725
Call Number UA @ lucian @ c:irua:55029 Serial 3441
Permanent link to this record
 

 
Author Cassidy, S.J.; Pitcher, M.J.; Lim, J.J.K.; Hadermann, J.; Allen, J.P.; Watson, G.W.; Britto, S.; Chong, E.J.; Free, D.G.; Grey, C.P.; Clarke, S.J.
Title Layered CeSO and LiCeSO oxide chalcogenides obtained via topotactic oxidative and reductive transformations Type A1 Journal article
Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 58 Issue 6 Pages (up) 3838-3850
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The chemical accessibility of the Celv oxidation state enables redox chemistry to be performed on the naturally coinagemetal -deficient phases CeM1-xSO (M = Cu, Ag). A metastable black compound with the PbFC1 structure type (space group P4/nmm: a = 3.8396(1) angstrom, c = 6.607(4) angstrom, V = 97.40(6) angstrom(3)) and a composition approaching CeSO is obtained by deintercalation of Ag from CeAg0.8SO. High-resolution transmission electron microscopy reveals the presence of large defect-free regions in CeSO, but stacking faults are also evident which can be incorporated into a quantitative model to account for the severe peak anisotropy evident in all the highresolution X-ray and neutron diffractograms of bulk CeSO samples; these suggest that a few percent of residual Ag remains. A strawcolored compound with the filled PbFCI (i.e., ZrSiCuAs- or HfCuSi2type) structure (space group P4/nmm: a = 3.98171(1) angstrom, c = 8.70913(5) angstrom, V = 138.075(1) angstrom 3) and a composition close to LiCeSO, but with small amounts of residual Ag, is obtained by direct reductive lithiation of CeAga8S0 or by insertion of Li into CeSO using chemical or electrochemical means. Computation of the band structure of pure, stoichiometric CeSO predicts it to be a Ce' compound with the 4f-states lying approximately 1 eV above the sulfide-dominated valence band maximum. Accordingly, the effective magnetic moment per Ce ion measured in the CeSO samples is much reduced from the value found for the Ce3+-containing LiCeSO, and the residual paramagnetism corresponds to the Ce3+ ions remaining due to the presence of residual Ag, which presumably reflects the difficulty of stabilizing Ce' in the presence of sulfide (S2-). Comparison of the behavior of CeCu0.8SO with that of CeCu0.8SO reveals much slower reaction kinetics associated with the Cu,_xS layers, and this enables intermediate CeCui LixSO phases to be isolated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461978700036 Publication Date 2019-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited Open Access OpenAccess
Notes ; We thank the UK EPSRC (EP/M020517/1 and EP/P018874/1), the Leverhulme Trust (RPG-2014-221), and Science Foundation Ireland (Grant 12/IA/1414) for funding and the EPSRC for additional studentship support. We acknowledge the ISIS pulsed neutron and muon source and the Diamond Light Source Ltd. (EE13284 and EE18786) and the ESRF for the award of beam time. We thank Dr. R I. Smith for assistance on the neutron beamlines, Dr. A. Baker and Dr. C. Murray for support on III, and Dr. C. Curls for support on ID31. ; Approved Most recent IF: 4.857
Call Number UA @ admin @ c:irua:159426 Serial 5253
Permanent link to this record
 

 
Author Zelonka, K.; Sayer, M.; Freundorfer, A.P.; Hadermann, J.
Title Hydrothermal processing of barium strontium titanate sol-gel composite thin films Type A1 Journal article
Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 41 Issue 12 Pages (up) 3885-3897
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000239022100043 Publication Date 2006-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 10 Open Access
Notes Approved Most recent IF: 2.599; 2006 IF: 0.999
Call Number UA @ lucian @ c:irua:60566 Serial 1539
Permanent link to this record
 

 
Author Retuerto, M.; Emge, T.; Hadermann, J.; Stephens, P.W.; Li, M.R.; Yin, Z.P.; Croft, M.; Ignatov, A.; Zhang, S.J.; Yuan, Z.; Jin, C.; Simonson, J.W.; Aronson, M.C.; Pan, A.; Basov, D.N.; Kotliar, G.; Greenblatt, M.;
Title Synthesis and properties of charge-ordered thallium halide perovskites, CsTl0.5+Tl0.53+X3 (X = F or Cl) : theoretical precursors for superconductivity? Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 20 Pages (up) 4071-4079
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recently, CsTlCl3 and CsTlF3 perovskites were theoretically predicted to be potential superconductors if they were optimally doped. The syntheses of these two compounds together with a complete characterization of the samples are reported. CsTlCl3 was obtained as orange crystals in two different polymorphs: a tetragonal phase (I4/m) and a cubic phase (Fm (3) over barm). CsTlF3 was formed as a light brown powder, and also as a double cubic perovskite (Fm (3) over barm). In all three CsTlX3 phases, Tl+ and Tl3+ were located in two different crystallographic positions that accommodate their different bond lengths. In CsTlCl3, some Tl vacancies were found in the Tl+ position. The charge ordering between Tl+ and Tl3+ was confirmed by X-ray absorption and Raman spectroscopy. The Raman spectroscopy of CsTlCl3 at high pressure (58 GPa) did not indicate any phase transition to a possible single Tl2+ state. However, the highly insulating material became less resistive with an increasing high pressure, while it underwent a change in its optical properties, from transparent to deeply opaque red, indicative of a decrease in the magnitude of the band gap. The theoretical design and experimental validation of the existence of CsTlF3 and CsTlCl3 cubic perovskites are the necessary first steps in confirming the theoretical prediction of superconductivity in these materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000326209200017 Publication Date 2013-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access
Notes Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number UA @ lucian @ c:irua:112248 Serial 3434
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M.
Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 33 Issue 11 Pages (up) 4188-4195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000661521800032 Publication Date 2021-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:179679 Serial 6854
Permanent link to this record
 

 
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V
Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 143 Issue 11 Pages (up) 4213-4223
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000634761500021 Publication Date 2021-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 13.858
Call Number UA @ admin @ c:irua:177697 Serial 6790
Permanent link to this record
 

 
Author Tuck, L.; Sayer, M.; Mackenzie, M.; Hadermann, J.; Dunfield, D.; Pietak, A.; Reid, J.W.; Stratilatov, A.D.
Title Composition and crystal structure of resorbable calcium phosphate thin films Type A1 Journal article
Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 41 Issue 13 Pages (up) 4273-4284
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000239282300041 Publication Date 2006-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 2 Open Access
Notes Approved Most recent IF: 2.599; 2006 IF: 0.999
Call Number UA @ lucian @ c:irua:60128 Serial 442
Permanent link to this record
 

 
Author Cortes-Gil, R.; Parker, D.R.; Pitcher, M.J.; Hadermann, J.; Clarke, S.J.
Title Indifference of superconductivity and magnetism to size-mismatched cations in the layered iron arsenides Ba1-xNaxFe2As2 Type A1 Journal article
Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 22 Issue 14 Pages (up) 4304-4311
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The evolution of the structure, magnetic ordering, and superconductivity in the series Ba(1-x)Na(x)Fe(2)As(2) is reported up to the limiting Na-rich composition with x = 0.6; the more Na-rich compositions are unstable at high temperatures with respect to competing phases. The magnetic and superconducting behaviors of the Bai,Na,Fe,As, members are similar to those of the betterinvestigated Ba(1-x)Na(x)Fe(2)As(2) analogues. This is evidently a consequence of the quantitatively similar evolution of the structure of the FeAs layers in the two series. In Ba(1-x)Na(x)Fe(2)As(2) antiferromagnetic order and an associated structural distortion are evident for x <= 0.35 and superconductivity is evident when x exceeds 0.2. For 0.4 <= x <= 0.6 bulk superconductivity is evident, and the long-range antiferromagnetically ordered state is completely suppressed. The maximum T(c) in the Ba(1-x)Na(x)Fe(2)As(2) series, as judged by the onset of diamagnetism, is 34K in Ba(0.6)Na(0.4)Fe(2)As(2). Despite the large mis-match in sizes between the two electropositive cations which separate the FeAs layers, there is no evidence for ordering of these cations on the length scale probed by electron diffraction.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000280005300027 Publication Date 2010-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 31 Open Access
Notes Approved Most recent IF: 9.466; 2010 IF: 6.400
Call Number UA @ lucian @ c:irua:95594 Serial 1601
Permanent link to this record
 

 
Author Fedotov, S.S.; Aksyonov, D.A.; Samarin, A.S.; Karakulina, O.M.; Hadermann, J.; Stevenson, K.J.; Khasanova, N.R.; Abakumov, A.M.; Antipov, E., V
Title Tuning the crystal structure of A2CoPO4F(A=Li,Na) fluoride-phosphates : a new layered polymorph of LiNaCoPO4F Type A1 Journal article
Year 2019 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume 2019 Issue 2019 Pages (up) 4365-4372
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Co-containing fluoride-phosphates are of interest in sense of delivering high electrode potentials and attractive specific energy values as positive electrode materials for rechargeable batteries. In this paper we report on a new Co-based fluoride-phosphate, LiNaCoPO4F, with a layered structure (2D), which was Rietveld-refined based on X-ray powder diffraction data [P2(1)/c, a = 6.83881(4) angstrom, b = 11.23323(5) angstrom, c = 5.07654(2) angstrom, beta = 90.3517(5) degrees, V = 389.982(3) angstrom(3)] and validated by electron diffraction and high-resolution scanning transmission electron microscopy. The differential scanning calorimetry measurements revealed that 2D-LiNaCoPO4F forms in a narrow temperature range of 520-530 degrees C and irreversibly converts to the known 3D-LiNaCoPO4F modification (Pnma) above 530 degrees C. The non-carbon-coated 2D-LiNaCoPO4F shows reversible electrochemical activity in Li-ion cell in the potential range of 3.0-4.9 V vs. Li/Li+ with an average potential of approximate to 4.5 V and in Na-ion cell in the range of 3.0-4.5 V vs. Na/Na+ exhibiting a plateau profile centered around 4.2 V, in agreement with the calculated potentials by density functional theory. The energy barriers for both Li+ and Na+ migration in 2D-LiNaCoPO4F amount to 0.15 eV along the [001] direction rendering 2D-LiNaCoPO4F as a viable electrode material for high-power Li- and Na-ion rechargeable batteries. The discovery and stabilization of the 2D-LiNaCoPO4F polymorph indicates that temperature influence on the synthesis of A(2)MPO(4)F fluoride-phosphates needs more careful examination with perspective to unveil new structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000484135500001 Publication Date 2019-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited Open Access
Notes ; This work is supported by the Russian Science Foundation (grant 17-73-30006). The authors greatly thank Dr. D. Rupasov for TG-DSC experiments, B. D. Shmykov and A. I. Manoilov for assistance with sample preparation, the Skoltech Center for Energy Science and Technology and the Moscow State University Program of Development up to 2020. J. Hadermann and O. M. Karakulina acknowledge support from the FWO under grant G040116N. ; Approved Most recent IF: 2.444
Call Number UA @ admin @ c:irua:162857 Serial 5403
Permanent link to this record
 

 
Author Mandal, T.K.; Croft, M.; Hadermann, J.; Van Tendeloo, G.; Stephens, P.W.; Greenblatt, M.
Title La2MnVO6 double perovskite: a structural, magnetic and X-ray absorption investigation Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 25 Pages (up) 4382-4390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The synthesis, electron diffraction (ED), synchrotron X-ray and neutron structure, X-ray absorption spectroscopy (XAS) and magnetic property studies of La2MnVO6 double perovskite are described. Analysis of the synchrotron powder X-ray diffraction data for La2MnVO6 indicates a disordered arrangement of Mn and V at the B-site of the perovskite structure. Absence of super-lattice reflections in the ED patterns for La2MnVO6 supports the disordered cation arrangement. Room temperature time-of-flight (TOF) neutron powder diffraction (NPD) data show no evidence of cation ordering, in corroboration with the ED and synchrotron studies (orthorhombic Pnma, a = 5.6097(3), b = 7.8837(5) and c = 5.5668(3) ; 295 K, NPD). A comparison of XAS analyses of La2TVO6 with T = Ni and Co shows T2+ formal oxidation state while the T = Mn material evidences a Mn3+ admixture into a dominantly Mn2+ ground state. V-K edge measurements manifest a mirror image behavior with a V4+ state for T = Ni and Co with a V3+ admixture arising in the T = Mn material. The magnetic susceptibility data for La2MnVO6 show ferromagnetic correlations; the observed effective moment, µeff (5.72 µB) is much smaller than the calculated moment (6.16 µB) based on the spin-only formula for Mn2+ (d5, HS) /V4+ (d1), supportive of the partly oxidized Mn and reduced V scenario (Mn3+/V3+).
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000266989800015 Publication Date 2009-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 10 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:77367 Serial 3540
Permanent link to this record
 

 
Author Morozov, V.A.; Bertha, A.; Meert, K.W.; Van Rompaey, S.; Batuk, D.; Martinez, G.T.; Van Aert, S.; Smet, P.F.; Raskina, M.V.; Poelman, D.; Abakumov, A.M.; Hadermann, J.;
Title Incommensurate modulation and luminescence in the CaGd2(1-x)Eu2x(MoO4)4(1-y)(WO)4y (0\leq x\leq1, 0\leq y\leq1) red phosphors Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue 21 Pages (up) 4387-4395
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Scheelite related compounds (A',A '') [(B',B '')O-4], with B', B '' = W and/or Mo are promising new light-emitting materials for photonic applications, including phosphor converted LEDs (light-emitting diodes). In this paper, the creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescent properties. CaGd2(1-x)Eu2x(MoO4)(4(1-y))(WO4)(4y) (0 <= x <= 1, 0 <= y <= 1) solid solutions with scheelite-type structure were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder X-ray diffraction. Within this series all complex molybdenum oxides have (3 + 2)D incommensurately modulated structures with superspace group I4(1)/a(alpha,beta,0)00(-beta,alpha,0)00, while the structures of all tungstates are (3 + 1)D incommensurately modulated with superspace group I2/b(alpha beta 0)00. In both cases the modulation arises because of cation-vacancy ordering at the A site. The prominent structural motif is formed by columns of A-site vacancies running along the c-axis. These vacant columns occur in rows of two or three aligned along the [110] direction of the scheelite subcell. The replacement of the smaller Gd3+ by the larger Eu3+ at the A-sublattice does not affect the nature of the incommensurate modulation, but an increasing replacement of Mo6+ by W6+ switches the modulation from (3 + 2)D to (3 + 1)D regime. Thus, these solid solutions can be considered as a model system where the incommensurate modulation can be monitored as a function of cation nature while the number of cation vacancies at the A sites remain constant upon the isovalent cation replacement. All compounds' luminescent properties were measured, and the optical properties were related to the structural properties of the materials. CaGd2(1-x)(MoO4)(4(1-y))(WO4)(4y) phosphors emit intense red light dominated by the D-5(0)-F-7(2) transition at 612 nm, along with other transitions from the D-5(1) and D-5(0) excited states. The intensity of the 5D0-7F2 transition reaches a maximum at x = 0.5 for y = 0 and 1.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000327045000030 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 63 Open Access
Notes Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number UA @ lucian @ c:irua:112776 Serial 1594
Permanent link to this record
 

 
Author Belik, A.A.; Abakumov, A.M.; Tsirlin, A.A.; Hadermann, J.; Kim, J.; Van Tendeloo, G.; Takayama-Muromachi, E.
Title Article Structure and magnetic properties of BiFe0.75Mn0.25O3 perovskite prepared at ambient and high pressure Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 20 Pages (up) 4505-4514
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solid solutions of BiFe1xMnxO3 (0.0 ≤ x ≤ 0.4) were prepared at ambient pressure and at 6 GPa. The ambient-pressure (AP) phases crystallize in space group R3c similarly to BiFeO3. The high-pressure (HP) phases crystallize in space group R3c for x = 0.05 and in space group Pnma for 0.15 ≤ x ≤ 0.4. The structure of HP-BiFe0.75Mn0.25O3 was investigated using synchrotron X-ray powder diffraction, electron diffraction, and transmission electron microscopy. HP-BiFe0.75Mn0.25O3 has a PbZrO3-related √2ap × 4ap × 2√2ap (ap is the parameter of the cubic perovskite subcell) superstructure with a = 5.60125(9) Å, b = 15.6610(2) Å, and c = 11.2515(2) Å similar to that of Bi0.82La0.18FeO3. A remarkable feature of this structure is the unconventional octahedral tilt system, with the primary ab0a tilt superimposed on pairwise clockwise and counterclockwise rotations around the b-axis according to the oioi sequence (o stands for out-of-phase tilt, and i stands for in-phase tilt). The (FeMn)O6 octahedra are distorted, with one longer metaloxygen bond (2.222.23 Å) that can be attributed to a compensation for covalent BiO bonding. Such bonding results in the localization of the lone electron pair on Bi3+ cations, as confirmed by electron localization function analysis. The relationship between HP-BiFe0.75Mn0.25O3 and antiferroelectric structures of PbZrO3 and NaNbO3 is discussed. On heating in air, HP-BiFe0.75Mn0.25O3 irreversibly transforms to AP-BiFe0.75Mn0.25O3 starting from about 600 K. Both AP and HP phases undergo an antiferromagnetic ordering at TN ≈ 485 and 520 K, respectively, and develop a weak net magnetic moment at low temperatures. Additionally, ceramic samples of AP-BiFe0.75Mn0.25O3 show a peculiar phenomenon of magnetization reversal.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295897400015 Publication Date 2011-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 57 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:93581 Serial 151
Permanent link to this record
 

 
Author Yan, L.; Niu, H.; Bridges, C.A.; Marshall, P.A.; Hadermann, J.; Van Tendeloo, G.; Chalker, P.R.; Rosseinsky, M.J.
Title Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition Type A1 Journal article
Year 2007 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 46 Issue 24 Pages (up) 4539-4542
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000247500600026 Publication Date 2007-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 16 Open Access
Notes Approved Most recent IF: 11.994; 2007 IF: 10.031
Call Number UA @ lucian @ c:irua:65593 Serial 3812
Permanent link to this record
 

 
Author Li, D.Y.; Zeng, Y.J.; Batuk, D.; Pereira, L.M.C.; Ye, Z.Z.; Fleischmann, C.; Menghini, M.; Nikitenko, S.; Hadermann, J.; Temst, K.; Vantomme, A.; Van Bael, M.J.; Locquet, J.P.; Van Haesendonck, C.;
Title Relaxor ferroelectricity and magnetoelectric coupling in ZnOCo nanocomposite thin films : beyond multiferroic composites Type A1 Journal article
Year 2014 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 6 Issue 7 Pages (up) 4737-4742
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract ZnOCo nanocomposite thin films are synthesized by combination of pulsed laser deposition of ZnO and Co ion implantation. Both superparamagnetism and relaxor ferroelectricity as well as magnetoelectric coupling in the nanocomposites have been demonstrated. The unexpected relaxor ferroelectricity is believed to be the result of the local lattice distortion induced by the incorporation of the Co nanoparticles. Magnetoelectric coupling can be attributed to the interaction between the electric dipole moments and the magnetic moments, which are both induced by the incorporation of Co. The introduced ZnOCo nanocomposite thin films are different from conventional strain-mediated multiferroic composites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334572800018 Publication Date 2014-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 21 Open Access
Notes Approved Most recent IF: 7.504; 2014 IF: 6.723
Call Number UA @ lucian @ c:irua:117063 Serial 2864
Permanent link to this record
 

 
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J.
Title Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 14 Pages (up) 4788-4798
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000440105500037 Publication Date 2018-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access
Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:153156 Serial 5107
Permanent link to this record
 

 
Author Batuk, D.; Hadermann, J.; Abakumov, A.; Vranken, T.; Hardy, A.; van Bael, M.; Van Tendeloo, G.
Title Layered perovskite-like Pb2Fe2O5 structure as a parent matrix for the nucleation and growth of crystallographic shear planes Type A1 Journal article
Year 2011 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 50 Issue 11 Pages (up) 4978-4986
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Pb2Fe2O5 compound with a layered intergrowth structure has been prepared by a solid-state reaction at 700 °C. The incommensurate compound crystallizes in a tetragonal system with a = 3.9037(2) Å, c = 3.9996(4) Å, and q = 0.1186(4)c*, or when treated as a commensurate approximant, a = 3.9047(2) Å, c = 36.000(3) Å, space group I4/mmm. The crystal structure of Pb2Fe2O5 was resolved from transmission electron microscopy data. Atomic coordinates and occupancies of the cation positions were estimated from high-angle annular dark-field scanning transmission electron microscopy data. Direct visualization of the positions of the oxygen atoms was possible using annular bright-field scanning transmission electron microscopy. The structure can be represented as an intergrowth of perovskite blocks and partially disordered blocks with a structure similar to that of the Bi2O2 blocks in Aurivillius-type phases. The A-cation positions at the border of the perovskite block and the cation positions in the Aurivillius-type blocks are jointly occupied by Pb2+ and Fe3+ cations, resulting in a layer sequence along the c axis: PbOFeO2PbOFeO2Pb7/8Fe1/8O1xFe5/8Pb3/8O2Fe5/8Pb3/8. Upon heating, the layered Pb2Fe2O5 structure transforms into an anion-deficient perovskite modulated by periodically spaced crystallographic shear (CS) planes. Considering the layered Pb2Fe2O5 structure as a parent matrix for the nucleation and growth of CS planes allows an explanation of the specific microstructure observed for the CS structures in the PbFeO system.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000290978400038 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 16 Open Access
Notes Approved Most recent IF: 4.857; 2011 IF: 4.601
Call Number UA @ lucian @ c:irua:90141 Serial 1809
Permanent link to this record