|
Abstract |
The evolution of the structure, magnetic ordering, and superconductivity in the series Ba(1-x)Na(x)Fe(2)As(2) is reported up to the limiting Na-rich composition with x = 0.6; the more Na-rich compositions are unstable at high temperatures with respect to competing phases. The magnetic and superconducting behaviors of the Bai,Na,Fe,As, members are similar to those of the betterinvestigated Ba(1-x)Na(x)Fe(2)As(2) analogues. This is evidently a consequence of the quantitatively similar evolution of the structure of the FeAs layers in the two series. In Ba(1-x)Na(x)Fe(2)As(2) antiferromagnetic order and an associated structural distortion are evident for x <= 0.35 and superconductivity is evident when x exceeds 0.2. For 0.4 <= x <= 0.6 bulk superconductivity is evident, and the long-range antiferromagnetically ordered state is completely suppressed. The maximum T(c) in the Ba(1-x)Na(x)Fe(2)As(2) series, as judged by the onset of diamagnetism, is 34K in Ba(0.6)Na(0.4)Fe(2)As(2). Despite the large mis-match in sizes between the two electropositive cations which separate the FeAs layers, there is no evidence for ordering of these cations on the length scale probed by electron diffraction. |
|