toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Kaunisto, K.; Sada, C.; Turner, S.; Gönüllü, Y.; Ruoko, T.-P.; Borgese, L.; Bontempi, E.; Van Tendeloo, G.; Lemmetyinen, H.; Mathur, S. pdf  url
doi  openurl
  Title Fe2O3-TiO2Nano-heterostructure Photoanodes for Highly Efficient Solar Water Oxidation Type A1 Journal article
  Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 2 Issue 2 Pages 1500313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one-sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α-Fe2O3) nanostructures fabricated by plasma enhanced-chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico-physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large-scale generation of renewable energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368914700011 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 56 Open Access  
  Notes The authors kindly acknowledge the fi nancial support under the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2014 projects, Grant No. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S.T. acknowledges the FWO Flanders for a postdoctoral scholarship. Approved Most recent IF: 4.279; 2015 IF: NA  
  Call Number c:irua:129201 Serial 3957  
Permanent link to this record
 

 
Author Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B. pdf  doi
openurl 
  Title BaHfO3artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 28 Issue 28 Pages 114002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7−x (REBCO;RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, Jc, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm−2 with Jc values of up to 5.0 MA cm−2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field Jc measurements demonstrate high pinning force maxima of around 4 GN m−3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent Jc measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366193000003 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 36 Open Access  
  Notes Experimental work was mainly done at IFW Dresden. We thank Juliane Scheiter and Dr Jens Ingolf Mönch of IFW Dresden for technical assistance. The research leading to these results received funding from EUROTAPES, a collaborative project funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP-LA-2012-280 432. L Molina-Luna and G Van Tendeloo acknowledge funding from the European Research Council (ERC grant nr. 24 691-COUNTATOMS). Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:129200 Serial 3941  
Permanent link to this record
 

 
Author Molina-Luna, L.; Duerrschnabel, M.; Turner, S.; Erbe, M.; Martinez, G.T.; Van Aert, S.; Holzapfel, B.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7−δthin films Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 28 Issue 28 Pages 115009  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7−δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm−2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (~1.5 nm) and the determination of 0.25 nm dislocation cores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366193000018 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 4 Open Access  
  Notes The authors thank financial support from the European Union under the Framework 6 program as a contract for an Integrated Infrastructure Initiative (References No. 026019 ESTEEM) and by the EUFP6 Research Project “NanoEngineered Superconductors for Power Applications” NESPA no. MRTN-CT-2006-035619. This work was supported by funding from the European Research Council under the Seventh Framework Programme (FP7). L.M.L, S.T. and G.V.T acknowledge ERC grant N°246791 – COUNTATOMS and funding under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, as well as the EC project EUROTAPES. G.T.M. and S.V.A acknowledge financial support from the Fund for Scientific Research-Flanders (Reference G.0064.10N and G.0393.11N). M.D. acknowledges financial support from the LOEWE research cluster RESPONSE (Hessen, Germany). M.E. has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° NMP-LA-2012-280432.; esteem2jra2; esteem2jra3 Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:129199 c:irua:129199 Serial 3942  
Permanent link to this record
 

 
Author De Backer, A.; De Wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting: What are the limits? Type P1 Proceeding
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 644 Issue 644 Pages 012034  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atom-counting diagnosed by combining a thorough statistical method and detailed image simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366826200034 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title Electron Microscopy and Analysis Group Conference (EMAG), JUN 02-JUL 02, 2015, Manchester, ENGLAND  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N, G.0369.15N, and G.0374.15N) and a PhD research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3), ERC Starting Grant 278510 Vortex, and the UK Engineering and Physical Sciences Research Council (EP/K032518/1). The authors acknowledge Johnson-Matthey for providing the sample and PhD funding to K E MacArthur. A Rosenauer is acknowledged for providing the STEMsim program.; esteem2jra2; ECASJO; Approved Most recent IF: NA  
  Call Number c:irua:130314 c:irua:130314 Serial 4050  
Permanent link to this record
 

 
Author Zeng, Y.-J.; Gauquelin, N.; Li, D.-Y.; Ruan, S.-C.; He, H.-P.; Egoavil, R.; Ye, Z.-Z.; Verbeeck, J.; Hadermann, J.; Van Bael, M.J.; Van Haesendonck, C. pdf  url
doi  openurl
  Title Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 22166-22171  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co(3+) in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.  
  Address Solid State Physics and Magnetism Section, KU Leuven , Celestijnenlaan 200 D, BE-3001 Leuven, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363001500007 Publication Date 2015-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 13 Open Access  
  Notes This work has been supported by the Research Foundation − Flanders (FWO, Belgium) as well as by the Flemish Concerted Research Action program (BOF KU Leuven, GOA/14/007). N. G. and J. V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Flemish Hercules Foundation. The work at Shenzhen University was supported by National Natural Science Foundation of China under Grant No. 61275144 and Natural Science Foundation of SZU. Y.-J. Z. acknowledges funding under grant No. SKL2015-12 from the State Key Laboratory of Silicon Materials; ECASJO_; Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:129195 c:irua:129195UA @ admin @ c:irua:129195 Serial 3949  
Permanent link to this record
 

 
Author Sanz-Ortiz, M.N.; Sentosun, K.; Bals, S.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Templated Growth of Surface Enhanced Raman Scattering -Active Branched Au Nanoparticles within Radial Mesoporous Silica Shells Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 10489-10497  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Noble metal nanoparticles are widely used as probes or substrates for surface-enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and NIR spectral ranges. Aiming at obtaining a versatile system with high SERS performance we developed the synthesis of quasi-monodisperse, non-aggregated gold nanoparticles protected by radial mesoporous silica shells. The radial channels of such shells were used as templates for the growth of gold tips branching from the cores, thereby improving the plasmonic performance of the particles while favoring the localization of analyte molecules at high electric field regions: close to the tips, inside the pores. The method, which allows control over tip length, was successfully applied to various gold nanoparticle shapes, leading to materials with highly efficient SERS performance. The obtained nanoparticles are stable in ethanol and water upon thermal consolidation and can be safely stored as a powder.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363915300105 Publication Date 2015-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 110 Open Access OpenAccess  
  Notes This work has been funded by the European Research Council (ERC Advanced Grant 267867 Plasmaquo and Starting Grant Colouratom). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 312184, SACS). Help from Mert Kurttepeli is acknowledged. Pentatwinned nanorods and nanotriangles were synthesized by L. Scarabelli.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:129194 Serial 3947  
Permanent link to this record
 

 
Author Tang, X.; Reckinger, N.; Poncelet, O.; Louette, P.; Urena, F.; Idrissi, H.; Turner, S.; Cabosart, D.; Colomer, J.-F.; Raskin, J.-P.; Hackens, B.; Francis, L.A. pdf  url
doi  openurl
  Title Damage evaluation in graphene underlying atomic layer deposition dielectrics Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 13523  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Based on micro-Raman spectroscopy (muRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, muRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.  
  Address ICTEAM Institute, Universite catholique de Louvain, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000360147400001 Publication Date 2015-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 18 Open Access  
  Notes The authors thank the staff of UCL’s Winfab and Welcome for technical support. Xiaohui Tang is a senior research of UCL. This work is financially supported by the Multi-Sensor-Platform for Smart Building Management project (No. 611887) and the Action de Recherche Concertée (ARC) “StressTronics”, Communauté française de Belgique. Part of this work is financially supported by the Belgian Fund for Scientific Research (FRS-FNRS) under FRFC contract “Chemographene” (No. 2.4577.11). J.-F. Colomer and B. Hackens are Research Associates of FRS-FNRS. This research used resources of the Electron Microscopy Service located at the University of Namur (“Plateforme Technologique Morphologie – Imagerie”). This research used resources of the ELISE Service of the University of Namur. This Service is member of the “Plateforme Technologique SIAM”. The research leading to this work has received partial funding from the European Union Seventh Framework Program under grant agreement No 604391 Graphene Flagship. Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number c:irua:129193 Serial 3958  
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Disordered graphene Josephson junctions Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 054506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples, or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single-atom vacancies, we observe a strong suppression of the supercurrent, which is a consequence of strong intervalley scattering. Although lattice deformations should not induce intervalley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudomagnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e., existence of electron-hole puddles, or finite. In both cases, short-range impurities strongly affect the supercurrent, similar to the vacancies scenario.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349436500001 Publication Date 2015-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:129192 Serial 3961  
Permanent link to this record
 

 
Author Lubk, A.; Béché, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Electron Microscopy of Probability Currents at Atomic Resolution Type A1 Journal article
  Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 115 Issue 115 Pages 176101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic resolution transmission electron microscopy records the spatially resolved scattered electron density to infer positions, density, and species of atoms. These data are indispensable for studying the relation between structure and properties in solids. Here, we show how this signal can be augmented by the lateral probability current of the scattered electrons in the object plane at similar resolutions and fields of view. The currents are reconstructed from a series of three atomic resolution TEM images recorded under a slight difference of perpendicular line foci. The technique does not rely on the coherence of the electron beam and can be used to reveal electric, magnetic, and strain fields with incoherent electron beams as well as correlations in inelastic transitions, such as electron magnetic chiral dichroism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363023700011 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 12 Open Access  
  Notes J. V. and A. B. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. The Qu-Ant- EM microscope was partly funded by the Hercules fund from the Flemish Government. All authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. J. V. acknowledges funding from the FWO under Project No. G.0044.13N.; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 8.462; 2015 IF: 7.512  
  Call Number c:irua:129190 c:irua:129190UA @ admin @ c:irua:129190 Serial 3954  
Permanent link to this record
 

 
Author van der Stam, W.; Bladt, E.; Rabouw, F.T.; Bals, S.; de Mello Donega, C. pdf  url
doi  openurl
  Title Near-Infrared Emitting CuInSe/CuInS Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 11430-11438  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The direct synthesis of heteronanocrystals (HNCs) combining different ternary semiconductors is challenging and has not yet been successful. Here, we report a sequential topotactic cation exchange (CE) pathway that yields CuInSe2/CuInS2 dot core/rod shell nanorods with near-infrared luminescence. In our approach, the Cu+ extraction rate is coupled to the In3+ incorporation rate by the use of a stoichiometric trioctylphosphine-InCl3 complex, which fulfills the roles of both In-source and Cu-extracting agent. In this way, Cu+ ions can be extracted by trioctylphosphine ligands only when the In-P bond is broken. This results in readily available In3+ ions at the same surface site from which the Cu+ is extracted, making the process a direct place exchange reaction and shifting the overall energy balance in favor of the CE. Consequently, controlled cation exchange can occur even in large and anisotropic heterostructured nanocrystals with preservation of the size, shape, and heterostructuring of the template NCs into the product NCs. The cation exchange is self-limited, stopping when the ternary core/shell CuInSe2/CuInS2 composition is reached. The method is very versatile, successfully yielding a variety of luminescent CuInX2 (X = S, Se, and Te) quantum dots, nanorods, and HNCs, by using Cd-chalcogenide NCs and HNCs as templates. The approach reported here thus opens up routes toward materials with unprecedented properties, which would otherwise remain inaccessible.  
  Address Debye Institute for Nanomaterials Science, Utrecht University , P.O. Box 80000, 3508 TA Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000365464800094 Publication Date 2015-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 88 Open Access OpenAccess  
  Notes The authors thank Gang Wang for XRD measurements and Eline Hutter for providing CdSe/CdS NRs. W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. This work was supported by the European Research Council (ERC Starting Grant #335078 Colouratom). E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:129184 Serial 3948  
Permanent link to this record
 

 
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E. url  doi
openurl 
  Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 6771-6778  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362920700037 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 50 Open Access OpenAccess  
  Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Neyts, E.C.; Jacob, T.; Fantauzzi, D.; Golkaram, M.; Shin, Y.-K.; van Duin, A.C.T.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 17 Issue 17 Pages 103005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasmas have proven to provide an alternative treatment of cancer by targeting tumorous cells while leaving their healthy counterparts unharmed. However, the underlying mechanisms of the plasma–cell interactions are not yet fully understood. Reactive oxygen species, and in particular hydroxyl radicals (OH), are known to play a crucial role in plasma driven apoptosis of

malignant cells. In this paper we investigate the interaction of OH radicals, as well as H2O2 molecules and HO2 radicals, with DNA by means of reactive molecular dynamics simulations using the ReaxFF force field. Our results provide atomic-scale insight into the dynamics of oxidative stress on DNA caused by the OH radicals, while H2O2 molecules appear not reactive within the considered timescale. Among the observed processes are the formation of 8-OH-adduct radicals, forming the first stages towards the formation of 8-oxoGua and 8-oxoAde, H-abstraction reactions of the amines, and the partial opening of loose DNA ends in aqueous solution.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367328100001 Publication Date 2015-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 18 Open Access  
  Notes CCWV,ECN and AB acknowledge the contribution of J Van Beeck who is investigating the interaction between H2O2 andDNAusingrMDsimulations. Furthermore, they acknowledge financial support from the Fund for Scientific Research—Flanders (project number G012413N). The calculations were performed using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. TJ and DF gratefully acknowledge support from the European Research Council through the ERC-Starting GrantTHEOFUN(Grant Agreement No. 259608). Approved Most recent IF: 3.786; 2015 IF: 3.558  
  Call Number c:irua:129178 Serial 3955  
Permanent link to this record
 

 
Author Van de Walle, E.; Van Nieuwenhove, I.; Vanderleyden, E.; Declercq, H.; Gellynck, K.; Schaubroeck, D.; Ottevaere, H.; Thienpont, H.; De Vos, W.H.; Cornelissen, M.; Van Vlierberghe, S.; Dubruel, P. pdf  doi
openurl 
  Title Polydopamine-gelatin as universal cell-interactive coating for methacrylate-based medical device packaging materials : when surface chemistry overrules substrate bulk properties Type A1 Journal article
  Year 2016 Publication Biomacromolecules Abbreviated Journal  
  Volume 17 Issue 1 Pages 56-68  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Despite its widespread application in the fields of ophthalmology, orthopedics and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials which ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethyleneglycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials posessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368047800007 Publication Date 2015-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-7797 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:129159 Serial 8393  
Permanent link to this record
 

 
Author Pilehvar, S.; De Wael, K. url  doi
openurl 
  Title Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms Type A1 Journal article
  Year 2015 Publication Biosensors Abbreviated Journal  
  Volume 5 Issue 4 Pages 712-735  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2015-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-6374 ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:129157 Serial 5805  
Permanent link to this record
 

 
Author Arsoski, V.; Tadic, M.; Peeters, F.M. doi  openurl
  Title Electric field tuning of the optical excitonic Aharonov-Bohm effect in nanodots grown by droplet epitaxy Type A1 Journal article
  Year 2013 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume T157 Issue Pages 014002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Neutral excitons in axially symmetric GaAs nanodots embedded in an (Al, Ga) As matrix, which are formed by the droplet epitaxy technique, are investigated theoretically. An electric field perpendicular to the nanodot base results in both a vertical and an in-plane exciton polarization, which is beneficial for the appearance of the excitonic Aharonov-Bohm effect. In the range of low magnetic fields (below 5 Tesla), we found that the bright and dark exciton states can cross twice. This results in oscillations of the photoluminescence intensity with magnetic field, which are a striking manifestation of the optical excitonic Aharonov-Bohm effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000332504600003 Publication Date 2013-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 1.28 Times cited Open Access  
  Notes ; This work was supported by the EU Network of Excellence: SANDiE, the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 1.28; 2013 IF: 1.296  
  Call Number UA @ lucian @ c:irua:128901 Serial 4594  
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Superconducting current and proximity effect in ABA and ABC multilayer graphene Josephson junctions Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 88 Pages 214502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a numerical tight-binding approach based on the Chebyshev–Bogoliubov–de Gennes method we describe Josephson junctions made of multilayer graphene contacted by top superconducting gates. Both Bernal (ABA) and rhombohedral (ABC) stacking are considered and we find that the type of stacking has a strong effect on the proximity effect and the supercurrent flow. For both cases the pair amplitude shows a polarization between dimer and nondimer atoms, being more pronounced for rhombohedral stacking. Even though the proximity effect in nondimer sites is enhanced when compared to single-layer graphene, we find that the supercurrent is suppressed. The spatial distribution of the supercurrent shows that for Bernal stacking the current flows only in the topmost layers while for rhombohedral stacking the current flows throughout the whole structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328569900004 Publication Date 2013-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number CMT @ cmt @ c:irua:128896 Serial 3962  
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A. doi  openurl
  Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000332395700048 Publication Date 2014-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 8 Open Access  
  Notes Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:128893 Serial 4520  
Permanent link to this record
 

 
Author Gillis, S.; Jaykka, J.; Milošević, M.V. url  doi
openurl 
  Title Vortex states in mesoscopic three-band superconductors Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 2 Pages 024512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using multicomponent Ginzburg-Landau simulations, we show a plethora of vortex states possible in mesoscopic three-band superconductors. We find that mesoscopic confinement stabilizes chiral states, with nontrivial phase differences between the band condensates, as the ground state of the system. As a consequence, we report the broken-symmetry vortex states, the chiral states where vortex cores in different band condensates do not coincide (split-core vortices), as well as fractional-flux vortex states with broken time-reversal symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000333653800001 Publication Date 2014-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO). Critical remarks of Lucia Komendova are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128885 Serial 4611  
Permanent link to this record
 

 
Author Singh, S.K.; Costamagna, S.; Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title Melting of partially fluorinated graphene : from detachment of fluorine atoms to large defects and random coils Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 8 Pages 4460-4464  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermomechanically more stable than graphene but at T-m approximate to 2800 K FFG transits to random coils which is almost 2 times lower than the melting temperature of graphene, i.e., 5300 K. For fluorinated graphene up to 30% ripples causes detachment of individual F-atoms around 2000 K, while for 40%-60% fluorination large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000332188100069 Publication Date 2014-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 16 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-VI). Financial support from the Collaborative program MINCyT (Argentina)-FWO(Belgium) is also acknowledged. ; Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:128874 Serial 4600  
Permanent link to this record
 

 
Author Christis, M.; Geerken, T.; Vercalsteren, A.; Vrancken, K.C.M. pdf  doi
openurl 
  Title Value in sustainable materials management strategies for open economies case of Flanders (Belgium) Type A1 Journal article
  Year 2015 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 103 Issue Pages 110-124  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Sustainable Materials Management (SMM) strategies, such as reuse, recycling and energy recovery aim, to capture more of the embedded resource or material value in products and waste streams. Reuse, recycling and energy recovery are existing activities in every society but they are poorly reflected in official statistics. Reaching higher levels of reuse, recycling and energy recovery may provide economic and environmental opportunities (i.e., in terms of GDP, jobs, reduced impacts), but not all options will have a net win-win-win property in practice, as they reduce the need for producing new commodities. In open economies, many primary resources, components and products are imported from abroad, and many goods produced are exported abroad. This paper describes a top-down methodology for estimating the substitution potential of intensifying specific SMM-strategies and material efficiency strategies. We combined both regional and multi-regional EE-IO (environmentally extended input-output) models to link industrial sectors to SMM-strategies. Our method enables us to compare the different SMM and material efficiency strategies in terms of the maximum available budgets for reaching them on a break even basis, maximum savings in global warming emissions and substituted employment effects, both through a regional and global perspective. We add a case on Flanders (Northern region in Belgium) to illustrate the methodology. Flanders is currently developing a policy for SMM. Selecting new regional actions for a Sustainable Materials Management policy can benefit from a good understanding of the international entangled value chains. It is important to understand how much of the chain is within reach of domestic policies and also to assess the consequences in terms of potential winners and losers, regarding GDP, jobs and environmental impacts, both domestically and abroad. We illustrated the potential outcomes for Flanders from four generic SMM-strategies: energy recovery, food waste prevention, recycling and reuse. From a strict regional self-interest perspective, it is preferable to substitute foreign value chains with local economic activities. Reuse creates by far the largest budget for new activities to realize the strategy (31.2% of Flemish GDP compared to 8.3% for food waste prevention, 6.2% for energy recovery and 4.2% for recycling). All four strategies have similar and significant potentials to reduce greenhouse gas emissions. However, food waste prevention and reuse have higher potentials to reduce Flemish territorial GHG-emissions. From a pure Flemish employment perspective, the energy recovery and recycling strategies could replace the fewest Flemish jobs, and from a global perspective, all strategies most likely imply losses of jobs abroad. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362618600011 Publication Date 2015-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:128777 Serial 8732  
Permanent link to this record
 

 
Author Matulis, A.; Zarenia, M.; Peeters, F.M. pdf  doi
openurl 
  Title Wave fronts and packets in 1D models of different meta-materials : graphene, left-handed media and transmission line Type A1 Journal article
  Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 252 Issue 252 Pages 2330-2338  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A comparative study is made of the propagation of wave packets and fronts in three different meta-media, i.e. graphene, left-handed media (LHM) and transmission lines, using one-dimensional models. It is shown that a potential step in graphene influences only the frequency of the electronic wave, i.e., the particular spectrum branch (electron or hole) to which the wave belongs to, while the envelop function (the wave front or packet form) remains unchanged. Although the model for a vacuum and LHM interface is similar to that of the potential step in graphene, the solutions are quite different due to differences in the chirality of the waves. Comparing the propagation of wave fronts and packets in a standard transmission line and its meta-analog we demonstrate that the propagating packets in the meta-line are much more deformed as compared to the standard one, including broadening, asymmetry and even the appearance of fast moving precursors. This influence is seen not only in the case of packets with steep fronts but in soft Gaussian packets as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000362722300025 Publication Date 2015-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 1 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government, and the European Social Fund under the Global Grant Measure (Grant No. VP1-3.1-SMM-07-K-02-046). ; Approved Most recent IF: 1.674; 2015 IF: 1.489  
  Call Number UA @ lucian @ c:irua:128776 Serial 4277  
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A. pdf  url
doi  openurl
  Title The Dominant Pathways for the Conversion of Methane into Oxygenates and Syngas in an Atmospheric Pressure Dielectric Barrier Discharge Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 22331-22350  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A one-dimensional fluid model for a dielectric barrier discharge in CH4/O2 and CH4/CO2 gas mixtures is developed. The model describes the gas-phase chemistry for partial oxidation and for dry reforming of methane. The spatially averaged densities of the various plasma species are presented as a function of time and initial gas mixing ratio. Besides, the conversion of the inlet gases and the selectivities of the reaction products are calculated. Syngas, higher hydrocarbons, and higher oxygenates are typically found to be important reaction products. Furthermore, the main underlying reaction pathways for the formation of syngas, methanol, formaldehyde, and other higher oxygenates are determined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362385700010 Publication Date 2015-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 46 Open Access  
  Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. The authors also acknowledge financial support from the IAP/7 (Interuniversity Attraction Pole) program “PSI-Physical Chemistry of Plasma- Surface Interactions” by the Belgian Federal Office for Science Policy (BELSPO) and from the Fund for Scientific Research Flanders (FWO). Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:128774 Serial 3960  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.; Sorée, B.; Magnus, W.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 134502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In0.53Ga0.47As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362668400025 Publication Date 2015-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128765 Serial 4183  
Permanent link to this record
 

 
Author Peymanirad, F.; Neek Amal, M.; Beheshtian, J.; Peeters, F.M. url  doi
openurl 
  Title Graphene-silicene bilayer : a nanocapacitor with permanent dipole and piezoelectricity effect Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 155113  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory, we study the electronic properties of a graphene-silicene bilayer (GSB). A single layer of silicene binds to the graphene layer with adhesion energy of about 25 meV/atom. This adhesion energy between the two layers follows accurately the well-known -1/z(2) dispersion energy as found between two infinite parallel plates. In small flakes of GSB with hydrogenated edges, negative charge is transferred from the graphene layer to the silicene layer, producing a permanent and a switchable polar bilayer, while in an infinite GSB, the negative charge is transferred from the silicene layer to the graphene layer. The graphene-silicene bilayer is a good candidate for a nanocapacitor with piezoelectric capabilities. We found that the permanent dipole of the bilayer can be tuned by an external perpendicular electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362493400002 Publication Date 2015-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128762 Serial 4188  
Permanent link to this record
 

 
Author Pizzochero, M.; Leenaerts, O.; Partoens, B.; Martinazzo, R.; Peeters, F.M. pdf  url
doi  openurl
  Title Hydrogen adsorption on nitrogen and boron doped graphene Type A1 Journal article
  Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 27 Issue 27 Pages 425502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption process by increasing the binding energy at the sites closest to the substitutional species. It is also found that doping does not induce magnetism despite the odd number of electrons per atom introduced by the foreign species, and that it quenches the paramagnetic response of chemisorbed H atoms on graphene. Overall, the effects are similar for B and N doping, with only minor differences in the adsorption energetics due to different sizes of the dopant atoms and the accompanying lattice distortions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000362573500008 Publication Date 2015-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 20 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl). MP gratefully acknowledges the Condensed Matter Theory group at Universiteit Antwerpen for the hospitality during his stay. Approved Most recent IF: 2.649; 2015 IF: 2.346  
  Call Number c:irua:128759 Serial 3971  
Permanent link to this record
 

 
Author Pollefeyt, G.; Meledin, A.; Pop, C.; Ricart, S.; Hühne, R.; Van Tendeloo, G.; Van Driessche, I. pdf  url
doi  openurl
  Title Chemical stability of YBiO3 buffer layers for implementation in YBa2Cu3O7-δ coated conductors Type A1 Journal article
  Year 2015 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 100 Issue 100 Pages 224-231  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work, the chemical and microstructural stability of YBiO3 buffer layers during the growth of YBa2Cu3O7-δ (YBCO) was studied. The superconducting YBCO films were deposited via both Pulsed Laser Deposition as well as Chemical Solution Deposition. Although excellent superconducting properties are obtained in both cases, self-field critical current densities of 3.6 and 1.2 MA/cm2 respectively, chemical instability of the YBiO3 buffer layer is observed. An elaborate transmission electron microscopy study showed that in the case of vacuum deposited YBCO, the YBiO3 becomes unstable and Bi2O3 sublimates out of the architecture. Due to this structural instability, an intermediate Y2O3 layer is obtained which maintains it microstructural orientation relation with the substrate and acts as growth template for YBCO. For chemical solution deposited YBCO, reaction of YBCO with the YBiO3 buffer layer is observed, leading to large grains of YBa2BiO6 which are pushed towards the surface of the films and strongly reduce the superconducting properties. Upon using high growth temperatures for the superconducting layer, these secondary phases decompose, which subsequently leads to Bi2O3 sublimation and a textured YBCO film which directly nucleated onto the LaAlO3 single crystal substrate. Hence, this electron microscopy study indicates that bismuth-based buffer layers systems are not suitable for implementation in coated conductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362616400023 Publication Date 2015-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 5.301 Times cited Open Access  
  Notes One of the authors (G.P.) would like to thank the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT) for funding. Part of this work was performed within the framework of the EuroTapes project (FP7-NMP.2011.2.2-1 Grant No. 280438), funded by the European Union. Approved Most recent IF: 5.301; 2015 IF: 4.465  
  Call Number c:irua:128757 Serial 3953  
Permanent link to this record
 

 
Author Maheshi, D.; Van Passel, S.; Van Karel, A. pdf  doi
openurl 
  Title Environmental and economic assessment of 'open waste dump' mining in Sri Lanka Type A1 Journal article
  Year 2015 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 102 Issue Pages 67-79  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Open waste dumps in Sri Lanka generate adverse environmental and socio-economic impacts due to inadequate maintenance. In this study, a concept of 'open waste dump mining' is suggested in order to minimise the environmental and socio-economic impacts, together with resource recovery. A model based on life cycle assessment and life cycle costing has been used to assess the environmental and economic feasibility of the suggested open waste dump mining concept. Two scenarios have been defined for a hypothetical case, dependent on the destination of the refuse derived fuel fraction. Scenario 1 comprises direct selling of refuse derived fuel as an alternative fuel to replace coal usage in the cement industry, while Scenario 2 consists of thermal treatment of refuse derived fuel with the objective of producing electricity. The study shows that both scenarios are beneficial from an environmental point of view, but not from an economic view point. However, economic profits can be obtained by adjusting waste transport distances and the price of electricity. The environmental analysis further reveals that the higher global warming potential of open waste dumps can be eliminated to a large extent by applying suggested mining and waste valorisation scenarios. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362147800008 Publication Date 2015-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.313 Times cited 26 Open Access  
  Notes ; ; Approved Most recent IF: 3.313; 2015 IF: 2.564  
  Call Number UA @ admin @ c:irua:128753 Serial 6196  
Permanent link to this record
 

 
Author Adami, O.-A.; Jelić, Ž.L.; Xue, C.; Abdel-Hafiez, M.; Hackens, B.; Moshchalkov, V.V.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V. pdf  url
doi  openurl
  Title Onset, evolution, and magnetic braking of vortex lattice instabilities in nanostructured superconducting films Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 134506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In 1976, Larkin and Ovchinnikov [Zh. Eksp. Teor. Fiz. 68, 1915 (1975) [Sov. Phys.–JETP 41, 960 (1976)]] predicted that vortex matter in superconductors driven by an electrical current can undergo an abrupt dynamic transition from a flux-flow regime to a more dissipative state at sufficiently high vortex velocities. Typically, this transition manifests itself as a large voltage jump at a particular current density, so-called instability current density J∗, which is smaller than the depairing current. By tuning the effective pinning strength in Al films, using an artificial periodic pinning array of triangular holes, we show that a unique and well-defined instability current density exists if the pinning is strong, whereas a series of multiple voltage transitions appear in the relatively weaker pinning regime. This behavior is consistent with time-dependent Ginzburg-Landau simulations, where the multiple-step transition can be unambiguously attributed to the progressive development of vortex chains and subsequently phase-slip lines. In addition, we explore experimentally the magnetic braking effects, caused by a thick Cu layer deposited on top of the superconductor, on the instabilities and the vortex ratchet effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362433200003 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ACKNOWLEDGMENTS: This work was partially supported by the Fonds de la Recherche Scientifique-FNRS, the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO), and COST Action MP1201. The work of A.V.S. and Z.L.J. is partially supported by “Mandat d’Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. B.H. is an associate researcher of the Fonds de la Recherche Scientifique- FNRS. The authors thank J. Cuppens for the data analysis at the early stage of this work, R. Delamare for his valuable help during the fabrication of the samples, and G. Grimaldi for helpful discussions. Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:128747 Serial 3981  
Permanent link to this record
 

 
Author Schoeters, B.; Leenaerts, O.; Pourtois, G.; Partoens, B. pdf  url
doi  openurl
  Title Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO2 nanowires Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 104306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO2 core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO2 NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO2 core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361636900031 Publication Date 2015-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:128729 Serial 4056  
Permanent link to this record
 

 
Author Homm, P.; Dillemans, L.; Menghini, M.; Van Bilzen, B.; Bakalov, P.; Su, C.Y.; Lieten, R.; Houssa, M.; Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.; Seo, J.W.; Locquet, J.P.; url  doi
openurl 
  Title Collapse of the low temperature insulating state in Cr-doped V2O3 thin films Type A1 Journal article
  Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 107 Issue 107 Pages 111904  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have grown epitaxial Cr-doped V2O3 thin films with Cr concentrations between 0% and 20% on (0001)-Al2O3 by oxygen-assisted molecular beam epitaxy. For the highly doped samples (>3%), a regular and monotonous increase of the resistance with decreasing temperature is measured. Strikingly, in the low doping samples (between 1% and 3%), a collapse of the insulating state is observed with a reduction of the low temperature resistivity by up to 5 orders of magnitude. A vacuum annealing at high temperature of the films recovers the low temperature insulating state for doping levels below 3% and increases the room temperature resistivity towards the values of Cr-doped V2O3 single crystals. It is well-know that oxygen excess stabilizes a metallic state in V2O3 single crystals. Hence, we propose that Cr doping promotes oxygen excess in our films during deposition, leading to the collapse of the low temperature insulating state at low Cr concentrations. These results suggest that slightly Cr-doped V2O3 films can be interesting candidates for field effect devices. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000361639200020 Publication Date 2015-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes ; The authors acknowledge financial support from the FWO Project No. G052010N10 as well as the EU-FP7 SITOGA Project. P.H. acknowledges support from Becas Chile-CONICYT. ; Approved Most recent IF: 3.411; 2015 IF: 3.302  
  Call Number UA @ lucian @ c:irua:128728 Serial 4149  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: