|   | 
Details
   web
Records
Author Janssens, K.
Title EXRS2022 : the 2022 edition of the European X-ray Spectrometry conference, held in Bruges, Belgium Type Editorial
Year 2023 Publication X-ray spectrometry Abbreviated Journal
Volume 52 Issue 6 Pages 276-278
Keywords Editorial; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043528400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 1.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.2; 2023 IF: 1.298
Call Number UA @ admin @ c:irua:198217 Serial 8865
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeeck, J.; Van Aert, S.
Title Phase object reconstruction for 4D-STEM using deep learning Type A1 Journal article
Year 2023 Publication Microscopy and microanalysis Abbreviated Journal
Volume 29 Issue 1 Pages 395-407
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full-phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033590800038 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 1 Open Access OpenAccess
Notes We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 770887 PICOMETRICS) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823717 ESTEEM3. J.V. and S.V.A acknowledge funding from the University of Antwerp through a TOP BOF project. The direct electron detector (Merlin, Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. This work was supported by the FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). Approved Most recent IF: 2.8; 2023 IF: 1.891
Call Number UA @ admin @ c:irua:198221 Serial 8912
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Geuens, J.; Van Schaeren, R.; Lenaerts, S.
Title Can we find an optimal fatty acid composition of biodiesel in order to improve oxidation stability? Type A1 Journal article
Year 2023 Publication Sustainability Abbreviated Journal
Volume 15 Issue 13 Pages 10310-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Medical Genetics (MEDGEN)
Abstract Air quality currently poses a major risk for human health. Currently, diesel is widely used as fuel and is a significant source of nitrogen oxides (NOx) and particulate matter (PM), both hazardous to human health. A good alternative for mineral diesel is biodiesel, not only for the improvement of hazardous components in the exhaust gases but also because it can be produced in view of a circular economy. Biodiesel consists of a mix of different fatty acid methyl esters, which can react with oxygen. As a consequence, the oxidation stability of biodiesel has to be studied, because the oxidation of biodiesel could affect the performance of the engine due to the wear of injectors and fuel pumps. The oxidation stability could also affect the quality of the exhaust gases due to increases in NOx and PM. The basic question we try to answer in this communication is: 'Can we find an optimal fatty acid composition in order to have a maximal oxidation stability?' In this article, we try to find the optimal fatty acid composition according to the five most common fatty acid methyl esters present in biodiesel in order to reach a maximal oxidation stability. The measurements and statistical analysis show, however, that there is no useful regression model because there are statistically significant two- and three-way interactions among the different fatty acids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001028597300001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9; 2023 IF: 1.789
Call Number UA @ admin @ c:irua:198241 Serial 8839
Permanent link to this record
 

 
Author Denisov, N.; Jannis, D.; Orekhov, A.; Müller-Caspary, K.; Verbeeck, J.
Title Characterization of a Timepix detector for use in SEM acceleration voltage range Type A1 Journal article
Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 253 Issue Pages 113777
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hybrid pixel direct electron detectors are gaining popularity in electron microscopy due to their excellent properties. Some commercial cameras based on this technology are relatively affordable which makes them attractive tools for experimentation especially in combination with an SEM setup. To support this, a detector characterization (Modulation Transfer Function, Detective Quantum Efficiency) of an Advacam Minipix and Advacam Advapix detector in the 15–30 keV range was made. In the current work we present images of Point Spread Function, plots of MTF/DQE curves and values of DQE(0) for these detectors. At low beam currents, the silicon detector layer behaviour should be dominant, which could make these findings transferable to any other available detector based on either Medipix2, Timepix or Timepix3 provided the same detector layer is used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001026912700001 Publication Date 2023-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are grateful to Dr. Lobato for productive discussion of methods. Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:198258 Serial 8815
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E.
Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
Year 2023 Publication Bioresource technology Abbreviated Journal
Volume 385 Issue Pages 129359-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031586400001 Publication Date 2023-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 11.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 11.4; 2023 IF: 5.651
Call Number UA @ admin @ c:irua:198259 Serial 8866
Permanent link to this record
 

 
Author Wang, Y.; Yuan, Y.; Liao, X.; Van Tendeloo, G.; Zhao, Y.; Sun, C.
Title Chip-based in situ TEM investigation of structural thermal instability in aged layered cathode Type A1 Journal article
Year 2023 Publication Nanoscale Advances Abbreviated Journal
Volume 5 Issue 16 Pages 4182-4190
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thermally induced oxygen release is an intrinsic structural instability in layered cathodes, which causes thermal runaway issues and becomes increasingly critical with the continuous improvement in energy density. Furthermore, thermal runaway events always occur in electrochemically aged cathodes, where the coupling of the thermal and electrochemical effect remains elusive. Herein, we report the anomalous segregation of cobalt metal in an aged LiCoO2 cathode, which is attributed to the local exposure of the high-energy (100) surface of LiCoO2 and weak interface Co-O dangling bonds significantly promoting the diffusion of Co. The presence of the LCO-Co interface severely aggregated the oxygen release in the form of dramatic Co growth. A unique particle-to-particle oxygen release pathway was also found, starting from the isolated high reduction areas induced by the cycling heterogeneity. This study provides atomistic insight into the robust coupling between the intrinsic structural instability and electrochemical cycling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001030149900001 Publication Date 2023-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2516-0230 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.7; 2023 IF: NA
Call Number UA @ admin @ c:irua:198281 Serial 8841
Permanent link to this record
 

 
Author Chekol Zewdie, M.; Moretti, M.; Tenessa, D.B.; Van Passel, S.
Title Farmers' preferences and willingness to pay for improved irrigation water supply program : a discrete choice experiment Type A1 Journal article
Year 2023 Publication Environment, development and sustainability Abbreviated Journal
Volume Issue Pages 1-24
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This study examines smallholder farmers' preferences and willingness to pay for an improved irrigation water supply program in northwest Ethiopia. We employed a discrete choice experiment with five attributes and three levels. Data were collected from randomly selected sample households of both irrigation users and non-users. A total of 379 respondents participated, and a mixed logit model was used to analyze the household-level survey data. The result indicates that to deviate from the business-as-usual scenario, smallholder farmers are willing to pay between 3,228 and 8,327 Ethiopian Birr per hectare of irrigated land. Furthermore, the results showed a strong public preference for access to produce cash crops, followed by irrigation water availability in the dry season, and adequate access to improved farm inputs. The results also provide useful information for policymakers and suggested possibilities for generating finance from farmers to cover the operation and maintenance costs of irrigation schemes. Also, this study result reveals that irrigation development and expansion must be integrated into a comprehensive support package that combines irrigation water with access to improved farm inputs and access to produce cash crops on farmers' farm plots.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001048896000004 Publication Date 2023-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-585x; 1573-2975 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:198283 Serial 9204
Permanent link to this record
 

 
Author Conti, S.; Chaves, A.; Pandey, T.; Covaci, L.; Peeters, F.M.; Neilson, D.; Milošević, M.V.
Title Flattening conduction and valence bands for interlayer excitons in a moire MoS₂/WSe₂ heterobilayer Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moire pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moire potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Gamma-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moire hole, and (ii) that the moire depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude – leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moire twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001047512300001 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access Not_Open_Access: Available from 25.01.2024
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:198290 Serial 8819
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V.
Title High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: role of multi-valley bands and high anharmonicity Type A1 Journal article
Year 2023 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal
Volume 11 Issue 33 Pages 11185-11194
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Silicon-based materials are attractive for thermoelectric applications due to their thermal stability, chemical inertness, and natural abundance of silicon. Here, using a combination of first-principles and Boltzmann transport calculations we report the thermoelectric properties of the recently synthesized compound Mg3Si2Te6. Our analysis reveals that Mg3Si2Te6 is a direct bandgap semiconductor with a bandgap of 1.6 eV. The combination of heavy and light valence bands, along with a high valley degeneracy, results in a large power factor under p-type doping. We also find that Mg is weakly bonded both within and between the layers, leading to low phonon group velocities. The vibrations of the Mg atoms are localized and make a significant contribution to phonon-phonon scattering. This high anharmonicity, coupled with low phonon group velocity, results in a low lattice thermal conductivity of & kappa;(l) = 0.5 W m(-1) K-1 at room temperature, along the cross-plane direction. Combining excellent electronic transport properties and low & kappa;(l), p-type Mg3Si2Te6 achieves figure-of-merit (zT) values greater than 1 at temperatures above 600 K. Specifically, a zT of 2.0 is found at 900 K along the cross-plane direction. Our findings highlight the importance of structural complexity and chemical bonding in electronic and phonon transport, providing guiding insights for further design of Si-based thermoelectrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001041124900001 Publication Date 2023-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4; 2023 IF: 5.256
Call Number UA @ admin @ c:irua:198296 Serial 8821
Permanent link to this record
 

 
Author Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J.
Title Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes Type A1 Journal article
Year 2023 Publication Cell reports physical science Abbreviated Journal
Volume 4 Issue 7 Pages 101480-14
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High-energy-density nickel (Ni)-rich cathode materials are used in commercial lithium (Li)-ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling. Planar gliding and microcracking are seeds for fatal mechanical fracture, but their origin remains unclear. Herein, we show that “layer-by -layer delithiation”is activated at high voltages during the charge process when the “lattice collapse”(a characteristic high-voltage lattice evolution in Ni-rich cathodes) occurs. Layer-by-layer deli-thiation is evidenced by direct observation of the consecutive lattice collapse using in situ scanning transmission electron micro-scopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. Localized strain will be induced at lattice-collapsing interface where planar gliding and intragranular microcracks are generated to release this strain. Our study reveals that layer-by-layer delithia-tion during lattice collapse is the fundamental origin of the mechanical instability in single-crystalline Ni-rich cathodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001048074500001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198299 Serial 8893
Permanent link to this record
 

 
Author Saeumel, I.; Ramirez, L.R.; Santolin, J.; Pintado, K.
Title A step to disentangle diversity patterns in Uruguayan grasslands : climatic seasonality, novel land-uses, and landscape context drive diversity of ground flora Type A1 Journal article
Year 2023 Publication Conservation Science and Practice Abbreviated Journal
Volume 5 Issue 9 Pages 1-20
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract South American grasslands contain extraordinary biodiversity and play a central role in the subsistence of regional agroecosystems. In recent decades, afforestation, followed by the soybean planting boom, have led to drastic land-use changes at the expense of grasslands. Impacts on local biodiversity have remained understudied. We explored the taxonomic richness and ss-diversity of plants of ground layer (excluding trees and shrubs) at different land uses, its interplay at regional scale with environmental heterogeneity, and at local scale with novel land cover types and landscape configurations. We conducted correlation, principal component, NDMS, and SDR analysis to explore variation of taxonomic richness, richness difference, replacement, and similarity of ground flora as response to environmental filters and land use change across Uruguay. We surveyed 160 plots distributed in 10 land cover types, that is, closed and open native forests, different grasslands, crops, orchards, and timber plantations. We observed overlaying regional patterns driven by seasonality of temperature and precipitation, and land cover shaping taxonomic richness at local scale. Landscape configuration affects diversity patterns of native ground flora, which seems to be sustained mainly by the “old growth grassland” species pool. Taxonomic richness of native species decreases with an increase of distance to grassland. Crops and grasslands harbor a higher number of native species in the ground flora than native forests and timber plantations. The introduction of exotics is driven mostly by crops or highly modified pastures. Diversity patterns only partially reflect the ecoregion concept. Expanding the perspective from conservation in purely natural ecosystems to measures conserving species richness in human-modified landscapes is a powerful tool against species loss in the Anthropocene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001034673500001 Publication Date 2023-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2578-4854 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198300 Serial 8828
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A.
Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
Year 2023 Publication ACS Omega Abbreviated Journal
Volume 8 Issue 30 Pages 27519-27533
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031269000001 Publication Date 2023-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.1 Times cited Open Access
Notes Approved Most recent IF: 4.1; 2023 IF: NA
Call Number UA @ admin @ c:irua:198313 Serial 9011
Permanent link to this record
 

 
Author Espinosa, I.M.P.; Karaaslan, Y.; Sevik, C.; Martini, A.
Title Atomistic model of the anisotropic response of ortho-Mo₂C to indentation Type A1 Journal article
Year 2023 Publication AIP advances Abbreviated Journal
Volume 13 Issue 6 Pages 065125-65127
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Molybdenum carbide has various applications for which studying the material using classical molecular dynamics simulations would be valuable. Here, we develop an empirical potential within the Tersoff formalism using particle swarm optimization for the orthorhombic phase of Mo2C. The developed potential is shown to predict lattice constants, elastic properties, and equation of state results that are consistent with current and previously reported results from experiments and first principles calculations. We demonstrate the potential with simulations of indentation using multiple indenter sizes that load and unload in three different directions relative to the crystallographic lattice of orthorhombic Mo2C. Direction-dependent force-displacement trends are analyzed and explained in terms of the spatial distributions of stress and strain within the material during indentation. This study reveals the anisotropic elasticity of orthorhombic Mo2C and, more generally, provides researchers with a new empirical potential that can be used to explore the properties and behavior of the material going forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001016472500005 Publication Date 2023-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198333 Serial 8834
Permanent link to this record
 

 
Author Reyntjens, P.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.
Title Ultrascaled graphene-capped interconnects : a quantum mechanical study Type P1 Proceeding
Year 2023 Publication Proceedings of the IEEE ... International Interconnect Technology Conference T2 – IEEE International Interconnect Technology Conference (IITC) / IEEE, Materials for Advanced Metallization Conference (MAM), MAY 22-25, 2023, Dresden, Germany Abbreviated Journal
Volume Issue Pages 1-3
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract In this theoretical study, we assess the impact of a graphene capping layer on the resistivity of defective, extremely scaled interconnects. We investigate the effect of graphene capping on the electronic transport in ultrascaled interconnects, in the presence of grain boundary defects in the metal layer. We compare the results obtained using our quantum mechanical model to a simple parallel-conductor model and find that the parallel-conductor model does not capture the effect of the graphene cap correctly. At 0.5 nm metal thickness, the parallel-conductor model underestimates the conductivity by 3.0% to 4.0% for single-sided and double sided graphene capping, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001027381700006 Publication Date 2023-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 979-83-503-1097-9 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198343 Serial 8949
Permanent link to this record
 

 
Author Zhang, Y.; van Schayck, J.P.; Pedrazo-Tardajos, A.; Claes, N.; Noteborn, W.E.M.; Lu, P.-H.; Duimel, H.; Dunin-Borkowski, R.E.; Bals, S.; Peters, P.J.; Ravelli, R.B.G.
Title Charging of vitreous samples in cryogenic electron microscopy mitigated by graphene Type A1 Journal article
Year 2023 Publication ACS nano Abbreviated Journal
Volume 17 Issue 16 Pages 15836-15846
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Cryogenic electronmicroscopy can provide high-resolution reconstructionsof macromolecules embedded in a thin layer of ice from which atomicmodels can be built de novo. However, the interactionbetween the ionizing electron beam and the sample results in beam-inducedmotion and image distortion, which limit the attainable resolutions.Sample charging is one contributing factor of beam-induced motionsand image distortions, which is normally alleviated by including partof the supporting conducting film within the beam-exposed region.However, routine data collection schemes avoid strategies wherebythe beam is not in contact with the supporting film, whose rationaleis not fully understood. Here we characterize electrostatic chargingof vitreous samples, both in imaging and in diffraction mode. We mitigatesample charging by depositing a single layer of conductive grapheneon top of regular EM grids. We obtained high-resolution single-particleanalysis (SPA) reconstructions at 2 & ANGS; when the electron beamonly irradiates the middle of the hole on graphene-coated grids, usingdata collection schemes that previously failed to produce sub 3 & ANGS;reconstructions without the graphene layer. We also observe that theSPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to dataobtained without the graphene layer. This mitigation of charging couldhave broad implications for various EM techniques, including SPA andcryotomography, and for the study of radiation damage and the developmentof future sample carriers. Furthermore, it may facilitate the explorationof more dose-efficient, scanning transmission EM based SPA techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001041649900001 Publication Date 2023-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 17.1 Times cited Open Access OpenAccess
Notes We thank H. Nguyen for editing the manuscript. We warmly thank the M4i Microscopy CORE Lab team of FHML Maastricht University (MU) for their support and collaboration and Eve Timlin and Ye Gao (MU) for providing protein samples. Members of the Amsterdam Scientific Instruments team are acknowledged for their Timepix detector support. This work benefited from access to The Netherlands Centre for Electron Nanoscopy (NeCEN) with assistance from Ludovic Renault and Meindert Lamers. The authors acknowledge financial support of the Netherlands Electron Microscopy Infrastructure (NEMI), project number 184.034.014 of the National Roadmap for Large-Scale Research Infrastructure of the Dutch Research Council (NWO), the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health, to stimulate public-private partnerships, project 4DEM, number LSHM21029, and the LINK program from the Province of Limburg, The Netherlands, as well as financial support from the European Commission under the Horizon 2020 Programme by grant no. 815128 (REALNANO). Approved Most recent IF: 17.1; 2023 IF: 13.942
Call Number UA @ admin @ c:irua:198376 Serial 8840
Permanent link to this record
 

 
Author Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M.
Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
Year 2023 Publication Applied physics letters Abbreviated Journal
Volume 123 Issue 3 Pages 033102-33106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033604700003 Publication Date 2023-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4; 2023 IF: 3.411
Call Number UA @ admin @ c:irua:198382 Serial 8823
Permanent link to this record
 

 
Author Mazzola, F.; Hassani, H.; Amoroso, D.; Chaluvadi, S.K.; Fujii, J.; Polewczyk, V.; Rajak, P.; Koegler, M.; Ciancio, R.; Partoens, B.; Rossi, G.; Vobornik, I.; Ghosez, P.; Orgiani, P.
Title Unveiling the electronic structure of pseudotetragonal WO₃ thin films Type A1 Journal article
Year 2023 Publication The journal of physical chemistry letters Abbreviated Journal
Volume 14 Issue 32 Pages 7208-7214
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract WO3 isa 5d compound that undergoes severalstructuraltransitions in its bulk form. Its versatility is well-documented,with a wide range of applications, such as flexopiezoelectricity,electrochromism, gating-induced phase transitions, and its abilityto improve the performance of Li-based batteries. The synthesis ofWO(3) thin films holds promise in stabilizing electronicphases for practical applications. However, despite its potential,the electronic structure of this material remains experimentally unexplored.Furthermore, its thermal instability limits its use in certain technologicaldevices. Here, we employ tensile strain to stabilize WO3 thin films, which we call the pseudotetragonal phase, and investigateits electronic structure using a combination of photoelectron spectroscopyand density functional theory calculations. This study reveals theFermiology of the system, notably identifying significant energy splittingsbetween different orbital manifolds arising from atomic distortions.These splittings, along with the system's thermal stability,offer a potential avenue for controlling inter- and intraband scatteringfor electronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001044522400001 Publication Date 2023-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.7; 2023 IF: 9.353
Call Number UA @ admin @ c:irua:198391 Serial 8951
Permanent link to this record
 

 
Author Ying, J.; Xiao, Y.; Chen, J.; Hu, Z.-Y.; Tian, G.; Van Tendeloo, G.; Zhang, Y.; Symes, M.D.D.; Janiak, C.; Yang, X.-Y.
Title Fractal design of hierarchical PtPd with enhanced exposed surface atoms for highly catalytic activity and stability Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 16 Pages 7371-7378
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hierarchicalassembly of arc-like fractal nanostructures not onlyhas its unique self-similarity feature for stability enhancement butalso possesses the structural advantages of highly exposed surface-activesites for activity enhancement, remaining a great challenge for high-performancemetallic nanocatalyst design. Herein, we report a facile strategyto synthesize a novel arc-like hierarchical fractal structure of PtPdbimetallic nanoparticles (h-PtPd) by using pyridinium-type ionic liquidsas the structure-directing agent. Growth mechanisms of the arc-likenanostructured PtPd nanoparticles have been fully studied, and precisecontrol of the particle sizes and pore sizes has been achieved. Dueto the structural features, such as size control by self-similaritygrowth of subunits, structural stability by nanofusion of subunits,and increased numbers of exposed active atoms by the curved homoepitaxialgrowth, h-PtPd displays outstanding electrocatalytic activity towardoxygen reduction reaction and excellent stability during hydrothermaltreatment and catalytic process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001042181100001 Publication Date 2023-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number UA @ admin @ c:irua:198408 Serial 8870
Permanent link to this record
 

 
Author Liu, J.; Wang, C.; Yu, W.; Zhao, H.; Hu, Z.-Y.; Liu, F.; Hasan, T.; Li, Y.; Van Tendeloo, G.; Li, C.; Su, B.-L.
Title Bioinspired noncyclic transfer pathway electron donors for unprecedented hydrogen production Type A1 Journal article
Year 2023 Publication CCS chemistry Abbreviated Journal
Volume 5 Issue 6 Pages 1470-1482
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron donors are widely exploited in visible-light photocatalytic hydrogen production. As a typical electron donor pair and often the first choice for hydrogen production, the sodium sulfide-sodium sulfite pair has been extensively used. However, the resultant thiosulfate ions consume the photogenerated electrons to form an undesirable pseudocyclic electron transfer pathway during the photocatalytic process, strongly limiting the solar energy conversion efficiency. Here, we report novel and bioinspired electron donor pairs offering a noncyclic electron transfer pathway that provides more electrons without the consumption of the photogenerated electrons. Compared to the state-of-the-art electron donor pair Na2S-Na2SO3, these novel Na2S-NaH2PO2 and Na2S-NaNO2 electron donor pairs enable an unprecedented enhancement of up to 370% and 140% for average photocatalytic H-2 production over commercial CdS nanoparticles, and they are versatile for a large series of photocatalysts for visible-light water splitting. The discovery of these novel electron donor pairs can lead to a revolution in photocatalysis and is of great significance for industrial visible-light-driven H-2 production. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001037091900008 Publication Date 2022-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198409 Serial 8837
Permanent link to this record
 

 
Author Ren, P.; Zhang, T.; Jain, N.; Ching, H.Y.V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L.; Rokicinska, A.; Debroye, E.; Kustrowski, P.; Van Doorslaer, S.; Van Aert, S.; Bals, S.; Das, S.
Title An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the Water Oxidation Reaction (WOR) Type A1 Journal article
Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal
Volume 145 Issue 30 Pages 16584-16596
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Organic synthesis (ORSY); Theory and Spectroscopy of Molecules and Materials (TSM²)
Abstract In this work, we have fabricatedan aryl amino-substitutedgraphiticcarbon nitride (g-C3N4) catalyst with atomicallydispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibitedexcellent reactivity, obtaining up to 2230 & mu;M H2O2 in 7 h from alkaline water and up to 1800 & mu;Mfrom seawater under identical conditions. More importantly, the catalystwas quickly recovered for subsequent reuse without appreciable lossin performance. Interestingly, unlike the usual two-electron oxygenreduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction(WOR) process in which both the direct and indirect WOR processesoccurred; namely, photoinduced h(+) directly oxidized H2O to H2O2 via a one-step 2e(-) WOR, and photoinduced h(+) first oxidized a hydroxide (OH-) ion to generate a hydroxy radical ((OH)-O-& BULL;), and H2O2 was formed indirectly by thecombination of two (OH)-O-& BULL;. We have characterized thematerial, at the catalytic sites, at the atomic level using electronparamagnetic resonance, X-ray absorption near edge structure, extendedX-ray absorption fine structure, high-resolution transmission electronmicroscopy, X-ray photoelectron spectroscopy, magic-angle spinningsolid-state NMR spectroscopy, and multiscale molecular modeling, combiningclassical reactive molecular dynamics simulations and quantum chemistrycalculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001034983300001 Publication Date 2023-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 21 Open Access Not_Open_Access
Notes S.D. thanks the IOF grant and Francqui start up grant from the University of Antwerp, Belgium, for the financial support. P.R. thanks CSC and T.Z. thanks FWO for their financial assistance to finish this work. E.D. would like to thank the KU Leuven Research Fund for financial support through STG/21/010. J.S.A. acknowledges financial support from MCIN/AEI/10.13039/501100011033 and EU NextGeneration/PRTR (Project PCI2020-111968/3D-Photocat) and Diamond Synchrotron (rapid access proposal SP32609). This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). S.B. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium, project G.0346.21 N). We also thank Mr. Jian Zhu and Mr. Shahid Ullah Khan from the University of Antwerp, Belgium, for helpful discussions. Approved Most recent IF: 15; 2023 IF: 13.858
Call Number UA @ admin @ c:irua:198426 Serial 8831
Permanent link to this record
 

 
Author Monico, L.; d'Acapito, F.; Cotte, M.; Janssens, K.; Romani, A.; Ricci, G.; Miliani, C.; Cartechini, L.
Title Total electron yield (TEY) detection mode Cr K-edge XANES spectroscopy as a direct method to probe the composition of the surface of darkened chrome yellow (PbCr1-xSxO4) and potassium chromate paints Type A1 Journal article
Year 2023 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal
Volume 539 Issue Pages 141-147
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The darkening of chromate-pigments, including chrome yellows (PbCr1-xSxO4), is a surface phenomenon affecting late 19th-early 20th c. paintings, such as those by Van Gogh. Exploring analytical strategies that contribute to a deep understanding of darkening is therefore significant for the long-term conservation of unique masterpieces. Here, we examined the capabilities of Cr K-edge XANES spectroscopy collected at the same time in X-ray fluorescence yield (XFY) and total electron yield (TEY) detection modes to selectively study the surface composition of darkened oil paint mock-ups composed of chrome yellow (PbCr0.2S0.8O4) or potassium chromate. By discussing advantages and drawbacks in using XFY/TEY modes in relation to XFY & mu;-XANES analysis from sectioned samples, we aim at assessing if TEY-XANES spectroscopy: (i) is a selective surface method to determine the abundance of different Cr-species from paint fragments; (ii) can contribute to optimize the analytical strategy by limiting time consuming sample preparation procedures; (iii) can decrease the probability of radiation damage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001041485400001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.3; 2023 IF: 1.109
Call Number UA @ admin @ c:irua:198427 Serial 8944
Permanent link to this record
 

 
Author Tang, C.S.; Zeng, S.; Wu, J.; Chen, S.; Naradipa, M.A.; Song, D.; Milošević, M.V.; Yang, P.; Diao, C.; Zhou, J.; Pennycook, S.J.; Breese, M.B.H.; Cai, C.; Venkatesan, T.; Ariando, A.; Yang, M.; Wee, A.T.S.; Yin, X.
Title Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy Type A1 Journal article
Year 2023 Publication Applied physics reviews Abbreviated Journal
Volume 10 Issue 3 Pages 031406-31409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) perovskite oxide interfaces are ideal systems to uncover diverse emergent properties, such as the arising polaronic properties from short-range charge-lattice interactions. Thus, a technique to detect this quasiparticle phenomenon at the buried interface is highly coveted. Here, we report the observation of 2D small-polarons at the LaAlO3/SrTiO3 conducting interface using high-resolution spectroscopic ellipsometry. First-principles investigations show that interfacial electron-lattice coupling mediated by the longitudinal phonon mode facilitates the formation of these polarons. This study resolves the long-standing question by attributing the formation of interfacial 2D small polarons to the significant mismatch between experimentally measured interfacial carrier density and theoretical values. Our study sheds light on the complexity of broken periodic lattice-induced quasi-particle effects and its relationship with exotic phenomena at complex oxide interfaces. Meanwhile, this work establishes spectroscopic ellipsometry as a useful technique to detect and locate optical evidence of polaronic states and other emerging quantum properties at the buried interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001038283300001 Publication Date 2023-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15; 2023 IF: 13.667
Call Number UA @ admin @ c:irua:198433 Serial 8847
Permanent link to this record
 

 
Author Fang, C.; Verbrigghe, N.; Sigurdsson, B.D.D.; Ostonen, I.; Leblans, N.I.W.; Maranon-Jimenez, S.; Fuchslueger, L.; Sigurosson, P.; Meeran, K.; Portillo-Estrada, M.; Verbruggen, E.; Richter, A.; Sardans, J.; Penuelas, J.; Bahn, M.; Vicca, S.; Janssens, I.A.
Title Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation Type A1 Journal article
Year 2023 Publication New phytologist Abbreviated Journal
Volume 240 Issue 2 Pages 565-576
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3 degrees C and +7.9 degrees C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043561400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:198443 Serial 9199
Permanent link to this record
 

 
Author Li, L.
Title Untangling microbial community assembly in rainforest and grassland soils under increasing precipitation persistence Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 179 p.
Keywords Doctoral thesis; Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Climate change is causing alterations in precipitation patterns, leading to adverse ecological consequences in many ecosystems. Recently, an increasingly persistent weather pattern has emerged, characterized by lengthening the duration of alternating dry and wet periods, which is more complex than exclusively drought or increasing precipitation. It is currently unclear how soil microbial communities respond to these new regimes in relation to their interactions with plants, especially in precipitation-sensitive ecosystems, such as tropical rainforests and grasslands. In this thesis, we explored responses of soil bacterial and fungal communities to increasing weather persistence in rainforests and grasslands, using high throughput sequencing technology. We firstly investigated the resistance and resilience of microbial communities to prolonged drought in a mature seasonal tropical rainforest which experiences unusually intensive dry seasons in the current century. Through excluding rainfall during and after the dry season, a simulated prolongation of the dry season by five months was compared to the control. Our results indicate that as rain exclusion progressed, the microbial communities increasingly diverged from the control, indicating a moderate resistance to prolonged drought. However, when the drought ceased, the composition and co-occurrence patterns of soil microbial communities immediately recovered to that in the control, implying a high resilience. To further investigate the ecological roles of soil microbial communities in response to increasing weather persistence, we set up grassland mesocosm experiments. In these experiments, precipitation frequency was adjusted along a series, ranging from 1 to 60 consecutive days alternating of dry and wet periods, while keeping the total precipitation constant. Our results show that microbial community assembly tended to be more stochastic processes at intermediate persistence of dry and wet alternations while more deterministic processes dominated at low and high persistence within 120 days regime exposure. Moreover, more persistent precipitation reduced the fungal diversity and network connectivity but barely impacted that of bacterial communities. The prior experiences of persistent weather events for one year caused legacy effects. The soil microbial legacy induced by soil microbial communities subjected to prior persistent weather events was more enduring in subsequent fungal communities than bacterial communities, likely due to slower growth of fungi compared to bacteria. However, a minor effect of soil microbial legacy  was observed on plant performance. In addition, we kept the grassland mesocosm experiment for two growing seasons. The effects of precipitation persistence on soil microbial communities increased in the second year. The dissimilarities of microbial communities between the first and second year were less with more persistent precipitation, potentially resulting in more vulnerable microbial communities, due to some taxa disappearing and a reduction in functional redundancy under more persistent weather. To conclude, our findings provide a comprehensive theoretical understanding of soil microbial communities in response to the current and future climate change, drawing from both natural and experimental systems. It helps in predicting and managing the impacts of future climate change on ecosystems mediated by microbial communities. Additionally, the findings of microbe-mediated legacy effects on grassland ecosystems can provide practical guidance for their application in agriculture, specifically for using an inoculum to mitigate the impacts of climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:198498 Serial 9240
Permanent link to this record
 

 
Author Perreault, P.; Preuster, P.
Title Editorial hydrogen production storage and use Type Editorial
Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal
Volume 44 Issue Pages 100861-100863
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the pursuit of clean and sustainable energy sources, hydrogen has emerged as a key contender, offering high energy density and the potential to serve as a carbon-neutral fuel. However, one of the major challenges associated with hydrogen is efficient and safe storage and transportation. In this Special Edition, we delve into the exciting developments in the upcoming hydrogen economy, from its sustainable production to chemical hydrogen storage. Some of our reviews focus on particular technologies namely on liquid organic hydrogen carriers (LOHCs) and the utilization of ammonia as a hydrogen carrier.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079651000001 Publication Date 2023-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 9.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.3; 2023 IF: NA
Call Number UA @ admin @ c:irua:198505 Serial 8853
Permanent link to this record
 

 
Author Van Hoecke, L.; Kummamuru, N.B.; Pourfallah, H.; Verbruggen, S.W.; Perreault, P.
Title Intensified swirling reactor for the dehydrogenation of LOHC Type A1 Journal article
Year 2023 Publication International journal of hydrogen energy Abbreviated Journal
Volume Issue Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology
Abstract In the recent advances towards more sustainable global energy supply, H2 is a possible alternative for large scale energy storage. In this view, Liquid Organic Hydrogen Carriers (LOHC) are a class of molecules that allow for easier long term energy storage compared to conventional H2 technologies. CFD simulations were used to showcase the hydrodynamics of the dehydrogenation of a LOHC in a new reactor unit, via a cold flow mock-up study. This reactor was designed to allow for a swirling motion of the liquid carrier material, favouring the removal of H2 gas from the flow and forcing the equilibrium of the reaction towards dehydrogenation, as well as to keep the catalyst particles in motion. The CFD simulations were validated qualitatively with experimental operation of the reactor, in a system with identical dimensionless numbers (Reynolds and Stokes), in order to use less costly products during the prototyping phase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001139598200001 Publication Date 2023-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 7.2 Times cited Open Access Not_Open_Access: Available from 01.03.2024
Notes Approved Most recent IF: 7.2; 2023 IF: 3.582
Call Number UA @ admin @ c:irua:198534 Serial 8889
Permanent link to this record
 

 
Author Blundo, E.; Faria, P.E., Jr.; Surrente, A.; Pettinari, G.; Prosnikov, M.A.; Olkowska-Pucko, K.; Zollner, K.; Wozniak, T.; Chaves, A.; Kazimierczuk, T.; Felici, M.; Babinski, A.; Molas, M.R.; Christianen, P.C.M.; Fabian, J.; Polimeni, A.
Title Strain-Induced Exciton Hybridization in WS2 Monolayers Unveiled by Zeeman-Splitting Measurements Type A1 Journal article
Year 2022 Publication Physical review letters Abbreviated Journal
Volume 129 Issue 6 Pages 067402
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS2 monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS2 microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of they factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000842367600007 Publication Date 2022-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007; 1079-7114 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:198538 Serial 8936
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.; Annys, A.; Jannis, D.; Verbeeck, J.
Title Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy Type A1 Journal article
Year 2023 Publication Scientific reports Abbreviated Journal
Volume 13 Issue 1 Pages 13724
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their corresponding elements. This can be especially bothersome in spectrum imaging, where a large amount of spectra are recorded when spatially scanning over a sample area. This paper introduces a synthetic dataset with 736,000 labeled EELS spectra, computed from available generalized oscillator strength tables, that represents 107 K, L, M or N core-loss edges and 80 chemical elements. Generic lifetime broadened peaks are used to mimic the fine structure due to band structure effects present in experimental core-loss edges. The proposed dataset is used to train and evaluate a series of neural network architectures, being a multilayer perceptron, a convolutional neural network, a U-Net, a residual neural network, a vision transformer and a compact convolutional transformer. An ensemble of neural networks is used to further increase performance. The ensemble network is used to demonstrate fully automated elemental mapping in a spectrum image, both by directly mapping the predicted elemental content and by using the predicted content as input for a physical model-based mapping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052937600046 Publication Date 2023-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes A.A. would like to acknowledge the resources and services used in this work provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. J.V. acknowledges the IMPRESS project. The IMPRESS project has received funding from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. Approved Most recent IF: 4.6; 2023 IF: 4.259
Call Number UA @ admin @ c:irua:198647 Serial 8846
Permanent link to this record
 

 
Author Zhang, K.; Wang, J.; Ninakanti, R.; Verbruggen, S.W.
Title Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 474 Issue Pages 145188-14
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Photocatalytic acetaldehyde degradation exhibits satisfactory performance only at relatively low acetaldehyde flow rates, predominately below 10 × 10-3 mL/min, leaving ample room for improvement. Therefore, it is necessary to prepare more efficient photocatalysts for acetaldehyde degradation. Moreover, the impact of the interaction strength between the titania surface and surface water on the photocatalytic acetaldehyde efficiency is poorly understood. To address these issues, in this work a series of (0 0 1)-faceted anatase titania samples with various surface properties and structures were synthesized via a solvothermal method and tested at high acetaldehyde flow rates under UV light irradiation. With increasing solvothermal time, the pore volume, surface area, and the abundance of surface OH groups all increased, while the crystallite size decreased. These were all identified to be beneficial to promote the degradation performance. When the solvothermal temperature was 180 ℃ and the reaction time was 5 h, the prepared sample displayed the most efficient performance at 19.25× 10-3 mL/min of acetaldehyde (conversion of (74 ± 1)% versus (29 ± 1)% for P25), and achieved a 100 % conversion at 16 × 10-3 mL/min. A weaker interaction strength between surface water and the titania surface was found to improve the acetaldehyde adsorption capacity, thereby promoting the acetaldehyde degradation efficiency. The stability of the best performing sample was tested over 48 h, demonstrating a highly stable performance with no signs of deactivation. Even at a relative humidity of 30 %, the acetaldehyde conversion retains 82% of its efficiency in a dry atmosphere, highlighting its potential in practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001144928800001 Publication Date 2023-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 06.02.2024
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:198652 Serial 8933
Permanent link to this record
 

 
Author Wanten, B.; Vertongen, R.; De Meyer, R.; Bogaerts, A.
Title Plasma-based CO2 conversion: How to correctly analyze the performance? Type A1 journal article
Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry
Volume 86 Issue Pages 180-196
Keywords A1 journal article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001070885000001 Publication Date 2023-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-4956 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 13.1 Times cited Open Access Not_Open_Access
Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 810182 – SCOPE ERC Synergy project), and the Methusalem funding of the University of Antwerp. We acknowledge the icons from the graphical abstract made by dDara, geotatah, Spashicons and Freepik on www.flaticon.com. We also thank Stein Maerivoet, Joachim Slaets, Elizabeth Mercer, Colín Ó’Modráin, Joran Van Turnhout, Pepijn Heirman, dr. Yury Gorbanev, dr. Fanny Girard-Sahun and dr. Sean Kelly for the interesting discussions and feedback. Approved Most recent IF: 13.1; 2023 IF: 2.594
Call Number PLASMANT @ plasmant @c:irua:198709 Serial 8816
Permanent link to this record